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Abstract

We investigate game-theoretic variants of cardinal invariants of the con-
tinuum. The invariants we treat are the reaping number t, the bounding
number b, the dominating number 9, and the additivity number of the null
ideal add(null). We also consider games, called tallness games, defined ac-
cording to ideals on w and characterize that each of Player I and Player II
has a winning strategy.

1 Introduction

The study of cardinal invariants of the continuum is important in set theory of
reals. On the other hand, the study of infinite games is also an important topic
in set theory. We study variants of cardinal invariants using infinite games. The
invariants we treat are the reaping number t, the bounding number b, the dominating
number 9, and the additivity number of the null ideal add(N'). Furthermore, in a
forthcoming paper, [CGHYoo], the authors and T. Yamazoe will consider game-

theoretic variants of splitting numbers along the lines of this paper.
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game Lgame Lgame
bounding b 0
bounding* b c
dominating 0 0
dominating™ 0 c
reaping max {t,0} < ? < max{t,,0} ¢
reaping™ 00 00
anti-localizing add(N) cov(M)
anti-localizing™* add(N) c

Figure 1: Our results

Depending on the definition of each cardinal invariant, there are normal versions
of games and *-versions of games, and we consider 8 games in total.

In the normal version, Player II must in each turn say 0 or 1. Player II wins if
there is a real in the prescribed family and the values of this real at the points where
Player II played 1 have the given relation to the natural number that Player I played.
In contrast, in the *-version, Player II must in each turn play a natural number.
Player 11 wins if the real consisting of the play of Player Il is in the prescribed family
and this real has the given relation to the real consisting of Player I’s moves.

For each game, two cardinal invariants are defined: the minimum size of a family
such that Player II has a winning strategy and the minimum size of a family such
that Player I has no winning strategy.

Figure 1 summarizes our results.

In addition to investigating cardinal invariants, in Section 6, we study games
defined according to ideal on w regarding its tallness. Moreover, in Section 7, we
generalize the results in Section 6 to show the Definable Ideal Dichotomy.

Game-theoretic considerations of cardinal invariants can be found in [Kad00],
[BHT19], and [Sch96] but our approach differs from these.

In the rest of this section, we fix our notation.

(V*°n) and (3*°n) are abbreviations to say “for all but finitely many n” and
“there exist infinitely many n”, respectively.

For A, B C w, the relation A C* B means that A\ B is finite. We say B almost
contains A if A C* B holds. In addition, for z,y € w*, the relation x <* y means
(V>°n)(xz(n) < y(n)). We say y dominates x if z <* y holds.

0 is the set of all eventually zero sequences and 1 is that of eventually one
sequences.

¢ denotes the cardinality of the continuum.

The following is the standard definition of cardinal invariants.



Definition 1.1. 1. A C w¥ is a dominating family if for every = € w®, there is
y € A that dominates x. Define the dominating number 9 by d = min{|A| :
A C w” a dominating family}.

2. A C w” is an unbounded family if for every z € w¥, there is y € A that is
not dominated by x. Define the bounding number b by b = min{|A| : A C
w* an unbounded family}.

3. For z € P(w) and y € [w]¥, we say y reaps x if either y C* x or y C* w\ x
holds. it is equivalent to say x does not split y. A C [w]” is a reaping family
if for every x € P(w), there is y € A such that y reaps x. Define the reaping
number v by v = min{|A| : A C [w]* a reaping family}.

4. A C [w]¥ is a o-reaping family if for every f € (P(w)*, there is y € A
such that y reaps f(n) for every n € w. Define the o-reaping number t, by
t, = min{|A| : A C [w]* a o-reaping family}.

5. add(N) is the minimum cardinality s such that the Lebesgue null ideal is not
r-additive.

6. cov(M) is the minimum cardinality s such that the Cantor space 2* can be
covered by k many meager sets.

As for the details of these cardinal invariants, see [Blal0].

2 Bounding games

In this section, we consider games related to unbounded families.

Fix a set A C w¥. We call the following game the bounding game with respect
to A:

Player 1 | No ny

Player II | i i

Here, (ny : k € w) is a sequence of numbers in w and (i;, : k € w) is a sequence
of numbers in 2. Player II wins when Player II played 1 infinitely often and there is
g € A such that

{kew:ip=1}={kew:n, <glk)}
We call the following game the bounding® game with respect to A:

Player I | no ny

Player I1 | mo mq

Here, (ny : k € w) and (my : k € w) are sequences of numbers in w. Player II
wins when

(my + k € w) € Aand (I7Fk)(ng < my,).
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Definition 2.1. We define
I o . . . .
byame = min{|A| : Player I has no winning strategy

for the bounding game with respect to A},

byome = min{|A| : Player II has a winning strategy

for the bounding game with respect to A},

béame* = min{|A| : Player I has no winning strategy
for the bounding™® game with respect to A}, and
byimer = min{|A| : Player II has a winning strategy

for the bounding™ game with respect to A}.

Since the star version is harder for Player II than the non-star version, we have
the following inequality.

II II
bgame S bgame*
VI VI
I I
bgame S bgame*
Theorem 2.2. bl = b holds.

game

Proof. That blgame > b is easy. We show béame < b. Take an unbounded family
A C w®. Take Player I's strategy o: 2<“ — w. We want to show that ¢ is not a
winning strategy for the bounding game with respect to A.

Since 0 is a countable set, we can get f € w* that dominates (o(i | k) : k € w)
for every 7 € 0. Since A is an unbounded family, we can take g € A such that f

doesn’t dominate g. We now put i € 2¢ by

. {1 (if o(i | k) < g(k))

0 (otherwise)

If i €0, then (o(i | k) : k € w) does not dominate g by the choice of g. But this
fact and the choice of i imply 7 € 0. It’s a contradiction. So i ¢ 0. Therefore 7 is a
play of Player II that wins against Player I's strategy o. Ol

Theorem 2.3. bl =79 holds.

game

Proof. We first prove bgame < 0. Take a dominating family A C w® of (w¥, <) (the
total domination order). Then the strategy that plays 1 always is a winning strategy
for Player II.

