VARIANTS OF LOS’S THEOREM

TOSHIMICHI USUBA

ABSTRACT. We study Lo$’s theorem in a choiceless context. We intro-
duce some variants of Lo$’s theorem. These variants seem weaker than
Log$’s theorem, but we prove that these are equivalent to Lo$’s theorem.

1. INTRODUCTION

Lo$’s theorem is a fundamental theorem of ultrapowers and ultraproducts.
First we recall it. Throughout this paper, a filter over a set means a proper
filter, and a structure does a first order structure with some language. Let
U be an ultrafilter over a set I, and {M; | ¢ € I} an indexed family of
structures with language L. For f € [[,c; M;, let [f] denote the equivalence
class of f modulo U. Let [],c M;/U denote the ultraproduct of the family
{M; | i€ I} by U. If every M; is the same to the structure M, then the
ultraproduct [[;c; M;/U is denoted by IM/U, it is the ultrapower of M by
U.

Theorem 1.1 (Lo$’s fundamental theorem of ultraproducts [4]). For every
L-formula ¢(vo, . ..,vn) and fo,..., fu € [[;cr Mi,

[1:/0 &= o((fol, - 1))
el
— {Z el ‘ Mi ‘= @(fo(i)w : 7fn(z))} eU.

In [5], we proved that some variants of Lo§’s theorem and weak choice
principles are equivalent to Los§’s theorem in ZF:

Theorem 1.2 ([5]). In ZF, the following are equivalent:

(1) Lo$’s theoreom, that is, for every family {M; | i € I} of structures
with same language and ultrafilter U over I, if [],c; My # 0 then
Los’s fundamental theorem holds for the ultraproduct [],.; M;/U.

(2) For every structure M and ultrafilter U over I, the ultrapower I M /U
is elementarily equivalent to M.

(8) For every structure M and ultrafilter U over I, Lo$’s fundamental
theorem holds for the ultrapower ' M/U.

(4) U-ACy holds (Karagila- Yuan [3]) for every ultrafilter U over I. Where,
for an ultrafilter U over I, U-ACy is the assertion that for every in-
dezed family {A; | i € I} of non-empty sets, there is a function f on
I such that {i € I| f(i) € A;} € U.
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The ultrapower embedding j : M — ' M /U is the map defined by j(z) =
[cz] for x € M, where ¢, : I — M is the constant map with value z. Under
Lo$’s theorem, the ultrapower embedding is an elementary embedding.

Theorem 1.3 ([5], (1) <= (4) is Bilinsky ([1])). In ZF, the following are
equivalent:

(1) Lo$’s theorem.

(2) For every structure M and ultrafilter U over I, the ultrapower em-
bedding j : M — T M/U is an elementary embedding.

(8) For every structure M and ultrafilter U over I, if the ultrapower
embedding j : M — TM/U is an elementary embedding, then Los’s
fundamental theorem holds for M /U.

(4) For every structure M and ultrafilter U over I, if TM/U s ele-
mentarily equivalent to M, then the ultrapower embedding j : M —
IM/U is an elementary embedding.

In this paper, we study more variants of Lo§’s theorem. Variants which
we will consider seem weaker than Los’s theoreom, but we prove that these
are in fact equivalent to Los’s theoreom in ZF.

First we prove that U-AC; can be characterized by bounded forms of Log’s
fundamental theorem:

Theorem 1.4. In ZF, let U be an ultrafilter over a set I. Then the following
are equivalent:

(1) U-ACy holds.

(2) For every structure M, the ultrapower IM/U is Yo-elementarily
equivalent to M .

(8) For every family {M; | i € I} of pairwise isomorphic structures with
same language, if [[;c; Mi # O then [[;c; Mi/U is X1-elementarily
equivalent to M; for every i € I.

(4) For every two structures M and N with same language, if there are
elementary embeddings j : M — N and j' : N — M, then TM/U
and IN/U are Ya-elementarily equivalent.

