MURMURATIONS OF MAASS FORMS

ANDREI SEYMOUR-HOWELL

1. INTRODUCTION

This article is a rough overview of the talk I gave at the Analytic Number Theory and Related
Topics Symposia at RIMS in 2024. The main emphasis of that talk was to introduce the notion
of murmurations and describe a new result in this area, joint with Andrew R. Booker, Min Lee,
David Lowry-Duda and Nina Zubrilina. I would like to thanks RIMS for their hospitality and the
organisers, Maki Nakasuji and Takashi Taniguchi, for the invitation and kindness I received during
my stay. I would also like to thank Masao Tsuzuki for the invitation to Japan and for the hospitality
received during my time there.

1.1. What are murmurations? Murmurations are a surprising correlation between the Dirichlet
coefficients and the root number of an L-function. This phenomenon was discovered by chance by
Yang-Hui He, Kyu-Hwan Lee, Thomas Oliver and Alexey Pozdynakov [HLOP24] in 2022, whilst
trying to understand why recent work by the first three authors on using machine learning on elliptic
curves was working so well. To show what they found, we first let p, denote the nth prime, i.e.
p1 = 2,p3 =3,... and define
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for any n > 1, where &,[N1, No| is the family of elliptic curves with rank r and conductor between
N7 and No, and

ag(p) =p+1—#E(Fp),
is the trace of Frobenius for the elliptic curve E modulo p. Essentially this sum is the average of
ag(p) for a given prime p, over this family of elliptic curves. Plotting this function f.(n), for r =0
or 1, as n increases gives the following rather surprising picture.
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FIGURE 1. Plot of f.(n) for N € [7500, 10000] with » = 0 and » = 1 . Original plot
due to [HLOP24].



For those unfamiliar with the word, murmurations in the real world are a phenomenon in which
certain birds, notably starlings, fly around in rather chaotic wave-like patterns in the sky, miracu-
lously not hitting into each other! Figure 2 gives an example of such a phenomenon to compare to
the elliptic curve plot.

FIGURE 2. Image of murmurations of birds. Alex Ramsay/Alamy Stock Photo

The plan for this article is as follows: I begin by giving some background on how this pattern
was discovered. Then I will give some observations of what is actually happening and the relation
of this phenomenon with other number theoretic objects. Following this, I will survey some known
results that have been proven, including the recent result for Maass forms, and give a rough outline
of the proof for this.

2. BACKGROUND
To begin, we define an elliptic curve E to be the cubic equation
y? =23 + Az + B,
where A, B € Z satisfying
A(E) = —16(4A% 4+ 27B?%) # 0.

We call A(E) the discriminant of E. Further, let E(Q) denote the set of rational points on E.
Then the famous Mordell-Weil theorem tells us that E(Q) is a finitely generated abelian group.

Theorem 2.1 (Mordell 1922, Weil 1929). The set E(Q) is a finitely generated abelian group.
Namely

E(Q) = E(Q)tors ® ZTE)
where E(Q)iors 18 the torsion subgroup and rg is the rank of E.

The following theorem due to Mazur allows us to completely classify the torsion subgroup

E(Q)tors~

Theorem 2.2 (Mazur 1977-78). The torsion subgroups E(Q)ios can be described as one of the
following groups:

o () for 1 <n <10,



o (12,
o (o, x Cy for 1 <mn <4,

where C,, denotes the cyclic group of order n.

To actually compute which group we have for a given elliptic curve, we use the following theorem
due to Lutz—Nagell.

Theorem 2.3 (Lutz—Nagell 1937). Let E/Q be an elliptic curve. Then if (x,y) is a point of finite
order on E, then:

e v,y €7, and

o cither y =0 ory? | Ag.

The mysterious object in the Mordell-Weil theorem is the rank rg. We expect most elliptic
curves over Q to have ranks 0 or 1 [Gol79, KS99], although the highest known rank of an elliptic
curve is 29 due to Elkies [Elk24]. Currently, it is still not known whether the maximum size of the
rank is bounded or not.