We next prove 0 < bl

game"*

Fix A C w* with a winning strategy of Player II
for the bounding game with respect to A. Consider the game tree T decided by
the winning strategy. So every node in T of even length has full successor nodes
and every node in T of odd length has the only successor node determined by the
strategy. We first consider the next case:



e (Case 1) There is a 0 € T of even length such that for every even number
r > |o|, there is ¢ € 2 such that for all but finitely many m, for every 7 € T
extending o, we have [r(r)=m = 7(r+1) =1

Fix a witness o and (i, : 7 > |o| even) for Case 1.

Then we have (3%°r)(i, = 1). Otherwise, we have (V*°r)(i, = 0). Then consider-
ing an appropriate play of Player I, Player II plays 0 eventually along the winning
strategy. This is a contradiction to the rule of the game.

Consider the increasing enumeration {r, : n € w} of {r € w : i, = 1}. For
each n € w, we have m, € w satisfying for every 7 € T extending o, we have
[7(rn) > m, = 7(r,+1)=1]. Fix f € w*. Consider the play of Player I that
plays max{m,, f(n)} at stage r,/2. Since Player II wins, there is g € A such that

max{mm f(n)} < g(?"n/Q).

So A ={{g(rn/2) : n € w) : g € A} is a dominating family. We have |A| > 0.
We next consider the next case:

o (Case 2) For every o € T of even length, there is an even number r > |o|
such that for every ¢ € 2, there exist infinitely many m and there is 7 € T
extending o such that [7(r) =m A 7(r +1) =1l

In this case, we can construct a perfect subtree of T" and each distinct path of
this subtree gives distinct element of A.

In detail, we construct 7, o, and m§ < m§ for s € 2<° such that o,~;(r,) = m¢,
os~i(rs+1) =i for every i < 2. For each f € 2¥, put oy =, o,
we can take gy € A that witnesses oy is a winning play. Take distinct f and f’ in
2¢. Let A=min{n : f(n) # f'(n)} and s = f | A = f' | A. We may assume that
f(A) =0 and f'(A) =1. We have of(rs) = mj,o¢(rs + 1) = 0,0p(rs) = m; and

op(rs+1) = 1. Then by the rule of the game, we have

Ofn- Since II wins,

95(rs/2) < mg <mi < gp(rs/2).

So we have g # gp. Therefore, we have |A| = ¢ in this case.

In either case, we have |A| >0, so we have shown by, . > 0. O

I
game

Using terminology in [Blal0, Section 10], b, .. is equal to the global, adaptive,
finite prediction version of the evasion number. Moreover, in the article it was

shown that this invariant is equal to b. So we have b . = b. But for the sake of

game
completeness, we include the proof.
Theorem 2.4. by, .. = b holds.
Proof. Tt is clear that b < b, ... We show by, .. <b.

Take an unbounded family A of w®. Take an arbitrary strategy o: w<* — w of
Player I. We have to show that o is not a winning strategy for the bounding* game
with respect to A.



Fix an enumeration (s; : i € w) of w<* that satisfies |s;| < i for every i. For each
s€wandn € w) |s|, we put

os(n) = max{z(n) : s C oz € w” and (Vk > |s|)(z(k) < o(z | k)}.
It can be easily checked that o4(n) is in w. We define f by

f(n) = max({os,(n) : i <n}U{0}).

Take g € A that is not dominated by f. Consider the play in which Player I obeys
the strategy o and Player II plays g. Suppose that Player I wins. Then there is
ny € w such that (Yn > ng)(g(n) < o(g [ n)). Take my € w such that s,,, = g | no.
Then we have for every m > my:

g(m) < o, (m) < f(m).
This means that f dominates g, which is a contradiction. O

Theorem 2.5. bl . = ¢ holds.

game

Proof. Fix A C w* such that Player II has a winning strategy 7 for the bounding*
game with respect to A. We shall show that A is of size ¢. Consider the game tree
T C w<¥ that the strategy determines.

First, assume the following.

o (Case 1) There is a 0 € T such that for every odd k > |o|, there is an my < w
such that for every 7 € T extending o with |7| > k, we have 7(k) = my.

Fix the witness o, (my : k > |o|) for Case 1.
Consider the next play.

Player 1 | a(0) coe 0(lo|=2) Mo Mo|+2

Player 1T | o(l) ... o(lo] = 1) M| M|g|42

Then the sequence defined by the play of Player II does not dominate that defined
by the play of Player 1. So Player II loses. This is a contradiction.
So Case 1 is false. Thus we have

» (Case 2) For every o € T, there is an odd number k > |o| such that for every
m < w, there is 7 € T extending o with |7| > k such that 7(k) # m.

Note that there are 79, 77 2 o with |7g|, |71| > k such that 79(k) # 71 (k) in Case 2.

Now we can construct a subtree of 7" in the following manner. First we put
0y = @. Suppose we have (o, :s € 25!). Then for each s € 2, we can take
Os~0,05~1 2 05 and kg > |o,| such that o~q(ks) # 05~1(ks).

Now for each f € 2%, we put oy by of = U,c., Tfin-

For each f € 2¥, we have o; € [T]. So Player II wins at the play o;. So by the
definition of the game, we can take xy € A such that x¢(k) = 0(2k + 1).
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We now claim that if f and g are distinct elements of 2¢, then we have z; # z,.
Let n := min{n’ : f(n') # g(n')}. Put s = f [ n =g | n. We may assume that
f(n) =0 and g(n) = 1. We have the following:

o (B52) = stk = oumalb) # 00mslh) = o) = 2, (221

So we have z; # z,.
Therefore we have |A| > [{zf: f € 29} =c. O

3 Dominating games

In this section, we consider games related to dominating families.
Fix a set A C w*. We call the following game the dominating game with respect

to A:

Player I | o ny

Player Il | iy iy

Here, (ny : k € w) is a sequence of numbers in w and (i : k € w) is a sequence of
numbers in 2. Player II wins when Player II played 1 eventually and there is g € A
such that

{kew:ip=1}={kecw:n. <g(k)}
We call the following game the dominating™ game with respect to A:

Player I | no ng

Player I1 | mo mq

Here, (ng : k € w) and (my : k € w) are sequences of numbers in w. Player II
wins when

(my 1 k €w) € Aand (Vk)(ng, < mg).

We define 0}, Ohme: Opamer a0d 04 .. by using dominating games and domi-

nating® games in the same fashion as Definition 2.1.