(5) For every two families {M; | i € I}, {N; |i € I} of structures with
same language, if each M; is isomorphic to N; and both Hie 1 M; and
[Lic; Ni are non-empty, then [[;c; M;/U is X1-elementarily equiva-
lent to [],c; Ni/U.

(6) For every two families {M; | i € I}, {N; | i € I} of structures with
same language, if each M; is isomorphic to N; and both [[,c; M; and
[Lic; Ni are non-empty, then [[,c; M;/U is isomorphic to [[,c; N;/U.

It is known that U-AC; holds if, and only if, for every family {M; | i € I'}
of structures with same language, Los’s fundamental theorem holds for the
ultraproduct [[;c; M;/U (e.g., see [5]). As an immediate consequence, we
have:

Theorem 1.5. In ZF, the following are equivalent:

(1) Los’s theorem.
(2) For every structure M and ultrafilter U over I, the ultrapower ' M /U
is Yo-elementarily equivalent to M.
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(8) For every family {M; | i € I} of pairwise isomorphic structures
with same language and ultrafilter U over I, if [],c; Mi # 0 then
[Lic; Mi/U is Xi-elementarily equivalent to M; for every i € I.

(4) For every two structures M and N with same language and ultrafilter
U over I, if there are elementary embeddings 7 : M — N and j' :
N — M, then TM/U and 'N/U are Sa-elementarily equivalent.

(5) For every two families {M; | i € I} and {N; | i € I} of structures
with same language and ultrafilter U over I, if each M; is isomorphic
to N; and both [[;c; M; and [[;c; N; are non-empty, then [ [;c; M;/U
is X1-elementarily equivalent to [[,c; N;/U.

(6) For every two families {M; | i € I} and {N; | i € I} of structures
with same language and ultrafilter U over I, if each M; is isomorphic
to N; and both [[;c; M; and [[;c; N; are non-empty, then [ [;c; M;/U
is isomorphic to [[;c; Ni/U.

We also study a generic version of Log’s theorem. It is known that, in ZF,
Lo¢’s theorem is not provable, and Lo$’s theorem does not imply the Axiom
of Choice AC. Unlike this, we show that a generic version of Lo$’s theorem
is equivalent to AC in ZF.

2. PROOF OF THEOREM 1.4

We start the proof of Theorem 1.4. First we prove (1) <— (2) «<—

(3)-

Proof of (1) <= (2). The direction (1) = (2) is clear.

(2) = (1). Take a family {A; | i € I} of non-empty sets. We shall find a
function f on I such that {i € I'| f(i) € A;} € U. Now we may assume that
the family {A; | i € I} is pairwise disjoint and I N J,c; Ai = 0. Consider
the structure M = (IUJ;c; Ai3 I, R), where I is identified with a unary
predicate, and R is a binary relation defined by R(z,y) <= =z € I and
y € Ay, Tt is clear that the Ils-sentence Va(I(x) — JyR(x,y)) holds in
M. Let M* = (M*; I*, R*) be the ultrapower of M by U, where I* and R*
are the relations corresponding to I and R. By the assumption (2), M* is
Yo-elementarily equivalent to M. Hence Vz(I*(z) — JyR*(x,y)) holds in
M*. Let f: I — I be the identity function. We have I*([f]), hence there
is [g] € M* such that R*([f],[g]). Then {i € I | R(i,9(i))} € U by the
construction of M*, so {i € [ | g(i) € A;} € U. O

Proof of (1) <= (3). (1) = (3) is clear.

(3) = (1). Take a family {4; | i € I} of non-empty sets. We may assume
that {A; | i € I} is a pairwise disjoint family. Take a large limit ordinal
with A; € Vp for every i € I. Let B; = A; X V. Clearly there is an injection
from Vp into B;, and since 6 is limit with A; € Vp, we have B; C Vp. Thus
for each 4,7 € I there is a bijection from B; onto Bj. Let S = (J;c; Bi.
and for i € I, let R; = B;. Let M; be the structure (S; R;). A X;-sentence
JzR;(z) holds in M;.

