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Abstract

We introduce (super-C(*)-)Laver-generic large cardinal axioms for ex-
tendibility ((super-C(*)-)LgLCAs for extendible, for short), and show that
most of the previously known consequences of the (super-C(>)-)LgLCAs for
ultrahuge already follow from members of this family of axioms.

The consistency of the LgLCAs for extendible (for transfinitely iterable
classes of posets) follows from an extendible cardinal while the consistency of
super-C(*)-LgL.CAs for extendible follows from a model with a super-C(°°)-
extendible cardinal. If k is an almost-huge cardinal, there are cofinally many
ko < K such that V, = “kg is SupeI’—C(OO) extendible”.

In contrast, it is known that each of (super-C(*°)-)LgLCAs for hyperhuge-
ness for a transfinitely iterable class of posets, axioms apparently stronger
than the corresponding axioms for ultrahugeness, is equiconsistent with the

existence of a genuine (super-C(®)-)hyperhuge cardinal.
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1 Introduction

The present note is a short version of the more extensive [5] in preparation.

In Section 2, we begin with reviewing known characterizations of extendible
cardinals (Proposition 2.4). We then look into the super-C ) and super-C(*) large
cardinal versions of extendibility, and give their characterizations (Proposition 2.6,
Theorem 2.7).

In Section 3, we show that if V; satisfies the second order Vopénka principle
then there are cofinally many ko < x such that V,; = “kq is super-C () extendible”
(Proposition 3.2).

In Section 4, we introduce Laver-generic large cardinal versions of these large
cardinals, and the axioms asserting the existence of a/the Laver-generic large car-
dinals — the (super-C' (OO)—) ‘P-Laver-generic large cardinal axioms for extendibility
((super-C(*)-)LgLCAs for extendible, for short) for various classes P of posets, and
show that most of the previously known consequences of the (super-C(>)-)LgLCAs
for ultrahugeness already follow from members of this family of axioms.

The consistency of the Lgl.CAs for extendible (for transfinitely iterable classes
of posets) follows from an extendible cardinal while the consistency of super-C/(®)-
LgL.CAs for extendible for such classes of posets follow from a model with super-
C*) extendible cardinal (see Theorem 5.2).

In contrast, it is known that (super-C*)-)LgLCAs for hyperhugeness for trans-
finitely iterable class P of posets, axioms apparently stronger than the correspond-
ing axioms for ultrahugeness, are equiconsistent with the existence of a genuine
(super-C(*)-)hyperhuge ([9]).

Our notation is standard, and mostly compatible with that of [18], [19], and/or
[20], but with the following slight deviations: “j : M =5, V" expresses the situation
that M and N are transitive (sets or classes), j is an elementary embedding of M
into N and « is the critical point of j. We use letters with under-tilde to denote
P-names for a poset P. Underline added to a symbol like o emphasizes that the
symbol is used to denote a variable in a language, mostly the language of ZFC
which is denoted by L. A letter with under-bracket like ¢ emphasizes that the
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letter denotes a new constant symbol added to the language.

We adopt the notation of [1] and denote O™ := {a € On : V, <5, V}” for
n € N. Intuitively we put C*) := {a € On : V, < V}, though this is not a
definable class in the language of ZFC, due to undefinability of the truth. For each
(transitive) set model M, however, (C(*))M is a(n existent) set except that the
first order logic in this context is not the metamathematical one but rather the
corresponding set in ZFC.

The following (almost trivial) lemma is often used without mention:

Lemma 1.1 (see e.g. Section 1 in Bagaria [1]) For an uncountable cardinal o,
H(a) =V, if and only if V,, <x, V.
If Vo <5, V then o is an uncountable strong limit cardinal.

Thus, we have
CW = {a : a is an uncountable limit cardinal with V, = H(a)}. 0

The following are results of an examination of what was suggested by Gabriel
Goldberg in a discussion with the author during his visit to Kobe after the RIMS
Set Theory Workshop 2024. Toshimichi Usuba pointed out some elementary flows
in early sketches of the note. The author is grateful for their comments. I would
like to thank Andreas Leitz for giving me a permission to write an exposition of
his proof of Theorem 2.7 in the extended version of the present article mentioned
above.

Back in the summer of 2015, I enjoyed a pleasant walk around the port of
Yokohama with Joel Hamkins when we were together on the way from Tokyo to
Kyoto and made a short stop in Yokohama. On the walk, Joel told me about
his then recent researches and research projects, and one of them was about the
Resurrection Axioms.

Now that his Resurrection Axioms are shown to be restricted versions of the
LgLCAs (see Theorem 4.1), I notice that what I learned from him on that walk may
have influenced me subliminally when I introduced the Lgl.CAs in the late 2010s.
In that case I have to to thank Joel again sincerely also for the nice conversation
we had in Yokohama.

2 Extendible and super-C"-extendible cardinals

In this section we summarize some well-known and some other less well-known
facts about extendible cardinals and introduce the super-C(™-extendible cardinals.

