A COMPLETE FILTER ASSOCIATED WITH A THIN LIST

KENTA TSUKUURA

ABSTRACT. In this paper, we construct a κ -complete filter $F_{\overline{d}}$ over λ using a thin $\mathcal{P}_{\kappa}(2^{\lambda})$ -list \overline{d} . We show that if \overline{d} has no branch, then $F_{\overline{d}}$ cannot be extended to a κ -complete ultrafilter. This result allows us to demonstrate that if every κ -complete filter over λ can be extended to a κ -complete ultrafilter, then $\square(2^{\lambda})$ fails, without relying on the compactness theorem of $\mathcal{L}_{\kappa\kappa}$.

1. Introduction

The notion of strong compactness has been widely studied in the contexts of infinitary logic, large cardinals, and infinitary combinatorics. The original definition is due to Tarski. For a regular cardinal κ , the infinitary logic $\mathcal{L}_{\kappa\kappa}$ is a logic allows conjunctions of $<\kappa$ -many formulas and the use of $<\kappa$ -many quantifiers to define formulas. $\mathcal{L}_{\omega\omega}$, as classical first-order logic, satisfies the compactness theorem. For an uncountable cardinal κ , κ is strongly compact if and only if $\mathcal{L}_{\kappa\kappa}$ satisfies the compactness theorem. As is widely known, strong compactness has many characterizations. The following are equivalent:

- (1) κ is strongly compact.
- (2) $\mathcal{P}_{\kappa}\lambda$ carries a fine ultrafilter for all $\lambda \geq \kappa$.
- (3) For every κ -complete filter F, F can be extended to a κ -complete ultrafilter, that is, there exists a κ -complete ultrafilter U such that $F \subseteq U$.
- (4) A two-cardinal tree property $TP(\kappa, \lambda)$ holds for all $\lambda \geq \kappa$, and κ is inaccessible.
- In [1], Hayut analyzed these relations.

Theorem 1 (Hayut [1]). For regular cardinals $\kappa \leq \lambda = \lambda^{<\kappa}$, the following are equivalent:

- (1) Every κ -complete filter over λ can be extended to a κ -complete ultrafilter.
- (2) $\mathcal{L}_{\kappa\kappa}$ satisfies the compactness theorem for a theory of size 2^{λ} . That is, for every $\mathcal{L}_{\kappa\kappa}$ -theory T with 2^{λ} -many symbols, if T is $<\kappa$ -consistent, then T is consistent.

In particular, if every κ -complete filter over λ can be extended to a κ -complete ultrafilter, then $\square(\mu, < \kappa)$ fails for all regular $\lambda \leq \mu \leq 2^{\lambda}$.

Hayut also pointed out the following implications concering compactness of κ :

 2^{λ} -strongly compact $\Rightarrow \lambda$ -compact

 \Leftrightarrow $\mathcal{L}_{\kappa\kappa}$ satisfies the comp. thm. for T of size 2^{λ} \Rightarrow λ -strongly compact

 $^{2020\} Mathematics\ Subject\ Classification.\ 03E35,\ 03E40,\ 03E55.$

 $[\]mathit{Key}\ \mathit{words}\ \mathit{and}\ \mathit{phrases}.$ Tree property, strongly compact cardinals, (†), Namba forcings.

This research was supported by JSPS KAKENHI Grant Number 24K16959.

Here, λ -strongly compactness asserts the existence of a fine ultrafilter over $\mathcal{P}_{\kappa}(\lambda)$. λ -compactness is (1) in Theorem 1.

