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1 Introduction

This is a review of the works given in [12]. The main result is a new formulation of
the vertex operators of the elliptic quantum toroidal algebra (EQTA) Uy, 4, (gl 4,) by
combining its representations and the notions of the elliptic stable envelopes (ESE) for the
instanton moduli space M (n,r).

The EQTA Uy, 1, (8l 40,) is an elliptic quantum group associated with the toroidal
algebra of type gl [11]. The Hopf algebroid structure associated with the Drinfeld comul-
tiplication allows us to construct two types of vertex operators, the type I and the type II
dual, as intertwining operators of Uy, 1, ,(al; 4,,)-modules [11]. It turns out that they give
a realization of the affine quiver W-algebra associated with the Jordan quiver varieties [8].
In addition, the same vertex operators realize the refined topological vertices [7], which
are relevant to the calculation of the instanton partition functions of the 5d and 6d lift
of the 4d N = 2* U(M) gauge theory [13,14]. However their relations to the elliptic
stable envelopes [1] and to the vertex functions [15] of the corresponding quiver variety
were missing. These relations have been observed in the case of the elliptic quantum group
Uq,p(ﬁA[N) [9,10] and expected to be possessed in the intertwining operators w.r.t. the
standard comultiplication, which preserves the RL [L-relation.

We here propose a new formulation of the vertex operators. We realize both the type
I and the type II dual vertex operators as screened vertex operators, i.e. operator valued
integrals with the ESE’s for Er(M(n, r)) as their integration kernels. We then make several

checks on their consistency such as

e a derivation of the shuffle product formula of ESE’s [2] by considering a composition

of the vertex operators
e a construction of the K-theoretic vertex functions for M(n,r) as the highest to
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highest expectation values of the corresponding vertex operators

e exchange relations among the vertex operators, whose coefficients are given by the

elliptic instanton R-matrices defined as transition matrices of the ESE’s for Hilb"(C?)

e a construction of the L-operator L™ (u) satisfying the RL L-relation by combining the
type I and the type II dual vertex operators

e exchange relations between the L-operator and the vertex operators.

The last relations indicates that our new vertex operators are the intertwining operators

of the Uy, 1, (8l 4or)-modules w.r.t. the standard comultiplication.

2 Elliptic Quantum Toroidal Algebra U;, 1, (gl )

The elliptic quantum toriodal algebra Uy, 4, ,(gl; 4,,) Was introduced in [11]. The parameters

t1,ta, h = t1ty in this paper correspond to ¢!, ¢,¢/q in [11], respectively.

2.1 Definition

Let us consider the Heisenberg algebras generated by ¢, Ag, ¢t, Ay, h, «, P, Q satisfying

the commutation relations
[c,Ao] =1 =[c"Ay], [hal=2=[PQ, (2.1)

the others are zero. We set v = k¢ /2, ' = he/2, 3* = k' and 3 = hP*e. We call 3* the

dynamical parameter. Let ' be the field of meromorphic functions of 3 and 3*. We have
9(3,57)e" =M% (,5" 0%, g(3N)e M =eMg(h Y Ya(s,5t) €F.
Set

fom = —(1 = 47") (1 = 5)(1 = A™™),
GE(z) = (1 —tF'2)(1 — t'2)(1 — ht'2).



Definition 2.1. The elliptic quantum toroidal algebra U = Uy, 4, ,(8l; 4,.) is a topological
associative algebra over F|[[p]] generated by a,, v, (m € Z\{0},n € Z) and C,~v"/%. Let
1%(2),9%(2) be the following generating functions'.

o +_-n
—gmnz ;

ne’
pm — m 1 - -—m
YT (2) == Cexp [ — : — vy (v 2)™ | exp Z I — o (y7H2) ;
meo P m=0 - P
_ — 1 m p —-m
'L/) (z) = 1 exp | — Z - ma_m(,yl/Qz) exp Z 1 mam(f)/l/QZ)
I i

We call them the elliptic currents. The defining relations are given by

71/2, C : central,

Km — — 1 _pm
my An| = — m )y 5m n.05
[t ] (v 7"y 1—pm +1,0:
m 1—-p™
o2 ()] = =2 T (2) (£ 0)

[amsa™(2)] = 22707 (2) (m #0),

B O sy (0 20) = sy )
PG (w/2)glw/zp )t ()t (w) = —wGH(z/w)g(=/wip)a* (w)a™ (2),
G wf2)gl/zp) e (@ (W) = G (e wg(efusp) a2,
gw/z ) glufwip)g(w/zp7) (5 + 2 = 2 = D)ot () (w)at (u)
+permutations in z,w,u = 0,

9w/ ) glw/wip) gu/zp) T (S 4+ 2 = = = ) e () (w)a (W)

+permutations in z,w,u = 0,

[7(2), 27 (w)] = -

where we set p* = py~2 and

m

g(z:'5) = exp (Z o mm) € C[l2]]

m>0

+

n -

for s =p,p*. The dynamical parameters 3,3" commute with o, x

1Our 2% (2) is 2*(y/22) in [11].