Theorem 3.1. ! =91 =9l =0 and d1I = ¢ hold.

game game game* game*

Proof. 0 < 0, is easy. 03, < 0 follows from the observation that for every

totally dominating family A, Player II has a winning strategy for the dominating

game with respect to A. So we have d,... =0l . = 0.
ol = ¢ follows from b!! = ¢ which was shown in Theorem 2.5, since the

game* game™*

dominating®™ game is harder for Player II than the bounding® game.



We know 9 = 0! <ol

game — Ygame*"
To show it, let m: w — w<* be a bijection. Fix a dominating family F C w*. For

. . . I
So the remaining work is to show g« < 0.

g € F, we define ¢’ € w* so that
(Vn)((gom™) (g [ n) < g'(n)).
This ¢’ can be constructed by induction on n. Put
A={¢ :9€ F}.

Take an arbitrary strategy o: w<“ — w of Player I. We have to show that o is not a
winning strategy. Since F is a dominating family, we can take g € F that dominates
o om. Then for all but finitely many m, we have

o(g In)=o(@(m (g In)) <glx (g I n)<g(n).

This inequality means if Player II plays ¢’, then Player II wins against Player I who
obeys the strategy o. So we have proved o is not a winning strategy. O

4 Reaping games

In this section, we consider reaping games and reaping® games, which are related

to reaping families. The main result of this section is that max{t,0} < t},,. <
max{t,,0}. Of course, if v = t, it would turn out that max{r,0} = vy, .. It is in

fact an open question if it is consistent that t # t,. For more information the reader
may want to look at [Bre98].
Fix a set A C [w]“. We call the following game the reaping game with respect

to A:

Player 1 | Ng N1
Player Il | iy iy
Here, ng < ny < ng < --- < ng < ... are increasing numbers in w, i, (k € w)

are elements in {0,1}. Player II wins when there is A € A such that
{ng:kewtNA={n,:k€wandi,=1}and Areaps {n; : k € w}.
We call the following game the reaping™ game with respect to A:

Player 1 | 10 11

Player II | Jo J1

Here, (i : k € w) and (ji, : k € w) are sequences of elements in {0, 1}. Player II
wins when Player II played 1 infinitely often and

{k€ew:j,=1} € Aand reaps {k € w: i, = 1}.

We define t! ell el and el

game’ ~game’ ~game game
in the same fashion as Definition 2.1.

Note that, when Player II wins in the reaping game, then the set A € A that

. using reaping games and reaping* games

witnesses Player I wins satisfies the following condition.
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1. if (i : k € w) is eventually zero, A is almost disjoint from (ng : k € w).

2. if the digit 1 appears infinitely often in (iy : k € w), A is almost contained in
(ng + k € wy and A =" {ny :ix, = 1}.

Theorem 4.1. ! = ¢ holds.

game

Proof. Fix A C [w]” such that Player IT has a winning strategy for the reaping game
with respect to A. Fix such a strategy. We shall show that A is of size ¢. Consider
the game tree T' C w<¥ that the strategy determines.

First, assume the following.

o (Case 1) There is a 0 € T of even length such that for every m > o(|o| — 2)
there is i,, < 2 such that for every 7 € T extending o and every r € [|a|, |T]),
7(r) = m implies 7(r + 1) = i,,.

Fix a witness o and (i,, : m > o(|o| —2)) of Case 1. If 4,,’s are eventually zero,
clearly there is a play that Player II loses along the strategy, which is a contradiction.

So i,,’s are not eventually zero. Take an infinite set X C [o(|o| — 2),w) such
that i,, = 1 for every m € X. Considering Player I plays an arbitrary subset of X,
Player IT must accordingly produce an A € A that is almost equal to this set. But
the cardinality of [X]¥/fin is ¢. So we have shown |A| = c.

Next, we assume the negation of Case 1. In this case we can construct a perfect
subtree of T" whose different paths yield different members of A. O

Theorem 4.2. t! >t 0 holds.

game

Proof. That ty,,, >t is easy. We show t}, . > 0. Fix a family A such that Player

I has no winning strategy for the reaping game with respect to A. For A € [w]*, let
e4 be the increasing enumeration of A. Put

F ={ep : B is almost equal to some A € A}.

Then we have |F| = | Al.

We shall show that F is a dominating family. So we fix an arbitrary increasing
function g € w*. Let us consider the following strategy of Player I: First play f(0).
If Player II responds 0 then play f(0) + 1, otherwise play f(1). In general, if in the
last time Player I played f(l) +m and Player II responded 0, then play f(I)+m+1,
otherwise, play f(l + 1)+ m.

By the assumption, this strategy is not a winning strategy, so there is a play of
Player II ¢ € 2¢ and A € A such that A witnesses Player II wins with 7 against the
strategy.

Let (n; : k € w) be the corresponding play of Player I. If 7 is eventually zero,
then (ny : k € w) contains almost all integers in w. Moreover, by the rule of the
game, A is almost disjoint from this set. This cannot happen.

So the digit 1 appears infinitely often in 2. Then A =* {n;, : i, = 1}. Call the
last set B. Then eg € F and e dominates f by the choice of the strategy.

Therefore, F is a dominating family. O



Define a cardinal invariant tgm,: as follows:

Csimuy = MIin{F C ([w]*)* : (V(A, € [w]Y :n €w))(F(B, :n €w) € F)
[(3n)(Bo € w\ An) or (Vn)(By € An)]}

It can be easily seen that t, 0 < tgmut.
Proposition 4.3. tguue < max{t,,d}.

Proof. Let R be a o-reaping family of size t, and D be a totally dominating family
of w¥ of size 0. For (C,h) € R x D, we let

B&h = C'\ h(n).

We now show {(BS":n € w) : (C;h) € R x D} is a witness of tgpmue. Fix a
sequence (4, € [w]¥ :n € w). Since R is a o-reaping family, we can take C' € R
such that

(Vn)(C C* A, or C C"w\ Ay,).