It appears that the notion of super-C'(™-extendible cardinals is equivalent to some



other known strong variants of extendibility, see Theorem 2.7. It is yet unknown
if similar equivalence is also available for super-C'™-ultrahuge cardinals or super-
C™-hyperhuge cardinals.

It is easy to see that the definition of an extendible cardinal in Kanamori [19]
is equivalent to the following modification: a cardinal x is extendible if (2.1): for
any a >  there are § € On and j : V,, =, Vj such that (2.2): j(x) > a.

An extendible cardinal is supercompact (see e.g. Proposition 23.6 in [19]). The

following is easy to prove:

Lemma 2.1 If k is extendible then there are class many measurable cardinals. 0

Since existence of a supercompact cardinal does not imply existence of any large
cardinal above it, Lemma 2.1 explains the transcendence of extendible cardinals
above supercompact.

In Jech [18], extendibility is defined by (2.1) without (2.2). We say in the
following that x is Jech-extendible if it satisfies (2.1) but not necessarily (2.2).
The two definitions of extendibility are equivalent. In Proposition 2.4 below, we
show the equivalence of these two together with some other characterizations of
extendibility.

The key fact to Proposition 2.4 is that the elementary embedding in (2.1) can
be often lifted to an elementary embedding of the whole universe V.

We call a mapping f : M — N cofinal (in N) if, for all b € N, there is a € M
such that b € f(a).

Lemma 2.2 (A special case of Lemma 6 in Fuchino-Sakai [8]) Suppose that 0 is a
cardinal and jo - H(0) = N for a transitive set N. Let Ny := |Jjo"H(0). Then
Jo = H(0) 2y Ny and jo is cofinal in Ny. 0

Lemma 2.3 (A special case of Lemma 7 in [8]) For any regular cardinal 6 and
any cofinal jo : H(0) = N, there are j, M CV such that j : V % M, NCM and
Jo < J. a
Proposition 2.4 For a cardinal k the following are equivalent:

(a) k is extendible.

(b) & is Jech-extendible.

(/) For all X > &, there are j, M C V such that j : V =5, M, j(k) > X and
Vioy € M.

(b") For all X\ > K, there are j, M CV such that j : V . M, and Vioy € M.



Proof. (a) = (b): is clear by definition.

(b) = (a): This can be proved by an argument similar to that of the proof of
(b) = (a) of Proposition 2.6 below.

(a) = (a’): follows from Lemmas 2.2 and 2.3.

(a') = (b): is trivial.

(b") = (b): is obtained by restricting elementary embeddings on V to V)’s.

D (Proposition 2.4)

The notion of super-C™-large cardinals was introduced in Fuchino-Usuba [9].
Proposition 2.4 in mind, we define the super-C(-extendibility as follows: For a
natural number n, we call a cardinal x super-C'"™-extendible if for any \g > x there
are A > Ao with Vi <y, V, and j, M C V such that j : V S5, M, J(k) > A,
Vi € M and Vj(y) <x, V.

It is easy to see that the definition of the super-C(™-extendibility is equivalent
to the following variation:

Lemma 2.5 & is super-C"™ -extendible if and only if the following holds:

(*)  for any A > k with V) <x, V, there are j, M CV such that j : V 3, M,
Jj(K) > A, Vo) € M and V) <s, V. a

We call a cardinal & super-C(®)-extendible if r is super-C™-extendible for all
n € w. In general, we cannot formulate the assertion “x is super-C(*)-extendible”
in the language of ZF since we would need an infinitary logic to do this unless we
are allowed to introduce a new constant symbol for the large cardinal to refer it
across infinitely many formulas. However, there are certain situations where we can
say that a cardinal is super-C(®)-extendible. One of them is when we are talking
about a cardinal in a set model. In this case, being “super-C(*)-extendible” in the
model is an £, ., sentence which is satisfied by the cardinal in the model. Another
situation is when we are talking about a cardinal in an inner model and the cardinal
is definable in V (e.g. as 2% in the outer model). Note that in the latter case, we can
formulate the super-C(*)-extendibility of the cardinal in infinitely many formulas,
and hence n in this case ranges only over metamathematical natural numbers.

Similarly to Proposition 2.4, we have the following equivalence:

Proposition 2.6 For a cardinal k and n > 1, the following are equivalent:

(a) For any Ao > kK there are X\ > Ao with V <x, V, jo, and u such that
Jo: Va = Vi, G(K) > A, and V,, <s, V.

(b) For any \g > Kk there are X\ > Ny with V\ <x, V, jo, and p such that
Jo: Va S5 Vi, and V,, <s,, V. (without the condition “j(k) > \”).



(a') K is super-C"™-extendible.
(b)) for any Ao > K there are X > X\g with V), <x, V, and j, M C V such that
§:V S0 M, Vi € M, and Vi <s, V. 0

Proof. The proof is similar to that of Lemma 2.4. We only show (b) = (a). The
following proof is a modification of the proof of Lemma 2.4, (b) = (a) given by
Farmer S in [26].

