FORCING THE FAILURE OF U BY FINITE APPROXIMATIONS
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ABSTRACT. We demonstrate that the Y-Proper Forcing Axiom implies the
failure of U. This is indirectly proved in [6], but the proof in this paper is a
direct way and easier than the argument in [6].

1. INTRODUCTION

Moore formulated the axiom U in [8] to show that his solution of the five element
basis problem for the uncountable linear orders in [7] needs his Mapping Reflection
Principle in some sense. In fact, U implies the existence of an Aronszajn line
containing no Countryman suborders ([8]). The Proper Forcing Axiom implies the
Mapping Reflection Principle, and the Mapping Reflection Principle implies the
failure of O.

Cohen forcing adds a witness of U, and so a finite support iteration of ccc forcing
notions of limit length forces U. Thus it seems to be difficult to show that it is
consistent that U fails and the size of the continuum greater than R. Asper6 and
Mota introduced the forcing axiom PFAR® (w1) for finitely proper forcing notions
and proved that PFA™ (w;) implies the negations of U, and PFA™™ (w, ) is consistent
with the size of the continuum greater than Ry ([1]).

Chodounsky and Zapletal introduced the properties of forcing notions called Y-
cc and Y-properness, and they proved that, if there exists a supercompact cardinal,
then there exists a Y-proper forcing notion which forces the Forcing Axiom for Y-
proper forcing notions, call the Y-Proper Forcing Axiom ([3]). Miyamoto and the
author proved that the Y-Proper Forcing Axiom implies the Mapping Reflection
Principle ([6]), hence the Y-Proper Forcing Axiom implies the failure of .

We demonstrate that the Y-Proper Forcing Axiom implies the failure of U by a
direct way. This is easier than the argument in [6].

2. THE Y-PROPERNESS

For a cardinal k, H(x) denotes the set of all sets of hereditary cardinality less
than k. H (k) is always considered as the structure equipped with a fixed well-order.

Shelah introduced the notion of the properness of foricng notions ([9, 10]). Let
P be a forcing notion, A a regular cardinal with P(P) € H(\), N a countable
elementary submodel of H()), and p a condition of the forcing notion P. p is
called a (N,P)-generic provided that, for any dense subset D of P, if D € N,
then D N N is predense below p in P. A forcing notion P is proper if and only
if, for any regular cardinal A with P(P) € H()), there is a closed unbounded
set of countable elementary submodels N of H(A) with P € N such that every
condition of P in N has an extension which is (N, P)-generic. Typical proper forcing
notions are ccc forcing notions and o-closed forcing notions. The Proper Forcing
Axiom is the assertion that, for any proper forcing notion P and R; many dense
subsets {Dy : @ € w1} of P, there exists a filter G of P which meets all the D,’s.
Baumgartner proved that, if there exists a supercompact cardinal, then there exists
a proper forcing notion which forces the Proper Forcing Axiom ([2, §3]).
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Definition 2.1 (Chodounsky and Zapletal 3, §1]). For a forcing notion P, RO(PP)
is denoted by the regular open algebra of P (see e.g. [4, Ch. II 3.3. Lemmal, [5,
Lemma IT1.4.8]).

(1) Let P be a forcing notion, A a regular cardinal with P(P) € H(A\), N a
countable elementary submodel of H(\) with P € N, and p a condition of
P. pis called (N, P)-Y-generic if and only if, for any r <p p, there exists a
filter F € N on RO(P) such that the set {s € RO(P) NN :r <gop) s} is
included in the set F' as a subset.

(2) A forcing notion IP satisfies Y-proper provided that, for any regular cardinal
A with P(P) € H()), there is a closed unbounded set of countable elemen-
tary submodels N of H(\) with P € N such that every condition of P in N
has an extension which is (N, P)-generic and (N, P)-Y-generic.

A forcing notion P is called Y-cc provided that, for any regular cardinal A with
P(P) € H(A), and any countable elementary submodel N of H(\) with P € N,
every condition of P is (N,P)-Y-generic. Chodounsky and Zapletal proved that
a Y-cc forcing notion is ccc. It has not been known yet whether a Y-proper ccc
forcing notion is Y-cc ([3, Question 4.13]).

Chodounsky and Zapletal proved that it is consistent relative to the the existence
of a supercompact cardinal that the forcing axiom for Y-proper forcing notions is
consistent, by applying Neeman’s forcing iteration with two types of models as side
conditions ([3, §6]). Their forcing iteration is Y-proper. Chodounsky and Zapletal
presented many preservation theorems of Y-proper forcing notions in [3, §2].

3. THE FAILURE OF O

Definition 3.1. U (mho) is the assertion that there is a sequence
(fa : @ € wy NLim) such that each f, is a continuous map from a (equipped with
the order topology) into w, and, for any club subset A of wy, there exists § € A
such that ran(f, | (ANJ)) = w.

Let @ € (wy NLim)\w and f a continuous function from « into w. Then for each
& € an Lim, the value of f(¢) is eventually equal to the values f(¢) for ¢ < &, and
so the set {€ € a; f(E+ 1) # f(§)} is of order type < w. Thus there exists B C «
such that B is of order type < w and, for each £ € a, the value f(&) is decided by
the cardinality of the set B N¢E.