The proof of Theorem 1 involves interpreting $\mathcal{L}_{\kappa 1}$ -formulas and this make the proof a bit complex to understand. To better understand Theorem 1, we focus on the combinatorial aspects of strong compactness. We also provide a combinatorial proof of $\neg\Box(\mu, <\kappa)$. Specifically:

Theorem 2. For every regular cardinals $\aleph_2 \leq \kappa \leq \lambda = \lambda^{<\kappa} \leq \mu \leq 2^{\lambda}$, if $\neg TP(\kappa, \mu)$, then there exists a κ -complete filter F over λ (generated by $\mu^{<\kappa}$ -many sets) that cannot be extended to a κ -complete ultrafilter. In particular, a $\square(\mu, <\kappa)$ -sequence defines such a κ -complete filter over λ .

The organization of this paper is as follows: Section 2 provides preliminaries. Section 3 is devoted to the proof of Theorem 2. Section 4 explores Namba forcings.

2. Preliminaries

We use [3] as a reference for set theory in general. Our notation is standard. Throughout this paper, κ and λ denote regular cardinals greater than \aleph_2 , unless otherwise stated. Typically, we assume $\aleph_2 \leq \kappa \leq \lambda = \lambda^{<\kappa}$. The symbol μ is used to denote an infinite cardinal.

An important concept in this paper is the two-cardinal tree property $\operatorname{TP}(\kappa,\lambda)$. A $\mathcal{P}_{\kappa}\lambda$ -list is a sequence $\overline{d} = \langle d_a \mid a \in \mathcal{P}_{\kappa}\lambda \rangle$, where $d_a \subseteq a$ for all $a \in \mathcal{P}_{\kappa}\lambda$. We say that \overline{d} is thin if there exists a club $C \subseteq \mathcal{P}_{\kappa}\lambda$ such that $|\{d_a \cap c \mid c \subseteq a\}| < \kappa$ for all $c \in C$. We denote by $\operatorname{Lev}_c(\overline{d})$ the set $\{d_a \cap c \mid c \subseteq a\}$. A branch of \overline{d} is a set $d \subseteq \lambda$ such that, for all $a \in \mathcal{P}_{\kappa}\lambda$, $d \cap a \in \operatorname{Lev}_a(\overline{d})$. The property $\operatorname{TP}(\kappa,\lambda)$ asserts the nonexistence of a thin $\mathcal{P}_{\kappa}\lambda$ -list with no branches. Note that $\operatorname{TP}(\kappa,\kappa)$ is equivalent to the nonexistence of a κ -Aronszajn tree.

For Theorem 2, the following lemma is central:

Lemma 3. For regular cardinals $\kappa \leq \lambda = \lambda^{<\kappa}$, there exists a family $\langle A_{\alpha} \mid \alpha < 2^{\lambda} \rangle$ of subsets of λ such that, for every $a, b \in \mathcal{P}_{\kappa} 2^{\lambda}$, if $a \cap b = \emptyset$, then

$$|\bigcap_{\alpha \in a} A_{\alpha} \setminus \bigcup_{\alpha \in b} A_{\alpha}| = \lambda.$$

Proof. See [1].

3. Proof of Theorem 2

For regular cardinals $\kappa \leq \lambda = \lambda^{<\kappa} \leq \mu \leq 2^{\lambda}$ and a thin $\mathcal{P}_{\kappa}\mu$ -list \overline{d} , let us define a κ -complete filter $F_{\overline{d}}$ over λ . Let C be a club such that, for all $a \in \mathcal{P}_{\kappa}\lambda$, there exists $c_a \in C$ with $a \subseteq c_a$ and $|\text{Lev}_{c_a}(\overline{d})| < \kappa$.

For $a \in \mathcal{P}_{\kappa}\mu$, define B_a by

$$B_a = \bigcup_{d \in \text{Lev}_{c_a}(\overline{d})} \left(\bigcap_{\alpha \in d \cap a} A_\alpha \setminus \bigcup_{\alpha \in a \setminus d} A_\alpha \right).$$

Here, $\langle A_{\alpha} \mid \alpha < 2^{\lambda} \rangle$ comes from Lemma 3. By Lemma 3, $|B_a| = \lambda$.

