A COMPLETE FILTER ASSOCIATED WITH A THIN LIST

KENTA TSUKUURA

ABSTRACT. In this paper, we construct a x-complete filter F; over A using
a thin P, (2*)-list d. We show that if d has no branch, then F cannot be
extended to a k-complete ultrafilter. This result allows us to demonstrate that
if every k-complete filter over A can be extended to a k-complete ultrafilter,
then [J(2*) fails, without relying on the compactness theorem of L.

1. INTRODUCTION

The notion of strong compactness has been widely studied in the contexts of
infinitary logic, large cardinals, and infinitary combinatorics. The original defini-
tion is due to Tarski. For a regular cardinal s, the infinitary logic L, is a logic
allows conjunctions of <x-many formulas and the use of <x-many quantifiers to
define formulas. L, as classical first-order logic, satisfies the compactness the-
orem. For an uncountable cardinal s, & is strongly compact if and only if L.,
satisfies the compactness theorem. As is widely known, strong compactness has
many characterizations. The following are equivalent:

(1) & is strongly compact.

(2) P A carries a fine ultrafilter for all A > k.

(3) For every k-complete filter F', F' can be extended to a k-complete ultrafilter,
that is, there exists a xk-complete ultrafilter U such that F* C U.

(4) A two-cardinal tree property TP(x, A) holds for all A > &, and & is inacces-
sible.

In [1], Hayut analyzed these relations.

Theorem 1 (Hayut [1]). For regular cardinals k < X = A<", the following are
equivalent:
(1) Every k-complete filter over A can be extended to a k-complete ultrafilter.
(2) L, salisfies the compactness theorem for a theory of size 2*. That is, for
every Ly,.-theory T with 2*-many symbols, if T is <k-consistent, then T is
consistent.

In particular, if every k-complete filter over A can be extended to a k-complete
ultrafilter, then O(u, <k) fails for all reqular X < pu < 2*.

Hayut also pointed out the following implications concering compactness of x:

2*_strongly compact = A-compact
& L., satisfies the comp. thm. for T of size 2 = A-strongly compact

2020 Mathematics Subject Classification. 03E35, 03E40, 03E55.
Key words and phrases. Tree property, strongly compact cardinals, (1), Namba forcings.
This research was supported by JSPS KAKENHI Grant Number 24K16959.

1



2 KENTA TSUKUURA

Here, A-strongly compactness asserts the existence of a fine ultrafilter over P, ().
A-compactness is (1) in Theorem 1.

The proof of Theorem 1 involves interpreting L,i-formulas and this make the
proof a bit complex to understand. To better understand Theorem 1, we focus on
the combinatorial aspects of strong compactness. We also provide a combinatorial
proof of =0(u, <x). Specifically:

Theorem 2. For every reqular cardinals g < k < A = A\<F < p < 2’\, if
—TP(k, u), then there exists a k-complete filter F' over A (generated by p<"-many
sets) that cannot be extended to a k-complete ultrafilter. In particular, o O(u, <k)-
sequence defines such a k-complete filter over .

The organization of this paper is as follows: Section 2 provides preliminaries.
Section 3 is devoted to the proof of Theorem 2. Section 4 explores Namba forcings.

2. PRELIMINARIES

We use [3] as a reference for set theory in general. Our notation is standard.
Throughout this paper, x and A denote regular cardinals greater than N,, unless
otherwise stated. Typically, we assume Ny < x < X\ = A<*. The symbol p is used
to denote an infinite cardinal.

An important concept in this paper is the two-cardinal tree property TP (&, ).
A P A\-list is a sequence d = (d, | a € P.)\), where d, C a for all a € P, \. We say
that d is thin if there exists a club C' C P, \ such that [{d, Nc|c C a}| < & for all
c € C. We denote by Lev.(d) the set {d, Nc|cCa}. A branch of dis a set d C A
such that, for all a € P\, dNa € Levy(d). The property TP(k,)\) asserts the
nonezistence of a thin P, A-list with no branches. Note that TP (x, ) is equivalent
to the nonexistence of a k-Aronszajn tree.

For Theorem 2, the following lemma is central:

Lemma 3. For reqular cardinals k < X\ = \<*, there exists a family (Aq | o < 2*)
of subsets of A such that, for every a,b € P.2*, ifanb =0, then

|ﬂAa\UAa|:)"

aca agch
Proof. See [1]. O

3. PROOF OF THEOREM 2

For regular cardinals ks < A = A<F < < 2% and a thin P, p-list E, let us define
a k-complete filter F; over A\. Let C' be a club such that, for all a € P, A, there
exists ¢, € C with a C ¢, and |Lev,, (d)| < .

For a € P, s, define B, by

B.= N 4.\ U 4a

deLev,, (d) \@€dNa aca\d
Here, (A, | a < 2*) comes from Lemma 3. By Lemma 3, |B,| = \.
Lemma 4. The family {B, | a € P.u} generates a k-complete filter.

Proof. For every X € [P.u]<", fix ¢ € C such that (J,cy ca € ¢. We can choose
d € Lev.(d). Then the following hold:
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e dNec, € Lev,, (d).
* [MNaeq Ao\ Uaec\d Aol = A
Let B" = \,cqAa \ Upee\a Aa- It suffices to prove that B" C (,c x Ba. For each

a€X,B C ﬂae(dﬂca)ﬁaAa \ UaEa\(dﬁca)Aa' By dne, € Lev,, (d), B' C B,.
Thus, the proof is complete. O

Let F3 be the filter generated by {B, | a € P,u}. The following key lemma is
crucial for proving our main theorem:

Lemma 5. If there exists a k-complete ultrafilter U over A such that F'; C U, then
d has a branch.