Claim 2.1. Fori,j € I, M; is isomorphic to M;.
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Proof. Fix a bijection f : B; = B;. Define 7 : S — S as follows. For x € 5,
m(z) =< f(x) if x € B;.
f~Y(z) ifxe€ B,

7 is a bijection from S onto S with 7“B; = Bj;. Hence 7 is an isomorphism
between M; and M;. O

Let M* = (M*; R*) be the ultraproduct [[,.; M;/U. By the assumption
(3), 3xR*(x) holds in M*. Pick [f] € M* with R*([f]). Then X = {i €
I'| Ri(f(i))} € U. For i € X, by the definition of R;, f(i) is an element of
A; x V. Let g(i) be the ﬁlst coordinate of f(i). We have {i € I | g(i) €
Al} eU. ]

Next we prove (1) <= (4).

Proof of (1) <= (4). It is clear that (1) = (4). For (4) = (1), take a
family {A4; | i € I} of non-empty sets. We may assume that {A4; | i € I}
is a pairwise disjoint family and I N |J;c; Ai = 0. We shall construct two
structures M and N such that N is an elementary substructure of M and
there is an elementary embedding 5 : M — N.

First, let A} = A;xw. Forn <wandi € I, let A}, = Ajx{i} x{n}. Fixa
point p ¢ IU(wa)UUZGI AU, < ier, Alps and let Bin = A, U{(p,i,n)}.
Let M = TU(I xw)U;e s A5 UUzeI,n<w Bm and N = (wa)UUZeMKw Bi .
We identify M and N as structures (M; Iy, Ry) and (N; Iy, Ry), where Iy =
I'U(I Xxw), I =1 x w are unary predicates, and

e Ro(x,y) <= z€landyec A}, orx = (i,n) € I xwand y € B; .
o Ri(x,y) <= z=(i,n) €I xw and y € B .
Note that N is a substructure of M.

Claim 2.2. N is an elementary substructure of M.

Proof. Fix a formula ¢, and take (i, no), . . ., (ix, ng) € I Xw and (xg, jo, mo),
Az dismu) € Uiernew Bime Fix a large natural number h with b >

nQ, ..., Mg, Mo, - .., my. We work in some generic extension V|G| in which
M and N are countable. Since A} and B;,, are countably infinite, we can
find a bijection 7 from N onto M such that:

(1) 7((i,h)) =i and 7((i,n)) = (i,n) for i € I and n < h.

(2) 7T(( n)) = (i,n —1) for i € I and n > h.

(3) m | {{io,m0), ..., (ix,nk)} is identity.

(4) m“B;p = Al for iel.

(5) W“Bm =DB;,forn<handicl.

(6) 7“Bjy = Bjp—1 forn>handiel.

(7)) m | {<xo,jo,m0>, ooy (@, Ji,my) } is identity.
Then it is routine to check that = is an isomorphism from N onto M, hence
we have

M ): C,D(<Z'(),’I’L()>, sy <ik)nk>a <$0aj0)m0>a SRR <$l)jl)ml>)
< N ): (,0((2'0,710>, sy <ikank>’ <$0aj0am0>) R <$lajlaml>)‘



Next we define an embedding j : M — N as follows:
(1) j(@) = (,0) and j(z) = (z,4,0) for i € I and = € A..
(2) j((i,n)) = (i,n+1) and j({z,i,n)) = (x,i,n+ 1) for i € I and
reAl,.

Claim 2.3. j: M — N is an elementary embedding.

Proof. Take a generic extension V[G] in which M and N are countable.
In V[G], since each A, and B;( are countably infinite, for every finite set
C C Ujer A}, we can take a bijection 7 from | J;; Aj onto | J;c; By such that

i€l “
7w [ C=j | C. Then it is easy to see that 7Uj | (IU(IXW)UUieI,er Bi )
is an isomorphism, so j is an elementary embedding as before. O

Let M* = (M*; I}, R§) and N* = (N*; I}, R}) be ultrapowers of M and
N by U respectively.

