FORCING THE FAILURE OF \mho BY FINITE APPROXIMATIONS

TERUYUKI YORIOKA

ABSTRACT. We demonstrate that the Y-Proper Forcing Axiom implies the failure of \mho . This is indirectly proved in [6], but the proof in this paper is a direct way and easier than the argument in [6].

1. Introduction

Moore formulated the axiom \mho in [8] to show that his solution of the five element basis problem for the uncountable linear orders in [7] needs his Mapping Reflection Principle in some sense. In fact, \mho implies the existence of an Aronszajn line containing no Countryman suborders ([8]). The Proper Forcing Axiom implies the Mapping Reflection Principle, and the Mapping Reflection Principle implies the failure of \mho .

Cohen forcing adds a witness of \mathcal{V} , and so a finite support iteration of ccc forcing notions of limit length forces \mathcal{V} . Thus it seems to be difficult to show that it is consistent that \mathcal{V} fails and the size of the continuum greater than \aleph_2 . Asperó and Mota introduced the forcing axiom $\mathsf{PFA}^{\mathrm{fin}}(\omega_1)$ for finitely proper forcing notions and proved that $\mathsf{PFA}^{\mathrm{fin}}(\omega_1)$ implies the negations of \mathcal{V} , and $\mathsf{PFA}^{\mathrm{fin}}(\omega_1)$ is consistent with the size of the continuum greater than \aleph_2 ([1]).

Chodounský and Zapletal introduced the properties of forcing notions called Y-cc and Y-properness, and they proved that, if there exists a supercompact cardinal, then there exists a Y-proper forcing notion which forces the Forcing Axiom for Y-proper forcing notions, call the Y-Proper Forcing Axiom ([3]). Miyamoto and the author proved that the Y-Proper Forcing Axiom implies the Mapping Reflection Principle ([6]), hence the Y-Proper Forcing Axiom implies the failure of \Im .

We demonstrate that the Y-Proper Forcing Axiom implies the failure of \mho by a direct way. This is easier than the argument in [6].

2. The Y-properness

For a cardinal κ , $H(\kappa)$ denotes the set of all sets of hereditary cardinality less than κ . $H(\kappa)$ is always considered as the structure equipped with a fixed well-order.

Shelah introduced the notion of the properness of foricing notions ([9, 10]). Let \mathbb{P} be a forcing notion, λ a regular cardinal with $\mathcal{P}(\mathbb{P}) \in H(\lambda)$, N a countable elementary submodel of $H(\lambda)$, and p a condition of the forcing notion \mathbb{P} . p is called a (N, \mathbb{P}) -generic provided that, for any dense subset D of \mathbb{P} , if $D \in N$, then $D \cap N$ is predense below p in \mathbb{P} . A forcing notion \mathbb{P} is proper if and only if, for any regular cardinal λ with $\mathcal{P}(\mathbb{P}) \in H(\lambda)$, there is a closed unbounded set of countable elementary submodels N of $H(\lambda)$ with $\mathbb{P} \in N$ such that every condition of \mathbb{P} in N has an extension which is (N, \mathbb{P}) -generic. Typical proper forcing notions are ccc forcing notions and σ -closed forcing notions. The Proper Forcing Axiom is the assertion that, for any proper forcing notion \mathbb{P} and \aleph_1 many dense subsets $\{D_{\alpha} : \alpha \in \omega_1\}$ of \mathbb{P} , there exists a filter G of \mathbb{P} which meets all the D_{α} 's. Baumgartner proved that, if there exists a supercompact cardinal, then there exists a proper forcing notion which forces the Proper Forcing Axiom ([2, §3]).

Definition 2.1 (Chodounský and Zapletal [3, §1]). For a forcing notion \mathbb{P} , RO(\mathbb{P}) is denoted by the regular open algebra of \mathbb{P} (see e.g. [4, Ch. II 3.3. Lemma], [5, Lemma III.4.8]).