We first consider the case C' C* w\ A, for some n. Take m such that C'\m C w\ A,.
Take h € D such that h(0) > m. Then clearly, (B¢ : n € w) satisfies the condition
of Tgimult-

We next consider the case C' €* w \ A, for every n. Then for every n, we have
C C* A,. Let f € w” be such that C'\ f(n) € A,. Take h € D that totally
dominates f. Then we also have C'\ h(n) C A,. Then (B$" : n € w) satisfies the
condition of tgmuylt. O

Theorem 4.4. v) <ty holds.

game

Proof. Fix a witness F of tgmult-
Using a bijection between w and w<*, we think F is a subset of ([w]*)®~*). That
is, F satisfies the following condition:

(V(A; € [w]? it € w))(F(B; : t € w) € F)
[(3)(Bs € w\ Ay) or (VE)(B; € Ay)]. (%)

Fix B = (B, :t € w<) € F. We define (bZ : n € w) by
P = o,
b§+1 = bfﬁ<min Bb§>-

Put (B) = ran|J, bZ.
Define A by

A={p(B): Be F}U{X:B <€ F,X and By are almost equal}.

Note that |A] < |F|.
We show that Player I has no winning strategy for the reaping game with respect

to A.
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Let 0: 2<“ — w be an arbitrary strategy of Player I. Consider the tree T' C w*
defined as follows. T Nw!' = {{(c(2)), (c(0)),,(c(00)),...}. In general, the node
whose label is o(s) has children whose labels are o(s™(1)7(0)™) for m € w.

We now put for each t € w<¥

4 _ )sueer, (t) (ifteT)
' w (otherwise).
Then applying (x), we can take (B, : t € w<¥) € F such that
(Ft)(By Cw\ A;) or (Vt)(B: C Ay).

Counsider the former case: (3t)(By C w\ A;). Fix such a ¢. Then ¢ must be in
T. If t = @, consider the following play:

Player I | . -
Player I1| 0 0 0

The middle dots (+) in the first row mean the play along 0. Then By, which is
in A is a witness that Player II wins. Indeed, if (n; : k € w) is the play of Player I,
then By Cw\ {ng : k € w}.

If t # @, take s € 2<% such that the label of ¢ is ¢(s). Consider the following
play:

Player I | : L | : .
Player 11| s(0) s(1) ... s(Is|—1) | 1 0 0

Then a real almost equal to Bg, which is in A is a witness that Player IT wins.

Consider the latter case (Vt)(B; C A;). Let A = p((B: : t € w<¥)). Enumerate
A by A = {a, : n € w} in ascending order. Take the unique mg such that ay =
a({0)™) and put s; = (0)"°(1). By induction on k, take the unique m; such
that ar, = o(s,~(0)™) and put spq = s (0)"*~(1). Put ¢ = |J, sg, which is a
play of Player II. Let (nj : k € w) be the corresponding play of Player I. That is
ni = o(i | k). Then we have A € A and A = {n;, : k € w,i; = 1}. So Player II

wins.
Therefore, in either case, Player II wins. So ¢ is not a winning strategy. O
Question A. Does ZFC prove that tl, __ is equal to max{t,,0}?

game

Because of the following theorem, the cardinal invariants regarding reaping*
games are not worth considering.

Theorem 4.5. For every A C [w]“, Player I has a winning strategy for the reaping*
game with respect to A.

Proof. Consider the following strategy of Player I:

11



e Play 0 first.

o If the previous play of Player II is 1, change the move from the previous play
of Player L.

e Otherwise, play the same move as the previous play of Player I.

It can be easily seen that this is a winning strategy. U

5 Anti-localizing games

In this section, we consider games related to the cardinal invariant add(N).

Let C = {p : ¢ is a function with domain w that satisfies p(n) € [w]" ™! for every n €
w}. We call elements in C slaloms.

Fix a set A C w®”. We call the following game the anti-localizing game with
respect to A:

Player I | agp aq

Player 1I | ?:0 ?:1

Here, (ay, : k € w) is a sequence with a; € [w]*™! for every k and (i} : k € w) is
a sequence of numbers in 2. Player II wins when Player II played 1 infinitely often
and there is € A such that

{kew: =1} ={k cw:z(k) &€ ar}.
We call the following game the anti-localizing™ game with respect to A:

Player I | ap aq

Player 11 | o ny

Here, (a; : k € w) € C and (ny : k € w) is a sequence of numbers in w. Player 11
wins when

(nk ke w) € .A and (Elook)(nk ¢ ak).

We define add(N)L, ., add(M)I Cadd(N)L, .- and add(M)I . using anti-

game’ game’ game game
localizing games and anti-localizing®-games in the same fashion as Definition 2.1.

Theorem 5.1. add(N)L, . = add(N) holds.

game

Before proving this theorem, we recall the relationship between add(N) and
slaloms.

Fact 5.2 ([Barl0, Theorem 4.11]). The following are equivalent.

1. add(N) < k.

12



2. There is a family A C w* of size < k such that (Vo € C)(3x € A)(I*n)(x(n) ¢
©(n)) holds.

3. There is a family A C w” of size < k such that (Vf € C¥)(Iz € A)(Vm)(IT*n)(z(n) &
f(m)(n)) holds.

Proof of Theorem 5.1. add(N)},,. > add(N) holds by Fact 5.2. We prove add(N )y, . <
add(N). Take a witness A for (3) of Fact 5.2. Now we want to prove that Player

I has no winning strategy for the anti-localizing game with respect to A. Take a
strategy o: 2<¢ — [w]<¥ of Player I. Since A satisfies the condition in (3) of Fact

5.2, we can take x € A such that (3%°n)(x(k) € o(i | k))) for every i € 0.

We now put i € 2¥ by

[ ) g 1)
’ 0 (otherwise)

Ifi € 0, then (3°n)(x(k) & o(i | k)) by the choice of z. But this fact and the choice
of i imply ¢ € 0. It’s a contradiction. So i &€ 0. Therefore 7 is a play of Player 11
that wins against the strategy o of Player L. O

Theorem 5.3. add(N)L = = cov(M) holds.

game

Before proving this theorem, we recall the relationship between cov(M) and
slaloms.

Fact 5.4 ([BJ95, Lemma 2.4.2]). The following are equivalent.
1. cov(M) < k.

2. There is a family A C w* of size < k such that (Vo € C)(3z € A)(Vn)(z(n) &
©(n)) holds.

In addition, the following characterization is well-known.
Fact 5.5. The following are equivalent.
1. K < cov(M).
2. Martin’s axiom for countable posets with k-many dense subsets.

Proof of Theorem 5.3. We first prove add(N)L < cov(M). Take a family A C w*

game —

of size cov(M) that satisfies (2) of Fact 5.4. Then the strategy that plays 1 always
is a winning strategy for Player II.