Not all is lost however. Let E(IF,) be the set of integer points of £ modulo a prime p and define
the conductor Ng of E to be the product of all primes where A(E) =0 (mod p). Further, define

ag(p) ==p+1—#E(F,),
for some prime p. Due to Hasse, we have the inequality

lag(p)] < 2/p.

Now, we define the associated (incomplete) L-function to E by

L(E,s):= [[ (@ =arp)p®+p">)"
pINE
This definition is only convergent for Re(s) > 3/2, however we can extend this to all C by analytic
continuation, due to the modularity theorem for elliptic curves over Q. This function has many
interests to number theorists in giving information about the elliptic curve. One of the main ones
is the following conjecture.

Conjecture 2.4. (Birch-Swinnerton-Dyer (BSD) conjecture) We have that
rg = ords—1L(E,s).

This remarkable conjecture is telling us that this L-function defined using the traces of Frobeinus,
can tell us the rank.

2.1. Computing the rank. With BSD, computing the rank is as hard as computing the order of
vanishing of the L-function, however this is still a conjecture, although some cases have been proven.
Unconditionally, computing the rank is still hard, although large databases of elliptic curves and
their ranks have been computed, for example on the “The L-functions and modular forms database”
(LMFDB) [LMF25].

But it is now 2025, so maybe machine learning can help us? Yang-Hui He, Kyu-Hwan Lee and
Thomas Oliver did exactly this in 2020 [HLO23]. They tested whether you can train a neural
network on a list of ag(p) values and ranks. Then given a finite list of ag(p) for a elliptic curve E,
could it predict the rank? Interestingly, it worked quite well, even for small lists of ag(p).

In a follow-up paper in 2022, He, Lee, Oliver and Alexey Pozdnyakov [HLOP24] further looked
into why the technique was so accurate? To do this they did a principal component analysis on the
data, which essentially reduces the large dimensional problem of the neural network, i.e. how long
the list of ag(p) which are needed, and embeds this into R?. This is essentially done by computing
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some weights wy, and computing the sum 3, wpap(p). In doing so they uncovered a very interesting
phenomenon appearing, murmurations!

2.2. What is going on here? The bias in the ag(p) is not too surprising. Actually, BSD tells us
that

. 1 ap(p)logp 1
lim Z =5 —TE,
X—oo log X = P 2

Mestrefl\}ggao sum
showing that the average value of the ap(p) values get more negative as the rank increases. What
is surprising though is that this murmuration correlation swaps sign, and then swaps signs again,
and again!

2.2.1. Root not rank. Originally we just considered the incomplete L-function, but if we now consider
the completed L-function (that also includes the bad prime factors), defined by

AE,s) := (2m)°T(s) H L =eNy *A(E,2 — s),

1—agp(P)p=+ xo(p)p' 2

where x is the trivial character modulo Ng and ¢ we called the root number of A(E,s). BSD tells
us that ¢ = (—1)"F.

a_p Lists for 8536 Rank 0 (blue) and 1380 Rank 2 (green) Elliptic Curves with Cenductors in [5000, 10000]

K] 20 a0 0 a0 1000

F1GUrE 3. Plot of f,(n) for N € [5000,10000] with » = 0 and » = 2 . Original plot
due to [HLOP24].

From Figure 3, we see the plots of rank 0 and 2 seem similar, albeit shifted by the negative bias
that we see from BSD. Hence, we should view this phenomenon as a correlation between the ag(p)
values and the root number of the elliptic curve!

2.2.2. Scaling of prime p is important! An observation, due to Jonathon Bober, is that the scale
of p should be chosen relative to Ng. This means that if we choose families of elliptic curves
with rather different conductors, but then choose p scaled appropriately, we should still see the
phenomenon. This is illustrated in the pictures below in Figure 4 due to Andrew Sutherland. The
range of conductors is different, but with the appropriate scaling of p relative to Ng, we still see
the same pattern.
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_p averages of 282276/200073 root number +1/-1 elliptic curves E/Q of conductor 2417 < N <= 218 for p < 2~18

FI1GURE 4. Murmuration plots for elliptic curves with different ranges of conductor,
but with the primes p scaled relative to the conductor.