Lemma 4. The family $\{B_a \mid a \in \mathcal{P}_{\kappa}\mu\}$ generates a κ -complete filter.

Proof. For every $X \in [\mathcal{P}_{\kappa}\mu]^{<\kappa}$, fix $c \in C$ such that $\bigcup_{a \in X} c_a \subseteq c$. We can choose $d \in \text{Lev}_c(\overline{d})$. Then the following hold:

- $d \cap c_a \in \text{Lev}_{c_a}(\overline{d})$.
- $|\bigcap_{\alpha \in d} A_{\alpha} \setminus \bigcup_{\alpha \in c \setminus d} A_{\alpha}| = \lambda.$

Let $B' = \bigcap_{\alpha \in d} A_{\alpha} \setminus \bigcup_{\alpha \in c \setminus d} A_{\alpha}$. It suffices to prove that $B' \subseteq \bigcap_{a \in X} B_a$. For each $a \in X$, $B' \subseteq \bigcap_{\alpha \in (d \cap c_a) \cap a} A_{\alpha} \setminus \bigcup_{\alpha \in a \setminus (d \cap c_a)} A_{\alpha}$. By $d \cap c_a \in \text{Lev}_{c_a}(\overline{d})$, $B' \subseteq B_a$. Thus, the proof is complete.

Let $F_{\overline{d}}$ be the filter generated by $\{B_a \mid a \in \mathcal{P}_{\kappa}\mu\}$. The following key lemma is crucial for proving our main theorem:

Lemma 5. If there exists a κ -complete ultrafilter U over λ such that $F_{\overline{d}} \subseteq U$, then \overline{d} has a branch.

Proof. Define $d \subseteq \mu$ by $\alpha \in d$ if and only if $A_{\alpha} \in U$. We claim that d is a branch of \overline{d} . For every $a \in \mathcal{P}_{\kappa}\mu$, since $B_a \in U$ and U is a κ -complete ultrafilter, there exists $e \in \text{Lev}_{c_a}(\overline{d})$ such that

$$\bigcap_{\alpha \in e \cap a} A_{\alpha} \setminus \bigcup_{\alpha \in a \setminus e} A_{\alpha} \in U.$$

Thus, we have:

- For all $\alpha \in e \cap a$, $A_{\alpha} \in U$.
- For all $\alpha \in a \setminus e$, $A_{\alpha} \notin U$.

By the definition of d, $d \cap a = e \cap a$. Since $e \in \text{Lev}_{c_a}(\overline{d})$, there exists $c' \in \mathcal{P}_{\kappa}\mu$ such that $a \subseteq c_a \subseteq c'$ and $e = d_{c'} \cap c_a$. Therefore, $d \cap a = e \cap a = d_{c'} \cap a \in \text{Lev}_a(\overline{d})$, as desired.

Proof of Theorem 2. Suppose there exists a thin $\mathcal{P}_{\kappa}\mu$ -list \overline{d} with no branch. By Lemma 5, $F_{\overline{d}}$ cannot be extended to a κ -complete ultrafilter.

It is also known that a $\Box(\mu, <\kappa)$ -sequence provides such a thin $\mathcal{P}_{\kappa}\mu$ -list. For a proof, see [4]. Therefore, a $\Box(\mu, <\kappa)$ -sequence defines the required κ -complete filter over λ .

Our proof can also help in understanding Theorem 1.

Theorem 6 (Jech [2]). For regular cardinals $\kappa \leq \lambda = \lambda^{<\kappa}$, the following are equivalent:

- (1) $\mathcal{L}_{\kappa\kappa}$ satisfies the compactness theorem for a theory of size λ .
- (2) κ is inaccessible and $TP(\kappa, \lambda)$.

Corollary 7. For regular cardinals $\kappa \leq \lambda$, the following are equivalent:

- (1) Every κ -complete filter over λ can be extended to a κ -complete ultrafilter.
- (2) $\mathcal{L}_{\kappa\kappa}$ satisfies the compactness theorem for a theory of size 2^{λ} .
- (3) κ is inaccessible and $TP(\kappa, 2^{\lambda})$.