We next prove cov(M) < add(N)}, .. Assuming x < cov(M), we shall prove

ki < add(N)ghme- Fix a family A of size x. Take an arbitrary strategy 7 of Player
II. We show that 7 is not a winning strategy.
We may assume that Player II plays the digit 1 infinitely often along 7, otherwise,

7 is clearly not a winning strategy.
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Set P =, [Lic,lw]"™". For each x € A, we define a set D, as follows:
D,={pe€ P:(3k € dom(p))(x(k) € p(k) and 7(p [ (k+1)) =1}.

Then each D, is a dense subset of P, using the above assumption.
Therefore, by Fact 5.5, we can take a filter G C P that intersects with all D,’s.
Put ¢ = |JG. Then if Player I plays g, then Player I wins against Player II, who

obeys the strategy 7. ]
Theorem 5.6. add(N),,,,.- = add(N\') holds.

Proof. Using terminology in [Bla10, Section 10], add(N), .~ is equal to the global,
adaptive, prediction specified by the predefined function version of evasion number.
Moreover, in the article, it was shown that this invariant is equal to add(N). O
Theorem 5.7. add(N)}},.- = ¢ holds.

Proof. Fix A C w* such that Player II has a winning strategy 7 for the anti-
localizing® game with respect to A. We shall show that A is of size ¢. Consider
the game tree T C [],_ X(n) that 7 determines, where X (2n) = [w]<""! and
X2n+1)=w.

First, assume the following.

o (Case 1) There is a 0 € T such that for every odd k > |o|, there is an nj < w
such that for every 7 € T extending o with |7| > k, we have 7(k) = my,.

Fix the witness o, (ny : k > |o|) for Case 1.
Consider the next play.

Player I | a(0) oo o(lo] —=2) {ns} {n)o42}

Player 11 | o(l) ... o(lo] —1) o No|42

Then the sequence defined by the play of Player II does not avoid the slalom
defined by the play of Player I. So Player II loses. This is a contradiction.
So Case 1 is false. Thus we have

o (Case 2) For every o € T, there is an odd number k > |o| such that for every
n < w, there is 7 € T extending o with |7| > k such that 7(k) # n.

Note that there are 79, 77 2 o with |7g|, |71| > k such that 79(k) # 71 (k) in Case 2.

Now we can construct a subtree of T' in the following manner. First we put
0y = @. Suppose we have (o, :s € 25!). Then for each s € 2, we can take
Os~0,05~1 2 05 and kg > |o,| such that o~g(ks) # 0s~1(ks).

Now for each f € 2%, we put oy by of = U,c., Tfn-

For each f € 2¥, we have o; € [T]. So Player II wins at the play o;. So by the
definition of the game, we can take x; € A such that x¢(k) = o(2k + 1). It should
be clear that if f and g are distinct elements of 2*, then we have xy # x,. Therefore
we have |A| = c. O
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6 Tallness games

In this section we introduce two game theoretic versions of the tallness property
for ideals on countable sets, namely the tallness game and the tallness* game. We
show that such games are related to the two well-known ideals £Dg, and £D via
the Katetov order. This will be done by proving that winning strategies in such
games correspond either to winning strategies in the HMM game or to a certain tree
related property, both of which were studied by M. Hrusak, D. Meza-Alcantara, and
H. Minami in [HMM10] and by M. Hrusék in [Hrul7] respectively. Games related
to filters and ideals have also played an important role in the analysis of cardinal
invariants of the continuum. An example of this can be found in [GK21], where
games related to filters are used to show the consistency of w; = u < a.

Recall that an ideal Z on w is said to be tall if for every infinite set of w has an
infinite subset in Z.

First we recall the definition of the ideals €D and £Dg,, the Katétov-Blass
ordering <kp and the uniformity of ideals on w.

Definition 6.1. 1. £D is the ideal on w x w that is generated by vertical lines
and graphs of functions from w to w.

2. EDgy = {ANA: A€ ED}, where A = {(m,n) € w?:n < m}.

3. For ideals Z, J on X, Y respectively, we denote Z <y J iff there is a function
f:Y — X such that f~1(I) € J for every I € Z. We call the order <y the
Katétov ordering.

4. For ideals Z, J on X,Y respectively, we denote Z <k J iff there is a finite-
to-one function f:Y — X such that f~'(I) € J for every I € Z. We call the
order <k the Katétov-Blass ordering.

5. For an ideal on w, put non*(Z) = min{|A| : A C [w]¥, (VI € Z)(3A € A)|AN
I < Ng)}.

Let Z be an ideal on w. We call the following game the tallness game with respect
to Z:

Player I | ng ny

Player 11 | i i

Here, (ng : k € w) is an increasing sequence of numbers in w and (i : k € w) is
a sequence of numbers in 2. Player Il wins when

{ng:k €w,ix =1} € TN [w)”.

The tallness* game is defined in a similar way, but in this case Player II wins when
at least one of the following two conditions holds:

e {np:kewteZtand {ny:k cw, iy =1} € ZNw]¥, or
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e {np:kew}lel

We can easily see that if Player I has no winning strategy for the tallness game
with respect to Z, then Z is a tall ideal.

In the following proposition, we fix some bijection between w and A and use this
bijection implicitly.

Proposition 6.2. Player II has a winning strategy for the tallness game with respect
to EDﬁn.

Proof. Consider the following strategy:

o if Player I played (z,y) last and the first coordinate = has appeared so far
then return 0.

o Otherwise, return 1.
This is a winning strategy since the result is the graph of a single function. O

Proposition 6.3. Let Z and J be two ideals and suppose J <gp Z. Then if Player
IT has a winning strategy for the tallness game with respect to 7, then Player II
also has a winning strategy for the tallness game with respect to Z.

Proof. Let f: w — w be a witness of J <k Z; a finite-to-one function such that
f~YJ) € T for every J € J. Fix a winning strategy 7 of Player II for the tallness
game with respect to J. Then we shall construct a winning strategy of Player II
for the tallness game with respect to Z.

For an increasing sequence m = (mg, my, ..., my) of natural numbers, m* de-
notes the subsequence of m obtained by the following manner: if m = 77 (my) and
f(my) > f(a) for a component a of *, then m* = i* ™ (my), otherwise m* = n*.