Claim 2.4. Vz(I{(z) — JyR;(z,y)) holds in N*,

Proof. Take [f] € [[;c; Ni/U, and suppose I{([f]). Then X = {i € I |
f(@i) € L} € U. Fori € X, we know that f(i) is of the form (g(i),n)
for some g(i) € I and n < w. Since (p,g(i),n) € By()n, we have h(i) =
(p,9(i),n) € Bygiy,n and Ri(f(i),h()) holds. Then clearly Rf([f],[h]) holds
in N*. (]

By the assumption (4), M* is Yg-elementarily equivalent to N*. Hence
Va(Ii(x) — JyRE(z,y)) holds in M*. Let f € M be the map f(i) = i.
We know I;([f]) holds in M*, so there is some [g] € M* with R§([f],[g]) in
M*. Then X ={i €| Ro(i,g(i))} € U. By the definition of Ry, g(i) is an
element of A; x w for i € X. Let h(i) € A; be the first coordinate of g(i).
Then {i € I | h(i) € A;} =X € U. O

Finally we show (1) <= (5) < (6).

Proof of (1) <= (5) <= (6). For (1) = (6), take families {M; | i € I}
and {N; | i € I} of structures with same language such that each M; is
isomorphic to N, and [],c; M, [[;c; Ni # 0. For i € I, let A; be the set of
all isomorphisms from M; onto N;. By the assumption (1), we can find a
function o on I such that X = {i € I | 0(i) € A;} € U. Fix hg € [[,c; Ni.
Define 7 : [[;c; M; — [[,c; Ni by

 [ol)(f@) ifiex,
m()(@) = {ho(z’) ifigX.

It is routine to check that the assignment [f] — [7(f)] is an isomorphism
from [[,c; M;/U onto [[;,c; Ni/U.

(6) = (b) is clear.

For (5) = (1), take a family {4; | ¢ € I} of non-empty sets. For i € I, let
Al = A; x w. Tt is clear that A} contains a countably infinite subset.

Fix two points p,q ¢ U,;c; Aj. For i € I, let M; and N; be the structures
that M; = (A, U{p};p) and N; = (A, U {p,q}:p), where we identify p as a
constant symbol. Since each A} contains a countably infinite subset, we can
take a bijection from A’ onto A;U{q}. This bijection induces an isomorphism

from M; onto N;.
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We have [[,c Mi,[Lic; Ni # 0, hence [[;c; M;/U = (M*;p*) is ¥1-
elementarily equivalent to [[,.; N;/U = (N*;p**) by the assumption (5).
We know [[,c; Ni/U | [cq] # p™ (where ¢, is the constant function with
value q), so [[ic; Ni/U = Jz(x # p**) and we have [[,c; M;/U = Jz(x #
p*). Pick [g] € [[;c; M;/U with [g] # p*. Then we have X = {i € I | g(i) #
p} € U. For each i € X, since g(i) # p we have g(i) € A, = A; X w. Let
f(i) be the first coordinate of g(i). Then we have {i € I | f(i) € A;} =X €
U. (]

Note 2.5. By the construction of ultrapowers, in ZF it is easy to show that
a structure M is ¥j-elementarily equivalent to an ultrapower M /U. In this
sense, Yo-elementarity in (2) and (4) of Theorem 1.4 is optimal.

Variants of (3) and (6) in Theorem 1.4 are still equivalent to U-AC;. For
sets A, B, let us say that A and B are equipotent, denoted by A ~ B,
if there is a bijection from A onto B. For an ultrafilter U over I and
a family {A4; | i € I} of non-empty sets, let [[,.; A;/U be just the set
{lf11f €Ilies Ai}. where [f] denotes the equivalence class of f modulo U.

Proposition 2.6. In ZF, let U be an ultrafilter over I. Then the following
are equivalent:

(1) U-ACy holds.