- (1) Let \mathbb{P} be a forcing notion, λ a regular cardinal with $\mathcal{P}(\mathbb{P}) \in H(\lambda)$, N a countable elementary submodel of $H(\lambda)$ with $\mathbb{P} \in N$, and p a condition of \mathbb{P} . p is called (N, \mathbb{P}) -Y-generic if and only if, for any $r \leq_{\mathbb{P}} p$, there exists a filter $F \in N$ on $RO(\mathbb{P})$ such that the set $\{s \in RO(\mathbb{P}) \cap N : r \leq_{RO(\mathbb{P})} s\}$ is included in the set F as a subset.
- (2) A forcing notion \mathbb{P} satisfies Y-proper provided that, for any regular cardinal λ with $\mathcal{P}(\mathbb{P}) \in H(\lambda)$, there is a closed unbounded set of countable elementary submodels N of $H(\lambda)$ with $\mathbb{P} \in N$ such that every condition of \mathbb{P} in N has an extension which is (N, \mathbb{P}) -generic and (N, \mathbb{P}) -Y-generic.

A forcing notion \mathbb{P} is called Y-cc provided that, for any regular cardinal λ with $\mathcal{P}(\mathbb{P}) \in H(\lambda)$, and any countable elementary submodel N of $H(\lambda)$ with $\mathbb{P} \in N$, every condition of \mathbb{P} is (N,\mathbb{P}) -Y-generic. Chodounský and Zapletal proved that a Y-cc forcing notion is ccc. It has not been known yet whether a Y-proper ccc forcing notion is Y-cc ([3, Question 4.13]).

Chodounský and Zapletal proved that it is consistent relative to the the existence of a supercompact cardinal that the forcing axiom for Y-proper forcing notions is consistent, by applying Neeman's forcing iteration with two types of models as side conditions ([3, §6]). Their forcing iteration is Y-proper. Chodounský and Zapletal presented many preservation theorems of Y-proper forcing notions in [3, §2].

3. The failure of \mho

Definition 3.1. \mho (mho) is the assertion that there is a sequence $\langle f_{\alpha} : \alpha \in \omega_1 \cap \mathsf{Lim} \rangle$ such that each f_{α} is a continuous map from α (equipped with the order topology) into ω , and, for any club subset A of ω_1 , there exists $\delta \in A$ such that $\mathrm{ran}(f_{\alpha} \upharpoonright (A \cap \delta)) = \omega$.

Let $\alpha \in (\omega_1 \cap \mathsf{Lim}) \setminus \omega$ and f a continuous function from α into ω . Then for each $\xi \in \alpha \cap \mathsf{Lim}$, the value of $f(\xi)$ is eventually equal to the values $f(\zeta)$ for $\zeta < \xi$, and so the set $\{\xi \in \alpha; f(\xi+1) \neq f(\xi)\}$ is of order type $\leq \omega$. Thus there exists $B \subseteq \alpha$ such that B is of order type $\leq \omega$ and, for each $\xi \in \alpha$, the value $f(\xi)$ is decided by the cardinality of the set $B \cap \xi$.

- **Definition 3.2** (Asperó and Mota [1]). A forcing notion \mathbb{P} is called *finitely proper* if and only if, for any large enough regular cardinal λ , any finite set $\{N_i:i< m\}$ of countable elementary submodels of $H(\lambda)$ which contain \mathbb{P} as a member, and any condition p of \mathbb{P} in all N_i , there exists an extension of p which is (N_i, \mathbb{P}) -generic for every i < m.
 - PFA^{fin}(ω_1) denote the forcing axiom for the class of finitely proper forcing notions of size \aleph_1 and for families of \aleph_1 many dense sets.

Asperó and Mota proved that $\mathsf{PFA}^{\mathsf{fin}}(\omega_1)$ implies the nagation of \mathcal{O} , and, for any regular cardinal κ greater than \aleph_1 (with some additional assumptions on κ), there exists a forcing iteration, called Asperó–Mota iteration, which forces $\mathsf{PFA}^{\mathsf{fin}}(\omega_1)$ and $2^{\aleph_0} = \kappa$ ([1]).

In the rest of this section, let $\vec{f} = \langle f_{\alpha} : \alpha \in \omega_1 \cap \mathsf{Lim} \rangle$ be a sequence of continuous functions f_{α} from α into ω .

Definition 3.3. \mathbb{P} is defined by the set of finite functions p such that

• dom(p) is a finite set of countable limit ordinals, and, for each $\alpha \in \text{dom}(p)$, denote $p(\alpha) = \langle p_0(\alpha), p_1(\alpha) \rangle$ which is in $\omega \times \omega_1$,

- (working part) for each $\alpha \in \text{dom}(p)$, $p_0(\alpha) \notin \text{ran}(f_\alpha \upharpoonright \text{dom}(p))$ (which is equal to $\text{ran}(f_\alpha \upharpoonright (\text{dom}(p) \cap \alpha))$),
- (side-condition part) for any α and β in dom(p), if $\alpha < \beta$, then $\alpha < p_1(\alpha) < \beta$.