Assume, toward a contradiction, that x satisfies (b) but not (a). Then there is

a v such that

(2.3)  for all sufficiently large A > &, if (2.4): V) <y, V, and pu, j are such that
(25): j:Vy 5.V, and (2.6): V, <z, V,
then j(r) < 7.

In the following, let v be the least such ~.

Claim 2.6.1 v is a limit ordinal. For all sufficiently large X\ with (2.4) and for all
& <, there are u, j with (2.5), (2.6) such that j(k) > &.

- Suppose 7 is not a limit ordinal, say v = £ + 1. Then there are cofinally many
A € On such that V) <y, V (actually A € Card, see Lemma 1.1), and there are j
and p with (2.5), (2.6) and j(r) = £. By restricting of j’s as right above, it follows
that, for all A > ¢ with V), <y, V, there are j and p as above.

Let A* be a sufficiently large such A where “sufficiently large” is meant in terms
of (2.3). Let j* and z* be such that j* : Vi« 5, Ve, 75(k) =&, and Vj» <5, V.

Since \* < p*, there is also &k : V- i>,£ V.« such that V- <y, V and k(k) = &.
But then we have ko j* : Vix =5, Vi and ko j*(k) = k(¢) > k(k) = & This is a
contradiction to (2.3).

The second assertion of the claim follows from this and the minimality of .

_| (Claim 2.6.1)

Claim 2.6.2 For all sufficiently large p > x with V,, <x,, V, and k, v with V,, <x,
Vandk:V, i>,.C V., we have k"~ C ~.

- Suppose otherwise. Then we find ¢ < v such that, for cofinally many p > &
with V, <z, V, there are v, k such that k : V, <, V,, V,, <5, V and k(§) > 7.
By considering restrictions of k’s as above, we conclude that for all p > & with
Vi <35, V, there are v and k as above.

Let A > ¢ and j (together with rechosen p and k for this A) be such that
Vs <5, V, 7 : Vi =, V, and j(x) > € (possible by the second half of Claim 2.6.1).
Then we have ko j: Vy =, V, and ko j(k) > k() > 7.



Since A, u, v, j, k can be chosen such that \ is sufficiently large (in terms of
(2.3)), this is a contradiction. = (Claim 26.2)

Now, let A > k be sufficiently large with A > v+2, V), <y, V,and j : V) 5, Vi
with V,, <5, V. By Claim 2.6.2, we have j"vy C ~.

Case 1. cf(y) = w. Then j(y) = v and hence j | Viio: Vi . V2. This
is a contradiction to Kunen’s proof (see e.g. Kanamori [19], Corollary 23.14).

Case 2. cf(y) > w. then, letting kg := K, kpt1 = j(kn) for n € w and
* Viw+2 i),{ V. +2. This is again a

Ky = SUD,,c,, Kn, We have k, <, and j [ V.,

contradiction to Kunen’s proof. [ (Proposition 2.6)

Note that variants of (a), (b) and (b’) in Proposition 2.6 similar to (*) of
Lemma 2.5 can also be proved to be equivalent to the super-C-extendibility of
K.

Super-C™-extendibility is actually equivalent to C(™-extendibility of Bagaria
[1]. Konstantinos Tsaprounis proved the equivalence for a variant of super-C™-
extendibility which he called C™*-extendibility in [28].

A cardinal x is C™-extendible if, for any o > &, there is 8 and j : Vi >, |7
such that j(k) > o and Vj(,) <sx, V.

The following notion is introduced by Benjamin Goodman [12].

A cardinal x is supercompact for C™ if, for any A > r there is j : V =, M
such that *AM C M and C™ N\ = (CM)M ),

Andreas Lietz recently found a short proof of the following Theorem 2.7. Good-
man apparently proved the equivalence of (a) and (c) in the theorem, but mentioned
only the case of n = 1 in his [12]. His proof is given in the extended version of the

present article.

Theorem 2.7 (Andreas Lietz) For a cardinal k and for all n > 1 the following

are equivalent: (a) r is C™-extendible.
(b) & is super-C™-extendible.
(b)) & is C™W*_extendible.

(c¢) & is supercompact for C"+Y), 0

3 Models with super-C(*-extendible cardinals

We prove that there are unboundedly many super-C(®-extendible cardinals in V
below an almost huge cardinal £ (Theorem 3.3).
For a cardinal k, we say that V, satisfies the second-order Vopénka’s principle

if for any set C' C V,, of structures of the same signature with C' ¢ V,, (which is



not necessarily a definable subset of V), there are non-isomorphic 2, B € C' such
that ¢ : 2 =5 B for an elementary embedding i.

The following is well-known (see e.g. Jech [18], Lemma 20.27), and attributed
to William C. Powell.

Lemma 3.1 (W.C.Powell [24]) If k is an almost-huge cardinal then V; satisfies

the second-order Vopénka’s principle.

Proof. Suppose that C' C V. where C' is a set of structures of the same signature
with C' ¢ V.. Without loss of generality, we may assume that (3.1): C'is closed
with respect to isomorphism inside V... Then it is enough to show that there are
non-isomorphic 2, B € C such that A < B.