2.3. Other families of objects. The observations above seem to point to us that the elliptic
curve itself is not the main object, but instead, it is the associated L-function. Hence we can
ask the natural question, does this phenomenon occur for other Dirichlet coefficients a, that are
arithmetic and the associated root number of the L-function? The answer is yes! Below are some
plots, due to Andrew Sutherland, that show the phenomenon for other various families of number
theoretic objects.

WIE)*a_p averages of 17630665/17639675 root number w(E) = +1/-1 elliptic curves E/Q in the Stein-Watkins database of conductor 225 < N <= 2°26 for p < 226

FiGURE 5. Elliptic curves from the Stein-Watkins database.

W(E)*a_p averages of 356315/361597 root number w(E) = +1/-1 genus 2 curves X/Q of conductor 219 < N <= 2°20 for p < 2°19

FIGURE 6. Genus 2 curves over Q with Sato-Tate group USp(4).

W(E)*a_p averages of 7534275/6826985 root number w(E) = +1/-1 weight 2 newforms for Gamma_OIN) of squarefre level 2~14 < N <= 2~15 for p < 2°16
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FIGURE 7. Weight 2 holomorphic newforms with squarefree level.



3. PROVEN RESULTS

The first breakthrough in proving this phenomenon came from Nina Zubrilina [Zub23], who
proved the following result for holomorphic modular forms.

Theorem 3.1. Fix k € 27Z~¢. Let X, Y and p be parameters — oo with p prime; assume Y =
(1+0(1)X'%2 and p < X179 0 < 25; <69 < 1. Lety = p/X. Then

Y NeE[X,X+Y] 2 feHrew(N) EfOf (p)v/P 144,

square-free _ Mk(y) + OE (Xfmin{%z,T}—O—(;l—H—: + pfl)
DUNEIX,X+Y] 22 feHpew (N) |

square-free

where

N 12 S . )
Mly) = G DI P ) D { 11 <1 T - 1>> v

p
il (1 - ﬁ) Kgﬂc(r)wly ~ U o(r/(2V5)) 5k:2wy}.

Here Uy_g is the Chebyshev polynomial U_o(cos(0)) = W and c(r) = leT <1 + ﬁtp).

Below is a plot of Mj(y) compared to numerical data plotting the left side of Theorem 3.1.

T T T

T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

FIGURE 8. Comparison of Zubrilina’s density function M»(y) function and numerical
data. Computation and graph due to Andrew Sutherland.

This plot looks rather different to the one shown before, but this is due to the fact that the
original plot averaged p/N in a dyadic interval. This means that it should tend to a convolution of
Zubrilina’s density function, which is indeed the case.

3.1. Archimedean aspect. Zubrilina’s result is for a fixed weight and the level tending to infinity
(non-archimedean aspect). A natural question to ask is, what happens when we fix the level and
let the weight tend to infinity? This can be seeing as varying over the archimedean part of a family
of modular forms.
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In fact, at the workshop “Murmurations in Arithmetic” at ICERM in July 2023, Peter Sarnak
asked the similar question, that is, is there an analogous murmuration phenomenon for Maass cusp
forms of level 1, where we let the Laplace eigenvalues A tend to infinity?

For the case of holomorphic modular forms, the archimedean aspect was proven by Andrew R.
Booker, Jonathon Bober, Min Lee and David Lowry-Duda [BBLLD23]. We can see this by looking
at the analytic conductor, defined by

N () = (exp¢(k/2))2: <k—1>2+0(1)7
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where 1 is the Digamma function, and letting it tend to infinity.

Theorem 3.2 ([BBLLD23]). Assume GRH for the L-functions of Dirichlet characters and L-
functions for modular forms. Fiz e € (0 ,12) d € {0,1}, and compact interval E C Rso with

|E| > 0. Let K, H € Ry with K$t < H < K'"% and set N = N(K). Then as K — oo, we have

Zp prime IngZk 25 mOd4Zf€Hk(l) f( )

NP _ W (”(E) +0 (1))
Zp prl’rge logp Zk 25 mod 4 Zfer(l) 1 N |E| B ’
76

1 (q)? —-p—1 27t
ViE) = (2 2 sﬁ(/;)ga(q)( ) Z pr fp /ECOS (ﬁ) w

t*—oo pit

and the * means terms occurring at the end points of E are halved.