The order is defined by $q \leq_{\mathbb{P}} p$ if and only if $q \supseteq p$.

This forcing notion seems to be different from the one in [1, Proposition 5.8], but these are essentially same. By use of the side condition method, the proof of the properness may be simpler than the one in [1].

We will prove that \mathbb{P} is proper. If PFA holds, then there exists a filter G on \mathbb{P} such that $\omega_1 \cap \operatorname{Lim}$ is included in the union of the intervals $[\alpha, p_1(\alpha))$ of ordinals for all α in the set $\bigcup_{p \in G} \operatorname{dom}(p)$. Then $\bigcup_{p \in G} \operatorname{dom}(p)$ is club in ω_1 , and, by the definition of \mathbb{P} (that is, by the role of the first coordinates of conditions of \mathbb{P}), $\bigcup_{p \in G} \operatorname{dom}(p)$ witnesses that \vec{f} does not satisfy \mho .

In the rest of the paper, let λ be a regular cardinal such that $\mathcal{P}(\mathbb{P}) \in H(\lambda)$, and λ^* is a regular cardinal such that $H(\lambda) \in H(\lambda^*)$.

Proposition 3.4. Suppose that $m \in \omega$, for each $i \in m$, N_i^* is a countable elementary submodel N_i^* of $H(\lambda^*)$ with $H(\lambda) \in N_i^*$, and F is a finite subset of ω . Then there exists $k \in \omega \setminus F$ such that, for any $i \in m$ and any $k \in N_i^* \cap H(\lambda)$, there exists a countable elementary submodel N of $H(\lambda)$ in N_i^* such that $k \in N$ and $k \in N$ an

Proof. Since each N_i^* is countable, we have an enumeration $\{b_i^n:n\in\omega\}=N_i^*\cap H(\lambda)$ of $N_i^*\cap H(\lambda)$. By elementarity of N_i^* , for each $n\in\omega$, there exists a countable elementary submodel N_i^n of $H(\lambda)$ such that $\left\{b_i^j:j\leq n\right\}\in N_i^n\in N_i^*$. Then we can find $k\in\omega\setminus F$ such that, for each $i\in m$, $f_{\omega_1\cap N_i^*}(\omega_1\cap N_i^n)\neq k$ holds for infinitely many $n\in\omega$.

So it follows from the previous proposition that the following lemma implies that \mathbb{P} is finitely proper.

Lemma 3.5. Suppose that N^* is a countable elementary submodel of $H(\lambda^*)$ such that N^* contains \vec{f} and $H(\lambda)$ as members. Then a condition p of \mathbb{P} is (N^*, \mathbb{P}) -generic (then p is also $(N^* \cap H(\lambda), \mathbb{P})$ -generic), if dom(p) contains $\omega_1 \cap N^*$ as a member and p satisfies that

(*) for any $b \in N^* \cap H(\lambda)$, there exists a countable elementary submodel N of $H(\lambda)$ in N^* such that $b \in N$ and $f_{\omega_1 \cap N^*}(\omega_1 \cap N) \neq p_0(\omega_1 \cap N^*)$.

Proof. Let N^* and p be as in the assumption of the lemma, and let D be a dense subset of \mathbb{P} in N^* . We will show that $D \cap N^*$ is predense below p.