(2) For every two families {A; | i€ I}, {B; | i€ I} of non-empty sets,
if Aj ~ B; for everyi € I and both [],c; Ai,[[;c; Bi are non-empty,
then [[,c; Ai/U ~ [Lie; Bi/U.

(8) For every family {A; | i € I} of pairwise equipotent sets, if each A;
has at least two elements and [[;c; Ai # 0, then [[;c; Ai/U has two
elements.

Proof. (1) = (2) is immediate from (6) in Theorem 1.4. For (2) = (1), we
repeat the proof of (5) = (1) in Theorem 1.4. Take a family {4; | i € I}
of non-empty sets, and let A} = A; x w. Fix p,q¢ ¢ U;e; 4. Then for
each i € I, we have A; U {p} ~ A; U {p,q}. Moreover [[,.;(A4; U {p}) and
[Lic:(A; U {p,q}) are non-empty. By the assumption, there is a bijection

f o ier(A; U{pH /U = Tier (A U{p,a})/U. Clearly [];c,(A; U{p,q})/U
has at least two elements, hence so does [ [, ;(A;U{p})/U. Pick two elements

/1. [9] € Mier (A, U{p})/U. Then {i € T| £(i) £ p} € U o {i € T | g(i)
pteU. f{iel]| f(i)#pteU,then{iel]| f(i) € A; xw} € U, and
we can take a function [’ with {i € I | f'(i) € A;}. The case {i € I | g(i) #
p} € U is similar.

(1) = (3). For a given family {A; | i € I}, since [[;c; Ai # 0, we can
fix f € [[,c; Ai- For cach i € A;, since A; has two eclements, we have
A N\A{f(@)} # 0. By (1), we can take a function g on I with {i € I |
g(i) € A;\{f(i)}} € U. Let h be the function on I defined by h(i) = g(4)
if g(i) € A; \ {f(9)}, and h(i) = f(i) otherwise. We have [f] # [h], so
[Lic; Ai/U has two elements.

(3) = (1). Let {4; | i € I} be a family of non-empty sets. In this case
we repeat the proof of (3) = (1) in Theorem 1.4. Fix a large limit ordinal
¢ with A; € Vp for every ¢ € I. We know A; x Vp ~ A; x Vj for every
i,j € 1. Fix a point p ¢ [J;c;(A; x Vp), and let B; = (A4; x V) U {p}. Each
B; has at least two elements, B; ~ B; for i,j € I, and [[;c; Bi # 0, hence
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[Lic; Bi/U has two elements by (3). In particular there is [f] € [[;c; Bi/U
with [f] # [cp]. Then {i € I | f(i) # p} € U, hence if f'() is the first
coordinate of f(i) then {i € I | f'(i) € A;} € U. O

Corollary 2.7. In ZF, the following are equivalent:

(1) Lo$’s theorem.

(2) For every two families {A; | i € I}, {B; | i € I} of non-empty
sets and ultrafilter U over I, if A; ~ B; for every i € I and both
[Lic; Ais [ Lic; Bi are non-empty, then [[,c; Ai/U ~ [l;c; Bi/U.

(8) For every family {A; | i € I} of pairwise equipotent sets and ultrafil-
ter U over I, if each A; has at least two elements and [],c.; Ai # 0
then [[;c; Ai/U has two elements.

Question 2.8. In the spirit of Theorem 1.3, the following statement would
be considerable: For every M and U, if M /U is Ys-elementarily equivalent
to M, then TM/U is elementarily equivalent to M. In ZF, is this statement
equivalent to Lo$’s theorem?

3. GENERIC LOS’S THEOREM
First we recall generic ultrapower and generic ultraproduct.

Definition 3.1. For a filter F over I, let F™ be the set {X € P(I) | XNY #
() for every Y € F}. An element of F* is called an F-positive set. Let Pp
be the poset F* with the order defined by X <Y <= X \Y ¢ FT.