Define a strategy 7 of Player II for the tallness game with respect to Z as follows:
if m =n"(mg) and m* = (Mgy, Mgy, - .., M)

ey = [P ) S)) G 7 bolds)
0 (if m* = 7* holds)

Consider the play (mg,mq,...) of Player I. Let (mg,, my,,...) be the subse-
quence obtained by the above fashion so that f(my,) < f(mg,) <....
In the game with respect to J, Player II wins the following match:

Player 1 | f(mg,) f(mg,)
Player II | 7(f(my,)) T(f (M), f(mi,))

So we have X = {f(my,) : 7(f(my,), ..., [(mg,)) = 1} € J. By the choice of f,
we have f~1(X) € Z. But f~'(X) contains the set {my, : 7(f(mu,), ..., f(mg,)) =
1} and thus the last set is in Z. So 7* is a winning strategy. U

Corollary 6.4. Let Z be an ideal and suppose £Dg, <kp Z. Then Player II has a
winning strategy for the tallness game with respect to Z. U
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Lemma 6.5. Fix an ideal Z on w and suppose that Player II has a winning strategy
for the tallness game with respect to Z and fix such a strategy. Consider the game
tree T' that the strategy determines. Then, for every o € T', there is 7 O ¢ of even
length such that for every n > 7(|7| — 2), we have 77(n,1) € T.

Proof. Let us deny the conclusion. Then we have the following.

e There is a ¢ € T such that for every 7 O ¢ with even length there is some
n; > 7(|7| — 1) such that 77 (n,,0) € T.

So we fix the witnesses 0 € T and {n, | 7 2 ¢ of even length}. We consider the
following play.

Player I | a(0) oo o(lo] —=2) N Mo~ (ng,0)
Player 11 | o(l) ... o(lo] —1) 0 0
Player II plays 0 all but finitely many, so this is a contradiction. U

Let Z be an ideal on w. Call the following game the HMM game (short for
Hrusdk—Meza—Minami game) with respect to Z:

Player I | F, F
Player II | no m

Here, (F) : k € w) is a sequence of finite sets of elements in w and (ny : k € w)
is a sequence of numbers in w such that ny & Fy. Player I wins when

{ng:kew}t el

This game was invented in [HMM10]. We will show that our tallness games and
HMM games are equivalent.

Theorem 6.6. For an ideal Z in w, the following are equivalent:
1. Player I has a winning strategy for the HMM game with respect to Z.
2. Player II has a winning strategy for the tallness game with respect to Z.
3. EDsn <kB Z.

Proof. First, we prove (1) — (2). Fix a strategy 7: w<“ — [w]<* for Player I in the
HMM game testifying this fact. We define a strategy 7* for Player II in tallness game
as follows; Before the game starts, Player II will define g as the empty sequence.
Now, suppose that we are on the k-th turn and Player II has already defined a finite
sequence my, € w<*. For a given play ny of Player I, if n;, < max7(m;) then Player
IT answers with 0 and puts my.; = m. Otherwise, Player II answers with 1 and
defines g1 as my (ng).

Consider a match for the tallness game in which Player II played by following
7 and let (Mg )re, be the associated sequence constructed throughout that match.
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Player I | no ny

Player I | iy

From construction, it should be clear that (ny : iy = 1) =m := |J my. Further-
kew
more, the sequence m codes the plays of Player II in a match of the HMM game in

which Player I played by following 7. As 7 is a winning strategy, it must happen
that {ny : i, =1} € Z.

Next, we prove (2) — (1). Fix a game tree T' C w<* associated with a winning
strategy for Player II in the tallness game. We define a strategy for Player II in the
HMM game as follows; Before the game starts, Player I defines o_; as the empty
sequence. Now, suppose that we are k-th turn Player I has already defined 04,1 € T
to be a sequence of odd length. Player I now defines o} € T to be a sequence
of even length extending o}, and such that for any n > o (|o,| — 2) we have that
0, (n,1) € T. This is possible due to Lemma 6.5. It is easy to see that such o}, can
be taken in such way that o}, (j) = 0 for each odd |oy_1| < j < |0}|. Now, Player I
plays o}.(|o}.| —2) (considered a finite subset of w) and when Player II responds with
some ny € w, Player I defines oy as 0}, (ng, 1). Consider a match for the HMM
game in which Player I played by following the previously defined strategy and let
(0% )kew be the sequence constructed along the game.

Player 1 | Fy F
Player I1 | no ny

From the construction, it should be clear that ¢ = |J oy is a branch through
kew
T, which means that {o(j) : j is even and o(j + 1) = 1} is an infinite member of

Z. By the way in which the strategy was defined, this element of the ideal must be
equal to the set {ny : k € w} which means that the match was won by Player II.
(1) — (3) was proven in [HMM10].
(3) — (2) is just Corollary 6.4. O

Theorem 6.7. For an ideal Z in w, the following are equivalent:
1. Player II has a winning strategy for the HMM game with respect to Z.
2. Player I has a winning strategy for the tallness game with respect to Z.

3. There is an infinite branching tree 7' C w<* such that flw] € Z for every

felrl.
4. non*(Z) = N,.

Proof. The paper [HMM10] mentioned (1) <+ (3) — (4).

We first show (3) — (2). Fix a tree T" witnessing (3). In the tallness game, first
play the smallest child of the root. Until Player II plays 1, play children of the root
in ascending order. When Player II plays 1, move to the children of the node Player

18



I said previously. Repeat this process. This strategy is a winning strategy of Player
I for the tallness game with respect Z.

We next prove (2) — (1). Fix a winning strategy for the tallness game with
respect to Z. Suppose Player I plays Fy € [w]<* for the HMM game. Until the play
of Player I is greater than max Fj, let Player II play 0 in tallness game. When the
play ng, of Player I is greater than max Fp, then let Player II play 1 in tallness game
and copy ny, into the play of Player II in HMM game. Repeat this process. This
strategy is a winning strategy of Player II for the HMM game with respect Z. This
is because {ny, : i € w} € I, since Player I wins the tallness game.

Finally, we prove (4) — (3). Let (X, : n € w) be a witness of non*(Z) = R,.
That is, for every I € Z, there is n such that | X, N I| < Xy. Consider the family
(X, \'m :n,m € w) and rearrange this family into a sequence (Y} : k € w) of order
type w. Then we have for every I € Z, there is k such that Y, NI = @. Consider the
uniform tree whose nodes in k-th level have successors Yj. Then for every f € [T7,
we have flw] € Z%. O

Theorem 6.8. For an ideal Z in w, the following are equivalent:

1. Player I does not have winning strategy for the tallness® game with respect

to 7.