Definition 3.2 (Asper6 and Mota [1]). e A forcing notion P is called finitely
proper if and only if, for any large enough regular cardinal A, any finite set
{N; : i <m} of countable elementary submodels of H(A) which contain P
as a member, and any condition p of IP in all V;, there exists an extension
of p which is (V;,P)-generic for every i < m.
o PFAfn (w1) denote the forcing axiom for the class of finitely proper forcing
notions of size N; and for families of X; many dense sets.

Asperé and Mota proved that PFAR® (w1) implies the nagation of U, and, for any
regular cardinal x greater than ¥; (with some additional assumptions on &), there
exists a forcing iteration, called Asperé-Mota iteration, which forces PFAR(wy)
and 2% = £ ([1]).

In the rest of this section, let f: (fa : @ € wy N Lim) be a sequence of continuous
functions f, from « into w.

Definition 3.3. P is defined by the set of finite functions p such that

o dom(p) is a finite set of countable limit ordinals, and, for each « € dom(p),
denote p(a) = (po(c), p1(c)) which is in w x wy,
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o (working part) for each a € dom(p), po(a) & ran(fy | dom(p)) (which is
equal to ran(f, | (dom(p) N«))),
o (side-condition part) for any « and g in dom(p), if @ < 3, then a < p1 () <
B.
The order is defined by ¢ <p p if and only if ¢ D p.

This forcing notion seems to be different from the one in [1, Proposition 5.8],
but these are essentially same. By use of the side condition method, the proof of
the properness may be simpler than the one in [1].

We will prove that PP is proper. If PFA holds, then there exists a filter G on P such
that wy N Lim is included in the union of the intervals [, p1(a)) of ordinals for all
a in the set (J,¢q dom(p). Then (J, 5 dom(p) is club in wi, and, by the definition
of P (that is, by the role of the first coordinates of conditions of P), |J ., dom(p)

witnesses that f does not satisfy O.

peEG

In the rest of the paper, let A be a regular cardinal such that P(P) € H()), and
A* is a regular cardinal such that H(X) € H(\*).

Proposition 3.4. Suppose that m € w, for each i € m, N} is a countable ele-
mentary submodel N} of H(N*) with H(\) € N}, and F is a finite subset of w.
Then there exists k € w\ F such that, for any i € m and any b € N N H(N),
there exists a countable elementary submodel N of H(X) in N} such that b € N
and fu,nn: (w1 N N) # k.

Proof. Since each N} is countable, we have an enumeration {b?" : n € w} = NN
H(X) of NfNH(\). By elementarity of N}, for each n € w, there exists a countable

elementary submodel N* of H(\) such that {bf 17 < n} € N* € N/. Then we can

find k € w\ F such that, for each i € m, fu,nns (w1 N NJ*) # k holds for infinitely
many n € w. O

So it follows from the previous proposition that the following lemma implies that
P is finitely proper.

Lemma 3.5. Suppose that N* is a countable elementary submodel of H(\*) such
that N* contains f and H(X) as members. Then a condition p of P is (N*,P)-
generic (then p is also (N* N H(X),P)-generic), if dom(p) contains wi N N* as a
member and p satisfies that
(%) for any b€ N* N H(X), there exists a countable elementary submodel N of
H(X) in N* such that b € N and fo,an«(w1 N N) # po(w N N*).

Proof. Let N* and p be as in the assumption of the lemma, and let D be a dense
subset of P in N*. We will show that D N N* is predense below p.

To do this, let ¢ be an extension of p in P. Since wy; N N* € dom(q), ¢ N N* =
q | N*. By extending ¢ if necessary, we may assume that g belongs to D. The
point of the proof is that, for each a € dom(q) which is greater than w; N N*,
falwi N N*) # go(a) holds, because fo(w; N N*) is in ran(f, | dom(q))) and the
restricted function f, [ (w1 N N*) is eventually constant (because the function f,
is continuous and wy N N* is a closure point of the domain of f,, and then f, |
(w1 N N*) belongs to N*). However f,,~ny+ (whose domain is wy N N*) may not be
eventually constant. There exists ¢ € w; N.N* such that, for each & € dom(g) which
is greater than wy NN*, the restricted function f, | [e,w; NN*) is constant. By (x),
there exists a countable elementary submodel N of H(A) in N* such that N contains

the set {ﬁP,D,qﬁN*,e} as a member and f,,An+(w1 N N) # go(w1 N N*).
Then f,,An+ | (w1 N N) is eventually constant (and f,,An+ [ (w1 N N) belongs
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to N). Let ¢ € w; NN be such that f,,An+ | [¢/,w1 N N) is constant. Then
foran=(€") = foran< (w1 N N) # qo(wi N N*). Let § := max {e,e’}, which is in N.
Since g belongs to D and D is in IV, by elementarity of IV, there exists r € DN N
such that

e 7 [ §=¢gNN* (which is equal to ¢ [ N) and r <p ¢ N*,

e 7 and g are same size,

o for each v < |¢\ N*|, if v is the v-th member of dom(q) \ N* and 5 is the

v-th member of dom(r) \ J, then go(a) = ro(5).