4. Semiproperness of Namba forcings

The notions of thin $\mathcal{P}_{\kappa}\lambda$ -lists \overline{d} and $F_{\overline{d}}$ can be defined even if κ is a successor cardinal. To study the compactness properties underlying $F_{\overline{d}}$, we introduce Namba forcing.

For a κ -complete fine ideal I over $Z \subseteq \mathcal{P}(X)$, an (I-)Namba tree p is a set $p \subseteq [Z]^{<\omega}$ satisfying the following conditions:

(1) p is a tree. That is, each $s \in p$ is \subseteq -increasing, and p is closed under initial segments.

- (2) There exists a maximal $s \in p$ such that $\forall t \in p(s \subseteq t \lor t \subseteq s)$. This s is called the trunk, denoted tr(p), of p.
- (3) For each $s \in p$, if $s \supseteq \operatorname{tr}(p)$, then $\operatorname{Suc}(s) = \{a \in Z \mid s \cap \langle a \rangle \in p\} \in I^+$.

Let $\operatorname{Nm}(Z,I)$ denote the set of all I-Namba trees. For a filter F, $\operatorname{Nm}(Z,F)$ is defined as $\operatorname{Nm}(Z,F^*)$. We write $\operatorname{Nm}(\kappa)$ and $\operatorname{Nm}(\kappa,\lambda)$ to refer to $\operatorname{Nm}(\kappa)$ bounded ideal) and $\operatorname{Nm}(\mathcal{P}_{\kappa}\lambda)$, bounded ideal), respectively. $\operatorname{Nm}(\aleph_2)$ corresponds to the original Namba forcing. Since every Namba forcing $\operatorname{Nm}(Z,I)$ is ω_1 -stationary preserving, every Namba forcing can be semiproper.

The semiproperness of Namba forcings is connected to reflection principles (see Lemma 9). A typical example is the following:

Theorem 8. For a κ -complete ideal I over λ , if $\operatorname{Nm}(\lambda, I)$ is semiproper, then $\square(\lambda)$ fails.

Note that $Nm(\lambda, I)$ forces $cf(\lambda) = \omega$. Theorem 8 follows from Lemma 9 and Theorems 10 and 11.

Lemma 9 (Tsukuura [7]). For regular cardinals $\aleph_2 \leq \kappa \leq \lambda$ and a semistationary subset $S \subseteq [\lambda]^{\omega}$, if $\operatorname{Nm}(\kappa, \lambda)$ forces that S is semistationary, then there exists $a \in \mathcal{P}_{\kappa}\lambda$ such that $S \cap [a]^{\omega}$ is semistationary. Conversely, if we assume $\forall \mu < \kappa(\mu^{\omega} < \kappa)$ or $\kappa = \aleph_2$, the reverse direction also holds.

Theorem 10 (Sakai–Veličković [5]). If every semistationary subset $S \subseteq [\lambda]^{\omega}$ reflects to some $a \in \mathcal{P}_{\kappa}\lambda$, then $\square(\lambda)$ fails.

Theorem 11 (Shelah [6] for (1) \leftrightarrow (3), Tsukuura [7] for (1) \leftrightarrow (2)). For a regular cardinal $\kappa \geq \aleph_2$, the following are equivalent:

- (1) $Nm(\kappa)$ is semiproper.
- (2) $Nm(\kappa, \kappa)$ is semiproper.
- (3) There exists a semiproper forcing that forces $\dot{cf}(\kappa) = \omega$.

Strong compactness directly effects the semiproperness of Namba forcings.

Proposition 12. For a κ -complete filter F over λ , if F can be extended to a κ -complete ultrafilter, then $\operatorname{Nm}(\lambda, F)$ is semiproper.