2. For any sequence (X, : n < w) C Z% there is [ € Z such that |[I N X,| = w
for any n € w.

Proof. To see that (1) implies (2), let (X, : n < w) C I be a sequence of positive
sets, and for each n € w, increasingly enumerate X,, as (27),c,. Finally, let ¢ :
w — w be such that ¢~ *[{n}] is infinite for each n. We define a strategy for Player
I as follows: At the first turn, Player I defines so = 0 and plays min Xy(,,). Now
suppose that the k-th turn of the given match is finished and both players played
according to the following table:

Player I | i e n

Player Il | g - ik

If i, = 0, Player I defines si,q as si. Otherwise, Player I let s,,; = sp + 1. Then
Player I plays nj1 = min{m € Xy(,,,) : m > ng}. This ends the definition of the
strategy.

By the hypothesis, there is a match in which Player I played according to the

previous strategy but Player I lost.

Player I | no ny

Player II | i i

Observe that Player II must have played 1 infinitely many times. Otherwise,
the sequence (si)rew would be eventually constant, play with value m. This would
mean that {n; : k € w} =* X,, which is a contradiction to the winning condition
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of Player II. We conclude I = {ny : i, = 1} is an element of Z and by definition of
¢ and the previous observation it is straightforward that I N X,, is infinite for each
n.

We now show (2) implies (1). For this, suppose towards a contradiction that
0: w<¥ — w is a winning strategy for Player I. Let M be a countable elementary
submodel of a large enough H(\) with 0,Z € M. Applying the hypothesis (2) to
the countable set M NZ, we can get I € Z such that I N X is infinite for any
X € MNZ*. We define a play of Player II as follows: Suppose that we are at the k
turn and Player I has played ny in this turn. If ny € I, Player II plays 1. Otherwise,
Player II plays 0.

Consider the match of the game in the previous paragraph.

Player I | no ny

Player II | i i

As o is a winning strategy, it must be the case that {n, : k € w} € I.
Furthermore, since {ny : i, = 1} C I € Z, we have {n; : iy = 1} is finite. This
means that {ng : i, = 1} belongs to M. Also, since o and Z are in M, we have
{n : k € w} also belongs to M. Hence I N{ny : k € w} is infinite but this set is
equal to {ny :ix = 1}. This contradiction finishes the proof. O

Lemma 6.9. For an ideal Z in w, the following are equivalent:
1. Player IT has a winning strategy for the tallness* game with respect to Z.

2. There is an Z*-branching tree " C w<¥ such that flw] € Z N [w]¥ for every

felr).

Proof. First we prove that (1) implies (2). For this, take a winning strategy for
Player II, play 0 : w<* — 2. Given s € w<¥, let

Mi={tew :sCt ot)=1lando(t]j)=0forall|s| <j<|t|}

H, = {t(jt| - 1) : t € M,).

We claim H,; € Z*. To see this, increasingly enumerate w\H; as (z;)e,. Let jo
be such that z;, > s(|s| — 1) and consider the function f = s7(x;);>;,. Observe
that flw] =* w\Hs. Furthermore, as ¢ is a winning strategy for Player II, we have
either that flw] € Z or {f(n):o(f | (n+1)) =1} € ZNw]”. It is easy to see that
the second case would imply that (w\Hs) N Hy # &, which is impossible. Hence
flw] € Z and consequently Hy € Z*.

For each s € w<* and n € Hy let t € M, be such that t2(|t?| — 1) = n. Finally,
define T" C w<¥ together with a function ¢ : T —> w<* as follows: @ € T and
(@) = @. Having defined some x € T" and ¢(x), let succr(x) = Hy(,) and for each
n € succr(z), define ¢(z~n) as ¢ . It is straightforward that such 1" works.

Now we prove that (2) implies (1). For this, let ' C w<* be as in the hypotheses.
We define a strategy for Player II as follows: Before the game starts, Player I1 defines
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so = @ € T. Suppose that we are in the k-th turn and Player II has already defined
some s; € T. If Player I plays some ny € succy(sg) then Player I answers with 1
and defines sp.1 as s~ n. Otherwise, Player II answers with 0 and puts s = Sg.

We claim that the previous strategy is a winning one. Indeed, consider a match
of the game in which Player II played according to such strategy and let (si)rew be
the sequence in 7' constructed along the way.

Player 1 | No ny

Player II | i i

If {ny : k € w} € T we are done, so suppose that this set belongs to Z*. As

the tree T is Z*-branching, it is easy to see that f = (J s, € [T] Furthermore, by
kew
definition of the strategy flw] is equal {ny : iy = 1}. As f[w] € Z and is infinite,

we are done.

O

Lemma 6.10. Let Z be an ideal over w. If Z > €D then Player II has a winning
strategy for the tallness* game with respect to Z.

Proof. Let ¢: w — w x w be such that ¢~ [I] € Z for any I € ED. The following is
an ED*-branching tree:

T = {{(no,mo), ..., (Ng—1,mp—1)) € (Wxw)~* : k €wandn; <n; foralli <j <k}

This is because the set of successors of any element of 7" is of the form (w\n) x w
for some n € w. Note that for any f € [T] it holds that flw] is the graph of a
partial function which means that flw] € £D. To finish, just define a tree T, C w*
as follows:

(ng,...,ng_1) € T if and only if (¢(ng),...,d(ng_1)) € T.

It should be clear that Ty is an Z* branching tree because ¢~ *[U] € Z* for any

U € ED*. Furthermore, Z for any f € [T,] we have that ¢ o f € [T']. This means

that (¢o f)[w] € ED. Since flw] C ¢ {po flw]] it follows that flw] € Z. By Lemma
6.9, the proof is over.

O

As a corollary of Lemmas 6.9, 6.10 in this article, and the discussion after Claim
3.3 in [Hrul7] we have the following theorem.