To do this, let q be an extension of p in \mathbb{P} . Since $\omega_1 \cap N^* \in \mathrm{dom}(q), \ q \cap N^* = q \upharpoonright N^*$. By extending q if necessary, we may assume that q belongs to D. The point of the proof is that, for each $\alpha \in \mathrm{dom}(q)$ which is greater than $\omega_1 \cap N^*$, $f_{\alpha}(\omega_1 \cap N^*) \neq q_0(\alpha)$ holds, because $f_{\alpha}(\omega_1 \cap N^*)$ is in $\mathrm{ran}(f_{\alpha} \upharpoonright \mathrm{dom}(q))$) and the restricted function $f_{\alpha} \upharpoonright (\omega_1 \cap N^*)$ is eventually constant (because the function f_{α} is continuous and $\omega_1 \cap N^*$ is a closure point of the domain of f_{α} , and then $f_{\alpha} \upharpoonright (\omega_1 \cap N^*)$ belongs to N^*). However $f_{\omega_1 \cap N^*}$ (whose domain is $\omega_1 \cap N^*$) may not be eventually constant. There exists $\varepsilon \in \omega_1 \cap N^*$ such that, for each $\alpha \in \mathrm{dom}(q)$ which is greater than $\omega_1 \cap N^*$, the restricted function $f_{\alpha} \upharpoonright [\varepsilon, \omega_1 \cap N^*)$ is constant. By (*), there exists a countable elementary submodel N of $H(\lambda)$ in N^* such that N contains the set $\{\vec{f}, \mathbb{P}, D, q \cap N^*, \varepsilon\}$ as a member and $f_{\omega_1 \cap N^*}(\omega_1 \cap N) \neq q_0(\omega_1 \cap N^*)$. Then $f_{\omega_1 \cap N^*} \upharpoonright (\omega_1 \cap N)$ is eventually constant (and $f_{\omega_1 \cap N^*} \upharpoonright (\omega_1 \cap N)$ belongs

to N). Let $\varepsilon' \in \omega_1 \cap N$ be such that $f_{\omega_1 \cap N^*} \upharpoonright [\varepsilon', \omega_1 \cap N)$ is constant. Then $f_{\omega_1 \cap N^*}(\varepsilon') = f_{\omega_1 \cap N^*}(\omega_1 \cap N) \neq q_0(\omega_1 \cap N^*)$. Let $\delta := \max\{\varepsilon, \varepsilon'\}$, which is in N. Since q belongs to D and D is in N, by elementarity of N, there exists $r \in D \cap N$ such that

- $r \upharpoonright \delta = q \cap N^*$ (which is equal to $q \upharpoonright N$) and $r \leq_{\mathbb{P}} q \cap N^*$,
- r and q are same size.
- for each $\nu < |q \setminus N^*|$, if α is the ν -th member of dom $(q) \setminus N^*$ and β is the ν -th member of dom $(r) \setminus \delta$, then $q_0(\alpha) = r_0(\beta)$.

We note that, $dom(r) \setminus \delta \subseteq N$, and, for each $\alpha \in dom(q) \setminus ((\omega_1 \cap N^*) + 1)$,

$$\operatorname{ran}(f_{\alpha} \upharpoonright (\operatorname{dom}(r) \setminus N)) = \{f_{\alpha}(\omega_1 \cap N)\} = \{f_{\alpha}(\omega_1 \cap N^*)\} \not\ni q_0(\alpha),$$

and

$$\operatorname{ran}(f_{\omega_1 \cap N^*} \upharpoonright (\operatorname{dom}(r) \setminus N)) = \{f_{\omega_1 \cap N^*}(\omega_1 \cap N)\} \not\ni q_0(\omega_1 \cap N^*).$$

Therefore, q and r are compatible in \mathbb{P} .

Theorem 3.6. \mathbb{P} is Y-proper.

Proof. For a condition $p \in \mathbb{P}$, a finite sequence $\vec{k} = \langle k_{\nu} : \nu < l \rangle$ of members of ω of length l, and a subset \mathcal{A} of \mathbb{P} , $E(p, \vec{k}, \mathcal{A})$ denotes the set of all countable ordinals δ such that there exists $q \in \mathcal{A}$ such that

- $q \upharpoonright (\delta + 1) = q \upharpoonright \delta = p$ (hence $\delta \not\in \text{dom}(q)$),
- $dom(q) \setminus \delta$ is of size l,
- for each $\nu < l$, if α is the ν -th member of dom $(q) \setminus \delta$, then $q_0(\alpha) = k_{\nu}$ and $f_{\alpha}(\delta) \neq k_{\nu},$

and define that a subset \mathcal{A} of \mathbb{P} is (p, \vec{k}) -large if and only if $E(p, \vec{k}, \mathcal{A})$ is stationary