The extendability of $F_{\overline{d}}$ connects both the semiproperness of $\text{Nm}(\lambda, F_{\overline{d}})$ and the existence of a branch in \overline{d} . However, these two properties do not imply each other.

It is straightforward to construct a model where $\operatorname{Nm}(\lambda, F_{\overline{d}})$ is *not* semiproper, but \overline{d} has a branch. Indeed, a thin $\mathcal{P}_{\kappa}\lambda$ -list \overline{d} with a branch always exists. On the other hand, obtaining the semiproperness of $\operatorname{Nm}(\lambda, F_{\overline{d}})$ requires the failure of $\square(\lambda)$.

Theorem 13. It is consistent that there exists a thin $\mathcal{P}_{\kappa}\lambda$ -list \overline{d} such that \overline{d} has no branch, but $\operatorname{Nm}(\lambda, F_{\overline{d}})$ is semiproper.

Proof. Every $\operatorname{Nm}(\lambda, F_{\overline{d}})$ is ω_1 -stationary preserving. It is known that if a strongly compact cardinal κ is collapsed to \aleph_2 by $\operatorname{Coll}(\aleph_1, <\kappa)$, then (\dagger) and CH hold in the extension. Let us consider the extension. Note that CH implies the existence of an \aleph_2 -Aronszajn tree, and thus $\operatorname{TP}(\aleph_2, \aleph_2)$ fails. Let \overline{d} be a thin $\mathcal{P}_{\aleph_2} \aleph_2$ -list with *no* branches. By (\dagger) , $\operatorname{Nm}(\aleph_2, F_{\overline{d}})$ must be semiproper.

The next question concerns whether there exists a thin $\mathcal{P}_{\kappa}\lambda$ -list \overline{d} such that \overline{d} has no branches, and $\operatorname{Nm}(\lambda, F_{\overline{d}})$ is not semiproper. It seems that stronger anti-compactness principles are needed.

Question 14. Suppose that $\Box(2^{\lambda})$ holds. Is there an \aleph_2 -complete filter F over λ such that $\operatorname{Nm}(\lambda, F)$ is not semiproper? What about $F_{\overline{d}}$ for a thin $\mathcal{P}_{\kappa}2^{\lambda}$ -list defined by $\Box(2^{\lambda})$?

We conclude this paper with the following diagram, which motivates and illustrates our question. For details on the implications of Namba forcings, see [7]. Note that F denotes a κ -complete filter, and we assume $\aleph_2 \leq \kappa \leq \lambda = \lambda^{<\kappa}$.

FIGURE 1. Our question concerns the "dotted" arrow. The "dashed" arrow comes from Theorem 1.

References

- [1] Yair Hayut. Partial strong compactness and squares. Fund. Math., 246(2):193-204, 2019.
- [2] Thomas Jech. Some combinatorial problems concerning uncountable cardinals. Ann. Math. Logic, 5(3):165–198, 1973.
- [3] Akihiro Kanamori. The higher infinite. Springer Monographs in Mathematics. Springer-Verlag, Berlin, second edition, 2003. Large cardinals in set theory from their beginnings.
- [4] Hiroshi Sakai. TP and weak square (accessed: 2025-01-24). https://www2.kobe-u.ac.jp/~hsakai/Research/notes/tp_weak_square.pdf.
- [5] Hiroshi Sakai and Boban Veličković. Stationary reflection principles and two cardinal tree properties. J. Inst. Math. Jussieu, 14(1):69–85, 2015.
- [6] Saharon Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1998.
- [7] Kenta Tsukuura. On semiproperness of namba forcings and ideals in prikry extensions. submitted.

DEPARTMENT OF FISHERIES DISTRIBUTION AND MANAGEMENT, NATIONAL FISHERIES UNIVERSITY, SHIMONOSEKI, 759-6533, JAPAN

 $Email\ address: {\tt tsukuura@fish-u.ac.jp}$