Let j : V =5, M be an almost-huge elementary embedding (i.e. M satisfies
(3.2): IW>M C M). Let 2 € j(C)\ C — note that j(C)\ C # 0 since M |=
“rank(j(C)) = j(k) > k7. Let A be the underlying set of the structure 2.

We have (3.3): j(2) ¢ 2 — otherwise M = j(A) = A € j(C), and hence
V =2 € C by elementarity. This is a contradiction to the choice of 2.

Let 2 := j(A) | j"A.

Claim 3.1.1 (1) M E € j(C).
(2) MEA <.

F (1): & € M by (3.2). Since 2 = 2 € j(C), (3.1) and elementarity imply
MEA € j(0).

(2): Working in M, we check Vaught’s criterion.

Suppose ag, ...,a,—1 € j"A, a € j(A) and j(A) = ¢(a,ap,...,a,—1). Let af,
a4 € A be such that a9 = j(ay),...,an—1 = j(a,_;). Since M | Ja €
J(A) 7)) = pl(a,j(ag), ..., j7(al,_)), it follows that V = Ja € A A = ¢(a, ay, ...,
al,_;). Let a’ € A be such that V = = ¢(d, af, ...,al,_;). Then j(a') € 7”A, and

ey Wy 1

M E ) Ee(ild),j(ap), ..., j(al,_,)) by elementarity, as desired. = (ctaim 5.1.1)
Now by (3.3) and Claim 3.1.1, (2), M | “there are non-isomorphic 2,8 €

J(C) such that A < B7. By elementarity it follows that V = “there are non-
ISOIHOI"phIC Q[v, % € C Such that Q[v < % ”. D (Lemma 3.1)

Proposition 3.2 Suppose that k is a Mahlo cardinal, and (3.4): V, satisfies the
second-order Vopénka’s principle. Then there are unboundedly many ko < k Such
that Vi, |= “ ko is super-C'™ -extendible” .



Proof. Suppose 8 < k. We want to show that there is § < kg < k such that
V. = “Ky is super-C(*)-extendible ”.
Let

I :'={a <k : ais an w-limit of inaccessible cardinals 7 such that V,, < V,.}.

I is cofinal in k since x is a Mahlo cardinal.

For each a € I, let C, C a be a cofinal subset of o of order-type w consisting
of (increasing sequence of)) inaccessible cardinals 75, n € w with Vo« < V.

Let

C:= {(Va+17 670a7€)§<ﬁ rac I}

By (3.4), there are V,,1 = (Va+1,€,0a,§)§<ﬁ, Vg1 = (V5+1,E,Cﬁ,§)§<5 eC
such that there is an elementary embedding i : V. 3 Vay1. Let n € w be
arbitrary and let ro := crit(i). Then o > kg > . Let k € w be large enough so
that we have np > k.

Since i(ny) € Cs, we have:

Vi = Vi) <, V7 A [ Vig : Voo S Vi,
Thus Vi = v 3i (*V, <5, V7 A i1 Ve 50 Vo). By elementarity, it follows that
Voo 3w di (“Vy <, V7' A 4V, <5, V7 A Q1 Ve S Vo)

for all n € w.
By Lemma 2.6, this implies Vo = “rp is super-C'™-extendible”. By the el-
ementarity Vo <V, it follows that V, = “kq is super-C'™-extendible” for all

n G Ww. D (Proposition 3.2)

Theorem 3.3 Suppose that k is almost-huge. Then there are unboundedly many
Ko < Kk such that V |=“kq is super-C' ) -egtendible” .

Proof. By Lemma 3.1 and Proposition 3.2. [ (Theorem 3.3)

4 LgLCAs and super-C(®)-LgLCAs for extendibil-
ity imply (almost) everything

Laver-generic large cardinals were introduced in [7]. For a class P of posets and
a notion L of large cardinal, a cardinal « is said to be P-Laver generic L if the
statement about the existence of elementary embedding j : V %, M for 7, M CV
with the closedness condition Cp, of M in the definition of the notion L of large

cardinal are replaced with the statement:



(4.1)  for any P € P, there is a P-name Q such that |-p“Q € P7, and for P x Q-
generic H there are j, M C V[H]| such that P+Q He M, j:V 3, M, and
M satisfies C; which is the generic large cardinal variant of the closedness

property C}, associated with the notion L of large cardinal.

We usually assume that the class P of posets satisfies some natural properties.

A class P of posets is (two-step) iterable if

(4.2) P is closed with respect to forcing equivalence, and {1} € P;

(4.3) P is closed with respect to restriction. That is, for P € P and p € P, we
always have P [ p € P; and

(4.4)  For any P € P, and any P-name Q of a poset with [-p “Q € P, we have
P @ eP.