Let $p \in \mathbb{P}$ and $\vec{k} = \langle k_{\nu} : \nu < l \rangle$ a finite sequence of members of ω of length l. We will show that $\{\bigvee \mathcal{A} : \mathcal{A} \subseteq \mathbb{P} \text{ is } (p, \vec{k})\text{-large}\}$ is a centered subset of RO(\mathbb{P}). Let $n \in \omega$ and \mathcal{A}_i , $i \in n$, (p, \vec{k}) -large subsets of \mathbb{P} . It suffices to find $q^i \in \mathcal{A}_i$, $i \in n$, such that $\{q^i: i \in n\}$ has a common extension in \mathbb{P} . To do this, take a sequence $\langle \lambda_i : i \in n+1 \rangle$ of regular cardinals such that $\lambda_0 = \lambda$ and, for each $i \in n$ with $i \geq 1$, $\lambda_{i+1} = (2^{\lambda_i})^+$. Denote $M_n = H(\lambda_n)$. By reverse induction on $i \in n$, we will find a countable elementary submodel M_i of $H(\lambda_i)$, $q^i \in \mathcal{A}_i \cap M_{i+1}$ and $\varepsilon_i \in \omega_1 \cap M_i$ such that

- (1) $\left\{ \vec{f}, \mathbb{P}, p, \left\{ [H(\lambda_j)]^{\aleph_0}, \mathcal{A}_j : j \in i \right\}, \left\{ \varepsilon_j : j \in n \setminus (i+1) \right\} \right\} \in M_i \in M_{i+1},$ (2) $q^i \upharpoonright ((\omega_1 \cap M_i) + 1) = p \text{ and } q^i \leq_{\mathbb{P}} p,$
- (3) $dom(q^i) \setminus M_i$ is of size l,
- (4) for each $\nu < l$, if α is the ν -th member of $dom(q^i) \setminus M_i$, then $q_0^i(\alpha) = k_{\nu}$ and $f_{\alpha}(\omega_1 \cap M_i) \neq k_{\nu}$, and
- (5) for each $\alpha \in \text{dom}(q^i) \setminus M_i$, $f_{\alpha} \upharpoonright [\varepsilon_i, \omega_1 \cap M_i)$ is constant.

Then, as seen in the proof of the properness, we can conclude that $\bigcup_{i\in n} q^i$ is a condition of \mathbb{P} , and so $\{q^i : i \in n\}$ has a common extension in \mathbb{P} . To find M_i , q^i and ε_i as above, we assume that we have $\{M_j, q^j, \varepsilon_j : j \in n \setminus (i+1)\}$. Since $[H(\lambda_i)]^{\aleph_0}$ and \mathcal{A}_i are in M_{i+1} and \mathcal{A}_i is (p, \vec{k}) -large, by elementarity of M_{i+1} , we can take a countable elementary submodel M_i of $H(\lambda_i)$ in M_{i+1} such that $\omega_1 \cap M_i \in E(p, \vec{k}, \mathcal{A}_i)$ and M_i satisfies (1) above. Then, by elementarity of M_{i+1} again, there exists $q^i \in \mathcal{A}_i \cap M_{i+1}$ which satisfies (2) – (4) above. Then we take $\varepsilon_i \in \omega_1 \cap M_i$ which satisfies (5) above, which finishes the constructions of M_i , q^i and ε_i .

To show that \mathbb{P} is Y-proper, suppose that N^* is a countable elementary submodel of $H(\lambda^*)$ such that N^* contains \vec{f} and $[H(\lambda)]^{\aleph_0}$ as members, $p \in \mathbb{P}$, $\omega_1 \cap N^* \in$

 $\operatorname{dom}(p)$, and p satisfies (*) in Lemma 3.5. By Lemma 3.5, p is (N^*, \mathbb{P}) -generic. Let us show that p is (N^*, \mathbb{P}) -Y-generic.