We note that, dom(r) \ § C N, and, for each a € dom(q) \ ((w1 N N*) + 1),
ran(fo [ (dom(r) \ N)) = {fa(w1 N N)} = {fa(w1 N N*)} Z qo(v),

and
ran(fo,an= [ (dom(r) \ N)) = {fu,nn= (w1 N N)} Z go(wr N N™).
Therefore, ¢ and r are compatible in P. U

Theorem 3.6. P is Y-proper.

Proof. For a condition p € P, a finite sequence k= (ky, : v <) of members of w of
length I, and a subset A of P, E(p, k, A) denotes the set of all countable ordinals §
such that there exists ¢ € A such that

® q[(0+1)=q][d=p (hence d ¢ dom(q)),

e dom(q) \ 4 is of size I,

e for each v <[, if « is the v-th member of dom(q) \ 4, then go(«) = k,, and

fa(8) # Ky,

and define that a subset A of P is (p, E)—large if and only if E(p, k, A) is stationary
in wi.

Let p € P and k = (ky, : v <) a finite sequence of members of w of length .
We will show that {\/ A: A C Pis (p, k)-large} is a centered subset of RO(P). Let
n € wand A;, i € n, (p,E)—large subsets of P. It suffices to find ¢* € A;, i € n,
such that {qi RS n} has a common extension in P. To do this, take a sequence
(X; 11 € n+ 1) of regular cardinals such that Ay = X and, for each i € n with ¢ > 1,
Ait1 = (2)‘i)+. Denote M,, = H()\,). By reverse induction on i € n, we will find
a countable elementary submodel M; of H(\;), ¢* € A; N M1 and ¢; € wy N M;
such that

) {7 {[HONN A jeif de i en\ G+ D} € M; € My,

(2) ¢ I ((wi N M;) +1) =pand ¢’ <pp,

(3) dom(q") \ M; is of size [,

(4) for each v < I, if « is the v-th member of dom(q’) \ M;, then ¢}(a) = k,

and fo(w1 N M;) # k,, and

(5) for each a € dom(q") \ M;, fo I [€i,w1 N M;) is constant.
Then, as seen in the proof of the properness, we can conclude that (J,.,, ¢ is a
condition of P, and so {qi NS n} has a common extension in P. To find M;,
¢' and &; as above, we assume that we have {Mj,qj,sj cjen\(G+ 1)} Since
[H(A)]™ and A; are in M;y, and A; is (p,k)-large, by elementarity of M;,,
we can take a countable elementary submodel M; of H(\;) in M;4q such that
w1 NM; € E(p,l;7 A;) and M; satisfies (1) above. Then, by elementarity of M;
again, there exists ¢" € A; N M; 11 which satisfies (2) — (4) above. Then we take
€; € wy N M; which satisfies (5) above, which finishes the constructions of M;, ¢*
and Ei-

To show that PP is Y-proper, suppose that N* is a countable elementary submodel
of H(\*) such that N* contains f and [H(A)]"° as members, p € P, w; N N* €
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dom(p), and p satisfies (*) in Lemma 3.5. By Lemma 3.5, p is (N*,P)-generic. Let
us show that p is (N*, P)-Y-generic.

Let r be an extension of p in P. Denote k = (ro(c) : a € dom(r) \ N*) (which
is a non-empty sequence of length |r\ N*|). Define F' by the filter on RO(IP) that
is generated by the set {\/ A : A C Pis (r | N*, k)-large}. Then F belongs to
N*. We will show that, for any s € RO(P) N N*, if r <gop) s, then s € F'. Let
s € RO(P) N N* be such that » <gop) s, and define A by the set of all ¢ € P such
that ¢ <go(p) s. Then A is in N*, and \/ A = 5. So it suffices to show that A is
(r | N*,k)-large, because then s = \/ A € F.

We will show that A is (r [ N*, E)—large, that is, E(r | N*, k, A) is stationary
in wy. Since N* contains E(r | N*, E, A) as a member, it suffices to show that N*
satisfies that E(r | N*, E, A) is stationary in w;. To do this, let I be a club subset
of wy in N*. Let ¢ € wy NN* be such that, for any o € dom(r)\ (w1 NN*)+1), the
restricted function f, | [g,w1 N N*) is constant. By (x), there exists a countable
elementary submodel N of H(\) in N* such that the set {f, r | N* e H(N),A, I}

isin N and f,~n+ (w1 N N) # po(wys N N*). Then w; N N belongs to I. Moreover,
since

r <ro) s (hence r € A),

rl ((wiNN)+1)=r](w NN)=pandr <pp,

dom(r) \ N is of size [, and

for each v < I, if « is the v-th member of dom(r) \ N, then ro(a) = k, and
fa(wl n N) }é k,j,

w1 NN belongs to E(r | N*,E, A). Therefore, INE(r | N*, E, A) is not empty in
N*. 7
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