P is transfinitely iterable if it is iterable and it permits iteration of arbitrary
length for an appropriate notion of support with reasonable iteration lemmas.
For supercompactness, the instance of (4.1) for an iterable P is as follows: a

cardinal k is P-Laver-generically supercompact if,

(4.5)  for any A > £, and for any P € P, there is a P-name Q such that [-p“Q €
P7, and, for any (V,P x @)-generic H, there are j, M C V[H| such that
JiVS M, j(k) >\ P, PxQ He M, j"\xe M.

Note that, in (4.5), the closure property “*M C M” in the usual definition of
supercompactness is replaced with “j”\ € M”. For a genuine elementary embed-
ding introduced by some ultrafilter, these two conditions are equivalent (see e.g.
Kanamori [19], Proposition 22.4, (b)). This equivalence is no more valid in general
for generic embeddings. Never the less, the condition “j”X € M” can be still con-
sidered as a certain closure property (see Lemma 3.5 in Fuchino-Rodrigues-Sakai
7).

We say that a P-Laver-generically supercompact cardinal r is tightly P-Laver-
generically supercompact if additionally, we have | RO(P @) | < j(k).

A (tightly) P-Laver-generically supercompact cardinal is often decided uniquely
as the cardinal ke := sup({2%°,Ry}). This is the case, if P is the class of all
o-closed posets. Then CH holds under the existence of a P-Laver-generically su-
percompact £ and K = Ry (= Feeft )

Similarly, if P is either the class of all proper posets or the class of all semi-
proper posets, the existence of a P-generically supercompact x implies 2% = R,

and again K = g .
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For the case that P is the class of all ccc posets, it is open whether a P-Laver-
generically supercompact cardinal is decided to be k.. However a tightly P-Laver-
generically supercompact cardinal under the present definition of tightness' is
decided to be the continuum (= k) and, in this case, the continuum is extremely
large. There is a more general theorem which suggests that for a “natural” class
P of posets, the existence of (tightly) P-Laver generically supercompact cardinal
implies that the continuum is either Ry or Ny or else extremely large (see [7], [3],
4]).

The naming “Laver-generic ...” comes from the fact that the standard models
with this type of generic large cardinal is created by starting from a large cardinal,
and then iterating along with a Laver function for the large cardinal with the
support appropriate for the class of posets in consideration. This is exactly the way
to create models of PFA and MM. Actually, for P being the class of all proper posets
or that of semi-proper posets, the existence of a P-Laver generically supercompact
cardinal implies the strong plus version of the corresponding forcing axiom, and
can be considered as an axiomatization of the standard models of them.

In the following, we call the axiom claiming the existence of a/the tightly P-
Laver generic L, the P-Laver-generic large cardinal axiom for the notion of large
cardinal L (P-LgLCA for L, for short).

The instances of P-LgLCAs for other notions of large cardinal are summarized
in the following chart.

The condition “j”\ € M” for

P-LgLCA for “super-compact” is replaced by:
hyperhuge j"iN) e M

ultrahuge j"j(k) € M and Vj(A)V[[H] eM
superhuge j"i(k) e M

super-almost-huge || 7”j(u) € M for all u < j(k)

extendible Vi ,\)V[[H] eM

In Fuchino [3], it is proved that a boldface variant of Resurrection Axiom by
Hamkins and Johnstone, [14], [15] for P and parameters from H (k) follows P-
LgL.CA for ultrahuge.

In [9] and [6], it is proved that P-LgLCA for ultrahuge implies a restricted form
of Maximality Principle for P and H(fwqf ). It is shown that LgLCA type axiom

formulated in a single formula is incapable to cover the full Maximal Principle. In

D 1In course of the development of the theory of Laver-genericity we strengthened the definition
of tightness such that it still holds in the standard models of Laver genericity

11



[9], it is proved that the super-C(*) version of P-LgLCA for ultrahuge implies the
full Maximality Principle for P and H(xw) ([9], Theorem 4.10).

In the following we show that all the results under (super C)-)LgL.CA for ul-
trahuge mentioned above holds already under (super C*)-)LgL.CA for extendible.

Let us first check the specific formulation of (super C(*)-)LgLCA for extendible:
a cardinal k is tightly P-Laver generically extendible if, for any A > k, and for any
P € P, there is a P-name Q such that |-p“Q € P” and for any (V,P * Q)-generic
H, there are j, M C V[H| such that j : V 5. M, J(r) > A Vj(A)V[H € M, and
|RO(P+ Q)| < j(x).

The P-Laver-generic large cardinal aziom for the notion of extendibility (7P-
LgLCA for extendible, for short) is the assertion that s is a/the tightly P-Laver-
generic extendible cardinal.

A cardinal x is tightly super-C®)-P-Laver generically extendible if, for any
n € N, \g > K, and P € P, there are A\ > \g and a P-name @ such that V) <y, V,
Fp“Q € P” and for any (V,P * Q)-generic H, there are j, M C V[H] such that
Vi '™ <s, VIH], 5V S50 M, (k) > A, ViV € M, and | RO(P+ Q) | < j().