Proof. Define d C p by o € d if and only if A, € U. We claim that d is a branch of
d. For every a € P, since B, € U and U is a k-complete ultrafilter, there exists

() 4\ |J 4Aa el

e € Lev,, (d) such that
aceNa aea\e

Thus, we have:

e Foralla€eena, A, € U.
e Foralla€ale, A, € U.

By the definition of d, dNa = eNa. Since e € Lev,, (d), there exists ¢/ € P, such
that a C ¢, C ¢ and e = dw N¢,. Therefore, dNa =eNa =d. Na € Levy(d), as
desired. O

Proof of Theorem 2. Suppose there exists a thin P,pu-list d with no branch. By
Lemma 5, F%; cannot be extended to a s-complete ultrafilter.

It is also known that a O(u, <k)-sequence provides such a thin P, p-list. For a
proof, see [4]. Therefore, a O(u, <k)-sequence defines the required x-complete filter
over . O

Our proof can also help in understanding Theorem 1.

Theorem 6 (Jech [2]). For regular cardinals k < XA = X<%, the following are
equivalent:

(1) Ly satisfies the compactness theorem for a theory of size A.

(2) & is inaccessible and TP(k, \).

Corollary 7. For regular cardinals k < X, the following are equivalent:
(1) FEvery s-complete filter over A can be extended to a k-complete ultrafilter.
(2) L. satisfies the compactness theorem for a theory of size 2*.
(3) & is inaccessible and TP (x,2).

4. SEMIPROPERNESS OF NAMBA FORCINGS

The notions of thin P, A-lists d and F; can be defined even if x is a successor
cardinal. To study the compactness properties underlying F, we introduce Namba
forcing.

For a k-complete fine ideal I over Z C P(X), an (I-)Namba tree p is a set
p C [Z]<¥ satistying the following conditions:

(1) pisatree. That is, each s € p is C-increasing, and p is closed under initial
segments.
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(2) There exists a maximal s € p such that V¢ € p(s C ¢Vt C s). This s is
called the trunk, denoted tr(p), of p.

(3) For each s € p, if s O tr(p), then Suc(s) ={a € Z | s (a) ep} € I".
Let Nm(Z, I') denote the set of all I-Namba trees. For a filter F, Nm(Z, F) is defined
as Nm(Z, F*). We write Nm(x) and Nm(k, A) to refer to Nm(x, bounded ideal) and
Nm(P, A, bounded ideal), respectively. Nm(Xz) corresponds to the original Namba
forcing. Since every Namba forcing Nm(Z, I) is w;-stationary preserving, every
Namba forcing can be semiproper.

The semiproperness of Namba forcings is connected to reflection principles (see

Lemma 9). A typical example is the following:

Theorem 8. For a k-complete ideal I over A, if Nm(\, I) is semiproper, then O(\)
fails.

Note that Nm(X,I) forces cf(\) = w. Theorem 8 follows from Lemma 9 and
Theorems 10 and 11.

Lemma 9 (Tsukuura [7]). For regular cardinals Xo < k < X and a semistationary
subset S C [A]“, if Nm(k, \) forces that S is semistationary, then there exists a €
P such that SN[a]¥ is semistationary. Conversely, if we assume Vu < k(u® < k)
or k = No, the reverse direction also holds.

Theorem 10 (Sakai—Velickovi¢ [5]). If every semistationary subset S C [A]“ re-
flects to some a € P\, then O(\) fails.

Theorem 11 (Shelah [6] for (1) <> (3), Tsukuura [7] for (1) <> (2)). For a reqular
cardinal k > No, the following are equivalent:

(1) Nm(k) is semiproper.

(2) Nm(k, k) is semiproper.

(3) There exists a semiproper forcing that forces (ff(/-i) =w.

Strong compactness directly effects the semiproperness of Namba forcings.

Proposition 12. For a k-complete filter F' over A, if F can be extended to a
k-complete ultrafilter, then Nm(\, F') is semiproper.

The extendability of F%; connects both the semiproperness of Nm(\, F%) and the
existence of a branch in d. However, these two properties do not imply each other.
It is straightforward to construct a model where Nm(A, F3) is not semiproper,
but d has a branch. Indeed, a thin P, \-list d with a branch always exists. On the
other hand, obtaining the semiproperness of Nm(\, F5) requires the failure of CI()).

Theorem 13. It is consistent that there exists a thin P \-list d such that d has
no branch, but Nm(\, Fy) is semiproper.

Proof. Every Nm(A, F) is wy-stationary preserving. It is known that if a strongly
compact cardinal & is collapsed to Ry by Coll(Ry, <k), then () and CH hold in the
extension. Let us consider the extension. Note that CH implies the existence of an
Ny-Aronszajn tree, and thus TP(Xg, Ry) fails. Let d be a thin P, Ro-list with no
branches. By (f), Nm(Rq, F;) must be semiproper. O

The next question concerns whether there exists a thin P, \-list d such that d
has no branches, and Nm(\, F%) is not semiproper. It seems that stronger anti-
compactness principles are needed.
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Question 14. Suppose that [(J(2*) holds. Is there an No-complete filter F over A
such that Nm(X, F') is not semiproper? What about F5 for a thin P2} -list defined
by 0(2*) ?

We conclude this paper with the following diagram, which motivates and illus-
trates our question. For details on the implications of Namba forcings, see [7]. Note
that F' denotes a x-complete filter, and we assume Ng < kK < A = A<F,

2X-strongly compact ———— Nm(k, 2*) is semiproper ———3 -0(2%)

l _,___——————"l“"' I

A-compact =——————— All Nm(), F) are senﬁproper

| !

A-strongly compact ———— Nm(k, A) is semiproper —— —[J(A)

FIGURE 1. Our question concerns the “dotted” arrow. The
“dashed” arrow comes from Theorem 1.
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