Figure 9 shows the plot of this function v(F).
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FIGURE 9. Cumulative plot of (—1)%v([0,]) and numerical data for K = 3850, H =
100 and ¢ € [0, 2] from Theorem 3.2.



3.2. Maass murmurations. Since the above archimedean result is written in terms of letting the
analytic conductor tend to infinity, we can formulate Sarnak’s question in this way as well for Maass
forms. In a similar way to the holomorphic modular forms, we define the analytic conductor for
Maass cusp forms of level 1 by

1/2+a+iR 1/2+a—iR
exp (v (124 ’?2“” (25) f_; +0().

In joint work with Andrew R. Booker, Min Lee, David Lowry-Duda and Nina Zubrilina, we were
able to prove following result for Maass cusp forms, showing that we get the same result as for
holomorphic modular forms.

N(R) :=

Theorem 3.3 ([BLLD"24]). Assume GRH for L-functions of Dirichlet characters and Maass

forms. Let E C Rsq be a fixred compact interval with |E| > 0. Let R,H € Ry with Réte <
H < R'™¢ for some e >0 and let N = N(R). As R — oo, we have

> p prime logp Z|r]~—R|§H gjAi(p)

2ecE _ 1 (V(E) +0E,e(1)>-
>_p primel0gP Y1 _pi<p 1 VN \ |E]
LEE
1.0
-=== v([0,1])
—— Trace formula data
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FIGURE 10. Plot of v([0,]) scaled by tv/N and numerical data with R = 6900, H =
100 and ¢ € [0, 2] from Theorem 3.3. Note that this graph is identical to the plot for
6 = 0 from Figure 9.

3.3. Rough steps of the proof. The steps of the proof follow the ideas of [BBLLD23][Sec. 2.1]
with the main differences coming from the fact that we use the Selberg trace formula with Hecke
operators which will include class numbers with discriminants of the form ¢2 4+ 4n. This is remedied
in Step 4 below by replacing these class numbers with the special value of Dirichlet L-function and
averaging over the L-functions. The rough steps of the proof of Theorem 3.3 are as follows:

Step 1: Choose a smooth test function that approximates the interval function and whose Fourier
transform is compactly supported. Here Wy, (z) = W(x/h)/h and W is a function due to Ingham
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[Ing34]:
V_p-t,—r+m)(") + Yr—pg,rem) (1) = (LY —p—p,—Rr+H) * Wh)(T) + (L r—p,rem) * Wa) (1) + A(R).

Plugging this into the spectral side of the trace formula will give an error due to A(R). To get a
good bound on this we use GRH for Maass cusp forms.

Step 2: Plug this test function into an explicit version of the Selberg trace formula, due to
Strombergsson [Str16], and bound terms on the geometric side to get that the numerator of the
ratio we want to compute is:

(|t|+\/ﬁ)2 R3te
Z logp Z W' log T + 0 » .

p prime teZ
p/NEE D=t>4+4p
t#+(p—1)

Step 3: Approximate the term inside w by its first order approximation

cos (R\/Lﬁ);in (H\/Lﬁ)/v[7 <h\j}_)) Lo <R4+€ N R3+e) |

E=Z Z 2log py/PL(1, Y2 4 4p)

teZ pprime
4n?p/R?€E

h3 h

Step 4: Replace L(1,1244,) by an averaged version. Here we use GRH for Dirichlet L-functions to
get good bounds:

A d+e 3+e 3+e
B w2 = da R R R
Y= 4/2 éL L) / e cos (2mat) W (t/aw,) ﬁdu—i—O( 3 + h + XVE
Step 5: Apply the circle method to the integral over . The denominator is dealt with by using a
refined Weyl law for the count of Maass cusp forms.
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