The super-C*)-P-Laver-generic large cardinal axiom for the notion of ex-
tendibility (super-C(*®)-P-LgLCA for extendible, for short) is the assertion that
Ket 1s a/the tightly super C(*>)_-P-Laver-generic extendible cardinal.

The following boldface version of the Resurrection Axioms was studied by
Hamkins and Johnstone in [15]: For a class P of posets and a definition u® of
a cardinal (e.g. as Wy, Ny, 2% (2%)* . etc.) the Resurrection Aziom in Boldface
for P and H(p®) is defined by:

IRAZ(M.) : For any A C H(p®) and any P € P, there is a P-name Q of poset
such that |-p“Q € P” and, for any (V, P x Q)-generic H, there is A* C
H(p)VP such that (H(u)", A, €) < (H(u*) ¥, A%, €)

Theorem 4.1 (A slight improvement of Theorem 7.1 in [3]) For an iterable class
P of posets, assume that P-LgLCA for extendible holds. Then IRAZ(KM[) holds.

Proof. Suppose A C H(kwsi) and P € P. By the tightly P-Laver-generic ex-
tendibility of i, there is a P-name Q of a poset with [-p “Q € P” such that, for

(V, P % Q)-generic H, there are j, M C V[H| with

(4.6)  j:V S M,
(4.7)  J(kej) = | RO(P % @) B
(4.8) P,He M, and
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(4.9) V;‘(A)V[IH] e M.

Without loss of generality, we may assume that the underlying set of P x @ is
J(Keet). Since crit(j) = kg, j(a) = a for all a € (H(kwp))V.

By (4.9), we have H(j (ki)Y € M, and hence j(H (k) = H(j(Feep )™ =
H(j(/ﬁref[))v[H]-

Thus, we have
id?—[(mnf[ W= ] [ /H(/{tef[)v : (H(/{tef[)va A7 G) i> (H(j(/{tef[))v[u—l]uj(A)v E)-

[ (Theorem 4.1)

Recurrence Axioms are introduced in Fuchino-Usuba [9].

For an iterable class P of posets, a set A (of parameters), and a set I' of
Lc- formulas, P-Recurrence Aziom™ for formulas in T with parameters from A
(P, A)r-RcAt, for short) is the following assertion expressed as an axiom scheme
formulated in Le:

(P,A)r-RcA* : For any ¢(T) € I" and @ € A, if |Fp“p(a)”, then there is a
P-ground W of V such that @ € W and W = ¢(a).

Here, an inner model M of V is said to be a P-ground of V, if there are P € M and
G € V such that M =“P € P”, G is an (M, P)-generic filter, and V = M s[C].

If T is the set of all Lc-formulas, we drop the subscript I' and say simply
(P, A)-RcAT.

As it is noticed in [9], (P, A)-RcAT is equivalent to the Maximality Principle
MP(P, A) (see Proposition 2.2, (2) in [9]).

Theorem 4.2 Assume P-LgLCA for extendible. Then (P, H (ke ))s,-RcAT holds.

For the proof of Theorem 4.2, we use the following lemma which should be a

well-known fact.

Lemma 4.3 If a is a limit ordinal and V,, satisfies a sufficiently large finite frag-
ment of ZFC, then for any P € V, and (V,P)-generic G, we have V,[G] = V, V1.

Proof of Theorem 4.2: Assume that k = ks is tightly P-Laver generically
extendible for an iterable class P of posets.

Suppose that ¢ = ¢(T) is Xy formula (in L¢), @ € H(k), and P € P is such
that

(410) V= |Fe“p(@)”.

Let A > k be such that P € V, and

13



(4.11)  Vy <y, V for a sufficiently large n.

In particular, we may assume that we have chosen the n above so that a sufficiently
large fragment of ZFC holds in V) (“sufficiently large fragment” means here, in
particular, in terms of Lemma 4.3).

Let Q be a P-name such that |Fp“Q € P”, and for (V, P % Q)-generic H, there
are j, M C V[H] with i i

(412) j:V . M,

(4.13)  j(k) > A,

(4.14) PxQ, P, H, V;o)"" € M, and
(4.15) |RO(P Q)| < j(k).

~

By (4.15), we may assume that the underlying set of P+Qis Jj(k) and P+Q € V;—(,\)V.
Let G := HNP. Note that G € M by (4.14) and we have

Since Vj( /\)M (= Vj\gﬂ;l) satisfies a sufficiently large fragment of ZFC
by elementarity of j, and hence the equality follows by Lemma 4.3

=
~—
by (4.14)
Thus, by the definability of grounds and by (4.14), we have Vj(/\)V c M and
Vi (6] € M.

I By Lemma 4.3, V3V[G] = \Y®, and V) V[G] = Vj)V® by (4.11) and (4.16).
By (4.11), both V4V[G] and Vj\(//\) [C] satisfy large enough fragment of ZFC. In par-
ticular,

(4.17)  W\V[G] <5, Vi "[G].