Theorem 6.11. Let Z be an ideal over w. The following are equivalent:

1. There is X € Z% for which Player II has a winning strategy in the tallness*
game with respect to Z|x.

2. There is an X € Z7 for which Z|y >k ED.
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7 'Two versions for games on ideals

In this section, we generalize games in Section 6 by means of Definition 7.2. At the
same time, in Definition 7.1 we introduce the game &(Z, 7). Particular instances of
this game correspond to the filter games introduced by C. Laflamme in [Laf96]. As
communicated by M. Hrusak, the Game &(Z, J) was used by him and A. Shibakov
in [HSoo] in order to prove what they call the Definable ideal dichotomy. The main
results of this section are Theorems 7.3 and 7.4. In there, we show that winning
strategies for one player in the game &(Z, J) correspond to winning strategies for
the other player in the game B(Z,J). As a corollary of both theorems, we also
prove the Definable ideal dichotomy.

Definition 7.1. Let Z and J be two ideals over w. We define the game &(Z, J) as
follows:

Player 1 |10€I L el
Player 1I | no g Iy ng < Ny g I

Here, Player IT wins whenever (n;);c, € J 7.

Note that &(Fin, J) is just the HMM game for the ideal J and that &(Z,7) is
just one instance of the games defined by Laflamme in [Lafo6].

Definition 7.2. Let Z and J be two ideals over w. We define the game B(Z, J)
as follows:

Player I |n06w ng <ni3 €Ew
Player 11 | ip € 2 ih €2

Here, Player II wins whenever (ng)rew € Z or {ny : iy = 1} € J N [w]*.

Note that B(Fin, J) is the tallness game with respect to J and B(Z,Z) is the
tallness™ game with respect to Z The following theorem is proved in the same way
as Lemma 6.9.

Theorem 7.3. Let Z and J be two ideals over w. The following are equivalent:
1. Player I has a winning strategy in &(Z, J).
2. Player II has a winning strategy in 8B(Z, 7).

3. There is an Z*-branching tree ' C w<* such that flw] € J N [w]* for every
felT]

Proof. First we prove that (1) implies (2). For this, let 0 : w<“ — 7 be a winning
strategy for Player I in &(Z,J). We define a strategy for Player II in B(Z,J)
<« as follows: At the first turn

Player I plays some ng € w. If ng & o(2) then Player II defines ¢y as (ng) and plays

together with a sequence (tx)ren of elements of w
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10 = 1. Otherwise, Player II defines tq as the empty sequence and plays 7 = 0. In
general, if we are on the k 4+ 1 turn and Player I plays some ng.; € w then Player
IT defines tgy1 as t; (ngr1) if ng1 & o(t,) and plays ix1 = 1. Otherwise, Player II
defines t;,1 as t; and plays gy = 0.

The previously defined strategy is a winning one. For if (¢;)xe, is an eventually
constant sequence, play with value ¢, then {ny : k € w} C* o(t) € Z. Otherwise,

f= U t, € w”
kew
represents a match of the game &(Z,7) in which Player I played according to o.
As this is a winning strategy for Player I, it should happen that {n, : iy = 1} =
flwl e TN w].
Now we prove that (2) implies (3). For this, take a winning strategy o : w<* —
2 for Player IT in B(Z, 7). Given s € w<¥, let

Mi={tew :sCt,ot)=1lando(t]j)=0forall|s| <j<|t|}
Hy={t(|t|] = 1) : t € M,}.

We claim H, € Z*. To see this, increasingly enumerate w\H; as (z;)e,. Let jo be
such that z;, > s(|s| — 1) and consider the function f = s~ (x;);>j,.- Observe that
flw] =* w\Hs. Furthermore, as o is a winning strategy for Player II, we have either
that flw] € Z or {f(n) : o(f | (n+1)) =1} € TN [w]¥. It is easy to see that
the second case would imply that (w\H,) N Hs # @, which is impossible. Hence
flw] € T and consequently Hy € Z*.

For each s € w<¥ and n € H; let t € M, be such that t?(|t?| — 1) = n. Finally,
define T" C w=¥ together with a function ¢ : T — w<* as follows: @ € T and
(@) = @. Having defined some z € T" and ¢(z), let succr(x) = Hy(,) and for each
n € sucer(z), define ¢(z7n) as ty . It is straightforward that such 7" works.

Finally, we prove that (3) implies (1). For this, let 7" be a tree as in the hy-
potheses. We define a strategy for Player I in &(Z, J) as follows: On the first turn
Player I plays Iy = w\ succr (). Now suppose that we are on the k + 1 turn and
that both players have played according to the following table:

Player 1 |IOEI Iy el
Player 11 | ng & Iy ng & Iy

Furthermore, suppose that (ng,...ngz) € T. Then Player I plays
Ity1 = w \ succp((ng,...,ng)). Observe that Player II is forced to play some
ng+1 € sucer((ng,...,ng)). In other words, (ng,...,nk, k1) € T. This shows
that Player I can play the next turn following the strategy defined above.

By definition, for any match played according to the previously defined strategy,

it holds that (ny)rew € [T]. That is, {ny : k € w} € J. This finishes the proof. [

The proof of the next theorem is analogous to one of Theorem 6.7. We already
showed how to translate the proof of Lemma 6.9 in its full generality in Theorem 7.3
and the translation of Theorem 6.7 to Theorem 7.4 is carried in a similar manner.

23



Theorem 7.4. If Z and J are two Borel ideals over w, the following are equivalent:
1. Player II has a winning strategy in &(Z, 7).
2. Player I has a winning strategy in B(Z, 7).
3. There is an Z"-branching tree T' C w=“ such that f[w] € J* for every f € [T].
As a corollary, we have the following:

Theorem 7.5 (Definable Ideal Dichotomy). Given a filter F and a Borel ideal Z,
the following are equivalent:

1. There is an F-branching tree T' C w=* such that f[w] € ZT for every f € [T].

2. There is an F*-branching tree T C w<* such that flw] € Z N [w]* for every
felrl

Proof. Even though the filter F may not be definable the game &(F*,7Z) is a de-
termined game. To see this, note that the tree G associated to the game can be
viewed as the subtree of A< where A = FUw and o € G if and only if for any
n € dom(o) it happens that o(n) € F whenever n is even and o(n — 2) < a(n) €
w\o(n — 1) whenever n is odd. Consider the function 7 : [G] — [w]“ given by
7(f) = fl{2n+1 : n € w}]. It is direct that 7 is continuous and that the payoff
set for Player [ is equal to 7 *[Z*]. Since Z is Borel, we are done. O
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