If G is a (V,Pp)-generic filter, then G is a V-ultrafilter extending F', that
is, the following hold:
(1) FCGand 0 ¢ G.
(2) For X e Gand Y € P(I)V,if X CY then Y € G.
(3) For X,Y € G we have X NY € G.
(4) For every X € P(I)V, either X € G orelse I\ X € G.

For a family {M; | i € I} € V of structures, we can define the equiv-
alence relation on (I], M;)V modulo G and the equivalence class [f] for
I € (ILier M;)V as expected. Hence we can construct the generic ultra-
product [],c; M;/G in V[G], and, similarly, for a structure M € V, we can
take the generic ultrapower M /G in V[G]. Under AC in V, we have the
following generic version of Lo$§’s fundamental theorem: For every formula

@(vo,...,vn) and fo,..., fu € ([Lies M)V,
HMZ/G ‘= @([f0]77[fn])

icl
= {i e I| M Ep(foi),.... fuli))} €G.

In particular, under AC in V, the generic ultrapower /M /G is elementarily
equivalent to M.

Proposition 3.2. In ZF, the following are equivalent:
(1) The Aziom of Choice AC.
(2) For every structure M, filter F' over I, and (V,Pg)-generic filter G,

the generic ultrapower ' M /G is Ya-elementarily equivalent to M.
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(3) For every structure M, filter F' over I, and (V,Pr)-generic filter G,
the generic ultrapower TM /G is elementarily equivalent to M.

(4) For every family {M; | i € I} of pairwise isomorphic structures
with same language, filter F' over I, and (V,Pg)-generic filter G,
if [Licr M # 0 then the generic ultraproduct [[;c; M;/G is Xi-
elementarily equivalent to M; for every i € I.

Proof. (1) = (3), (4) are well-known, and (3) = (2) is trivial.

(2) = (1). Our proof is based on Howard’s one ([2]). Take an indexed
family {A; | i € I} of non-empty sets, and suppose to the contrary that
this family has no choice function. Let F' be the set of all X C I such
that {A; | i € I\ X} has a choice function (X = I is possible). One can
check that F' is a filter over I. We define the structure M as the following.
Let S = I Ul;cr Ai, and let R C S? be the binary relation defined by
R(z,y) < x €l andy€ A,. Let M be the structure (S; I, R). We know
that the Ils-sentence Va(I(x) — JyR(z,y)) holds in M.

Take a (V,Pp)-generic G, and we work in V[G]. Let M* = (M*; I*, R*) be
the generic ultrapower of M by G. By (2), we have that M* |= Va(I*(z) —
JyR*(x,y)). If id is the identity map on I, we have M* |= I*([id]) by the
construction of the generic ultrapower. Hence there is f € ({M)V such that
M* = R*([id], [f])- Then X ={i € I | R(3, f(2))} ={ieI| f(i) € A} € G.
Because f € V, the family {A; | ¢ € X} has a choice function f in V. This
means that I\ X € F. Since ' C G, we have I\ X € G, but this contradicts
X edG.

(4) = (1). Take a family {4; | i € I} of non-empty sets which has no
choice function. Let F be the filter as the above, and let {M; = (M;; R;) | i €
I} the family of pairwise isomorphic structures in the proof of (3) = (1) in
Theorem 1.4. Take a (V, Pg)-generic G, and work in V[G]. If M* = (M*; R*)
is the generic ultraproduct [[,.; M;/G, we have 3z R*(x) holds in M*, hence
there is [f] € M* with R*([f]) in M*. Then f € V and {i € I | Ri(f(i))} €
G, and we can choose g € V with {i € I | g(i) € A;} € G. Then we can
derive a contradiction as the above. O

Note 3.3. In ZF, a structure M is always >j-elementarily equivalent to a
generic ultrapower { M/G. Hence Yp-elementarity of (2) in Proposition 3.2
is optimal.

We can prove that generic versions of (4)—(6) in Theorem 1.5 are equiva-
lent to AC, and we omit the proof.
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