By (4.10) and (4.11), we have V3V[0] |= ¢(a@). By (4.17) and since ¢ is ¥, it follows
that Vj(A)V[G] }: (p<a) _| (Claim 4.2.1)

Thus we have

(4.18) M |=“there is a P-ground N of Vj) with N = ¢(a)”.
By the elementarity (4.12), it follows that

(4.19) V [=“there is a P-ground N of V) with N = ¢(a)”.

Now by (4.11), it follows that there is a P-ground W of V such that W = ¢(a).

D (Theorem 4.2)
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Theorem 4.4 Suppose that P is an iterable class of posets and super-C(*)-P-
LgLCA for extendible holds. Then MP(P, H (ks )) holds.

Proof. It is enough to show that (P, H (ks ))-RcAT holds. For this, a modification
of the proof of Theorem 4.2 works.

Suppose that £ = ke is tightly super-C'(®)-P-Laver-generically extendible,
PeP,and |Fp“p(@)” for an Le-formula ¢ and @ € H(x). We want to show that
©(@) holds in some P-ground of V.

Let n be a sufficiently large natural number > 1 such that the following argu-
ments go through. In particular, we assume that VY <y, V implies that “p(T)”
and “|. “p(Z)” are absolute between V,,Y and V, and V¥ <5, V also implies that
a sufficiently large fragment of ZFC holds in V.

Let Q be a P-name such that IFp “Q e P” and, for (V,Px @)—generic H, there

are a A > Kk with
(4.20) V) <y, V,
and j, M C V[H] such that j : V =5, M, j(x) > A, P, H, Vo)V € M, | RO(P *
Q)| < (k) (<j(A), and Vi <5, VIH].

Replacing P x @ by an appropriate isomorphic poset (and replacing H by corre-
sponding filter), we may assume that P x* Qe Vj(A)V.

By the choice of n, we have Vy = |Fp “p(@)". j(1iY) = Vo)™ <s, M by
elementarity of j, and
(4.21) V™ = Vi)'
by the closedness of M. Since V) <5, V, we have VA[H] <5, V[H] for a still large
enough ny < n. Since Vj(,\)V“H] <y, V[H], it follows that ;v =%, Vioy V. Thus
(4.22) V)\V =<5, ‘/}(A)V

for a still large enough ny < ny.
In particular, we have V)Y £ |Fp “¢(@)”, and hence Vj)[C] | ¢(a@) where

G is the P-part of H. Note that by (4.20) and (4.22), Vj, satisfies a sufliciently

large fragment of ZFC.
Thus we have Vjy)[H] |= “ there is a P-ground satisfying (@) ”, and hence

Vioy VI |= “ there is a P-ground satisfying ¢(a)”
by Lemma 4.3. By (4.21) and elementarity, it follows that
V) = ¢ there is a P-ground satisfying (@) ”.

Finally, this implies V |= “ there is a P-ground satisfying ¢(a)” by (4.20).

D (Theorem 4.4)
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5 Consistency of LgLCAs and super-C(®)-LgLCAs
for extendibility

Lemma 5.1 (1) Suppose that k is extendible. Then there is a Laver function
[k =V, for extendibility.

(2) Suppose that k is super C™-extendible for an n € N\ 1. Then there is a
Laver function f : k — V. for super C"™ -extendibility.

(3) Suppose that, for an inaccessible cardinals k* and a cardinal kK < K* we have
Vie |= “k is super-C™)-extendible”. Then there is a Laver function f : k — V,

for super-C*)-eztendible K in V.

Proof. (1) has been known previously (see e.g. [2]). The proof of (2) below can
be easily modified to a proof of (1).

(2): Assume, toward a contradiction, that there is no Laver function f : k — Vj

for super C™-extendible k.
Let ¢, (f) be the formula

HQHQVQVQ/VZ((]CZQ*)VQ ANa<d AN Vs=<s, VAN zeVs AN Vyg=<x,V
A j:Vs S Ve A j(dom(f)) >3 A jis cofinal in Vy) — j(f)(a) #z).

If v, (f) holds then the witness of « in ¢, (f) is uniquely determined. In this case,
let z; be a witnesses for z in ¢, (z), and let p; := rank (x). x; might not be
determined uniquely. However, we will choose x ¢ such that p ¢ is minimal and thus
ps is determined uniquely to each f. If ¢, (f) does not hold, we let pf := 0.

By assumption, we have

(5.1)  @u(f) forall f:r— V.

Let v, 1y be be cardinals such that v > vy > max{us : f:a — V, for an
inaccessible o < K}, (5.2): V,, <y,, V for sufficiently large m € N, V,, <y, V, and
there is j* : V =5, M with (5.3): j*(k) > v, (5.4): Viw) <=, V, and
(5.5): Viw) € M.

Let A:={a <k : ais inaccessible, and Vf ((f : o = Vo) — ou(f))}

By assumption, V | “Vf ((f : K = Vi) — ¢n(f))”. By (5.2) and (5.5), it
follows that M =“Vf ((f: £ = Vi) — ¢u(f))”.? Thus we have M |= j*(A) 3 k.