Let r be an extension of p in \mathbb{P} . Denote $\vec{k} = \langle r_0(\alpha) : \alpha \in \operatorname{dom}(r) \setminus N^* \rangle$ (which is a non-empty sequence of length $|r \setminus N^*|$). Define F by the filter on $\operatorname{RO}(\mathbb{P})$ that is generated by the set $\{\bigvee \mathcal{A} : \mathcal{A} \subseteq \mathbb{P} \text{ is } (r \upharpoonright N^*, \vec{k})\text{-large}\}$. Then F belongs to N^* . We will show that, for any $s \in \operatorname{RO}(\mathbb{P}) \cap N^*$, if $r \leq_{\operatorname{RO}(\mathbb{P})} s$, then $s \in F$. Let $s \in \operatorname{RO}(\mathbb{P}) \cap N^*$ be such that $r \leq_{\operatorname{RO}(\mathbb{P})} s$, and define \mathcal{A} by the set of all $q \in \mathbb{P}$ such that $q \leq_{\operatorname{RO}(\mathbb{P})} s$. Then \mathcal{A} is in N^* , and $\bigvee \mathcal{A} = s$. So it suffices to show that \mathcal{A} is $(r \upharpoonright N^*, \vec{k})$ -large, because then $s = \bigvee \mathcal{A} \in F$.

We will show that \mathcal{A} is $(r \upharpoonright N^*, \vec{k})$ -large, that is, $E(r \upharpoonright N^*, \vec{k}, \mathcal{A})$ is stationary in ω_1 . Since N^* contains $E(r \upharpoonright N^*, \vec{k}, \mathcal{A})$ as a member, it suffices to show that N^* satisfies that $E(r \upharpoonright N^*, \vec{k}, \mathcal{A})$ is stationary in ω_1 . To do this, let I be a club subset of ω_1 in N^* . Let $\varepsilon \in \omega_1 \cap N^*$ be such that, for any $\alpha \in \text{dom}(r) \setminus ((\omega_1 \cap N^*) + 1)$, the restricted function $f_{\alpha} \upharpoonright [\varepsilon, \omega_1 \cap N^*)$ is constant. By (*), there exists a countable elementary submodel N of $H(\lambda)$ in N^* such that the set $\{\vec{f}, r \upharpoonright N^*, \varepsilon, H(\lambda), \mathcal{A}, I\}$ is in N and $f_{\omega_1 \cap N^*}(\omega_1 \cap N) \neq p_0(\omega_1 \cap N^*)$. Then $\omega_1 \cap N$ belongs to I. Moreover, since

- $r \leq_{RO(\mathbb{P})} s$ (hence $r \in \mathcal{A}$),
- $r \upharpoonright ((\omega_1 \cap N) + 1) = r \upharpoonright (\omega_1 \cap N) = p \text{ and } r \leq_{\mathbb{P}} p$,
- $dom(r) \setminus N$ is of size l, and
- for each $\nu < l$, if α is the ν -th member of dom $(r) \setminus N$, then $r_0(\alpha) = k_{\nu}$ and $f_{\alpha}(\omega_1 \cap N) \neq k_{\nu}$,

 $\omega_1 \cap N$ belongs to $E(r \upharpoonright N^*, \vec{k}, \mathcal{A})$. Therefore, $I \cap E(r \upharpoonright N^*, \vec{k}, \mathcal{A})$ is not empty in N^* .

References

- [1] D. Asperó and M. A. Mota. Forcing consequences of pfa together with the continuum large. Trans. Amer. Math. Soc., 367(9):6103–6129, 2015.
- [2] J. Baumgartner. Applications of the proper forcing axiom. In *Handbook of set-theoretic topology*, pages 913–959. North-Holland, Amsterdam, 1984.
- D. Chodounský and J. Zapletal. Why Y-c.c. Ann. Pure Appl. Logic, 166(11):1123-1149, 2015.
- [4] K. Kunen. Set theory, volume 102 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam-New York, 1980. An introduction to independence proofs.
- [5] K. Kunen. Set theory, volume 34 of Studies in Logic (London). College Publications, London, 2011.
- [6] T. Miyamoto and T. Yorioka. Forcing the mapping reflection principle by finite approximations. Arch. Math. Logic, 60:737-748, 2021.
- [7] Justin Tatch Moore. A five element basis for the uncountable linear orders. Ann. of Math. (2), 163(2):669–688, 2006.
- [8] Justin Tatch Moore. Aronszajn lines and the club filter. J. Symbolic Logic, 73(3):1029–1035, 2008.
- [9] S. Shelah. Proper forcing, volume 940 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York, 1982.
- [10] S. Shelah. Proper and improper forcing. Perspectives in Mathematical Logic. Springer-Verlag, Berlin, second edition, 1998.

 $Email\ address: {\tt yorioka@shizuoka.ac.jp}$

Department of Mathematics, Shizuoka University, Ohya 836, Shizuoka, 422-8529, JAPAN.