Let f*: k — V, be defined by

2) Actually, by analyzing the statement of ¢, (f) carefully we see that (5.2) and the details
connected to it are redundant here.
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. T 1as if a € A;
[(a) =

0, otherwise.

Let z* := j*(f*)(k). By definition of f*, by (5.1), and since j(f*) | k = f*, z*
witnesses @, (f*).
(pg+ is just as chosen before since it is uniquely determined. z* may be different

from z ¢ but this does not matter.)

In particular, x* # (j* [ V5,.)(f*)(k) = j(f*)(x). This is a contradiction.

(3): Let ¢n(f) be as in (1) where n runs now over w, and let o(f) := X\, _ en(f)-
As we already have noticed in Section 2, we cannot discuss about the validity of
©(f) in V (at least not in the framework of ZFC) while V.- = ¢(f) is a well-defined
notion. The conclusion of (2) is obtained by arguing analogously to (1) in Vi« with

Spn(f) repla’ced by SD(f) D (Lemma 5.1)

Theorem 5.2 (1) For an extendible k, and for a Xo-definable transfinitely itera-
ble class P of posets, there is a poset P, such that |-p, “Kk = Kesi and k is tightly

P-Laver generic extendible” .

(2) Suppose that r is super-C ™) -extendible for n € N and n* = max{n,2}.
Then for any 3, 1-definable transfinitely iterable class P of posets, there is a poset
P, such that
IFp,. “K = Keeqt and K is tightly super-C'"™ -P-Laver generic extendible” .

(3) V., | “k is super-C® extendible” for an inaccessible p. Then for any
transfinitely iterable class P of posets there is a poset P,, € V,, such that V,, =

2 9

“lrp, “K = Kup and & is tightly super-C'°)-P-Laver generic extendible” .
Note that most of the natural classes of posets including the classes of all ccc posets,
all o-closed posets, all proper posets, all semi-proper posets, etc. are Y.

Proof of Theorem 5.2: (1): We show the assertion for the case that P is the

class of all proper posets. The proof for the general case can be done by replacing

the CS-iteration in the proof by the iteration for which the class P is transfinitely

iterable. Let f be a Laver function for extendible s (f exists by Lemma 5.1, (1)).
Let (P, Qs :a<kB< k) be an CS-iteration of elements of P such that

f(B), if f(5) is a Pg-name
Qs = and |Fp, “ f(B) € P7;

Ps-name of the trivial forcing, otherwise.

We show that |Fp, “P-LgLCA for extendibility ”.
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First, note that |Fp, “x = 2% = Ky 7 by definition of P,.

Let G, be a (V, P,)-generic filter. In V]G], suppose that P € P and let P be a
P.-name for P.

Suppose that A > k. By Lemma 2.1, there is an inaccessible A* > X. Let
j:V 5. M besuch that  (5.6): j(rk) >\, (5.7): Vjoey € M, and
(5.8): j(f)(x) = P. This is possible since f is a Laver function for the extendible
K.

In M, there is a P x P-name Q such that |Fp.p “Q € P and Q is the direct
limit of CS-iteration of small posets in P of length j(k), and P, * P Q~ J(Pe)7,
By (5.7), and since “P € P” is 3, the same situation holds in V.

We have j(P,)/C, ~ Px @ where we identify @ with a corresponding P-name.

Let H be (V, j(P,))-generic filter with G, C H.

The lifting j : V[G,] = M[H]; a[C.] — j(a)[H] witnesses that & = (eesi)¥(C"!
is tightly P-Laver generic extendible. For this, it suffices to show:

Claim 5.2.1 V.,V € M[H] for all a < j()).

- By induction on a < j(\). The successor step from a < j(\) to a + 1 can be

proved by showing that P.-names of subsets of VY can be chosen as elements of
M. This is possible because of (5.7). = (Claim 5.2.1)
(2) and (3) can be proved similarly. Q (Theorem 5.2)

The following chart summarizes our view of the landscape with LgLCAs.

d an inner model in which

s HKrejr 18 a super C(*)-huperhuge €‘$\

cardinal super-C(>)-P-LgLCA for hyperhuge

d a 2-huge
cardinal

J a hyperhuge «-----> P-LgL.CA for hyperhuge —
cardinal

super-C(®)-P-LgL.CA for ultrahuge

3 an almost-huge
cardinal

\4

P-LgLCA for ultrahuge «—

v V. |= second-order Vopénka Principle

P-LgLCA for superhuge
V.. = unboundedly many
super-C(°®)-extendible cardinals

\4

P-LgLCA for super-almost-huge 1
super-C(>)-P-LgL.CA for extendible 5

v P-LgLCA for extendible 4
P-LgLCA for supercompact — \

J an extendible
cardinal

B <«— A: “the axiom A implies the axiom B”
B<-->A : “the axioms A and B are equi-consistent.”
B <--- A: “the consistency of A implies the consistency of B but not the other way around.”

B 4— A : “the consistency of A implies the consistency of B but the equi-consistency is not (vet?) known.”
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