It is convenient to set

*M
/ 1-

Um =7 _];m Vo (m € Zyo).

Through this paper, we treat 1, to, p, p* = py~2 as generic complex numbers with [t1|, |t2], |p|, |p*| <

1. In particular, we have

(Pt 2 D)oo (P15 25D) 00 (PRZ3 D)oo

z;p) = ;
9(zp) (pt12;P)oo (Pt2z;p)os (PAT'2;D) oo
where
(zip)eo = [J(L—2p") |2l <1
n=0

2.2 Representations of Uy, 4, (gl +,,)

Let V be a U-module. For (k,1) € C?, we say that V has level (k,1), if the central elements
v and C act as?

v E=R O E=HE VEe.

2.2.1 The level-(1, N) representation

Let h, a satisfy [h,a] = 1 and commuting with the other generators. Define for v € C*
10y = vt eNhoT. (2.2)
We assume /2.1 =C-1=¢*.1=1and ¢? -1 = ¢?1. One has

e:l:hu:tc . |O>(17N) _ ,U:I:lu:tN|O>(17N) - |O>S)17N) _ hl/2|0>£}1,N)7 C. |O>5,17N) _ hN/2|O>S)17N).

v vuEl )

Let £V = Cla—y, (m > O)]\O)Sjl’N) be a Fock module of the Heisenberg subalgebra
{om (m € Zy)}

2We changed the definition of the level of representation from the one given in [11] so that our level

k,l) is the level (k, —!) there. Note also our C' = Re/2 is o in [11].
0
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Theorem 2.2. The following gives a level (1, N) representation of U on ]-"517N)

hn/2 hn/2
+ _ hr,—1%1/2\¢ . n —-n
x(z) =€"(z7h/7) exp{ g T 7 ¥ n? }exp{ g T 7 On? } : (2.3)

n>0 n>0
hn/Q hn/Q
27 (z) = e (27 hY?) Cexp {Z T _nz"} exp {— Z T a;z_”} , (2.4)
n>0 n>0
" 1
YH(RY*2) = i~ exp {— Z N épnoz_nz"} exp {Z 1— pnanz_"} ; (2.5)
n>0 n>0
1 p"
b= (R V42) = % exp { — a_pz" pex a2 "y 2.6
U (R P ;01—17” p ;Ol_pn (2.6)

2.2.2 The level-(0,-1) representation
For u € C*, let 3" be a vector space spanned by IA), (A €P), where
P={A= A1) | N > Nij1, A € Zso, A\ =0 for sufficiently large [ }.

We denote by £(\) the length of A € P ie. Xy > 0 and Ay = 0. We also set
’)" = ZiZl Ai-

Theorem 2.3. The following action gives a level-(0,-1) representation of U on Fou,

2t (2)|A Z AL (p)d(wi/2) A+ 13),, (2.7)
Z(A)
x(2) Z Ay ()0 (trus/2) [ — 1), (2.8)
140) LX)+1
:HG tytu;/2) 9(hul/z)|>\> (2.9)
Ll O(tui/z) £ O(u/z) T '
176)) tzz/uz (N +1

(9(71_12/1%)
ez ) 11 WWW (2.10)

.’:l

(Ph; P)oo(P/t2; P) oo (p/ 1 p)oo(Pl2; P) oo

at(p) = (1-1) a (p)=(1-t")

(3 P)oo (/@3 P)oo (P5 P)os (P P) o
Lo 0 )0 )T O ) (Ot ;)
) = H (0 Vs f107) B ;) A“'(p)_jll 01/ 1) H 00ty /s)



This is an elliptic analogue of a representation given in [5,6]. In [11] it is conjectured
that this gives a geometric action of U on the equivariant elliptic cohomology of the Hilbert
schemes @, Er(Hilb"(C?)) under the identification of [\), with the fixed point class [A]
in @, Er(Hilb"(C?)).

3 Elliptic Stable Envelopes for Ep(M(n,r))

The elliptic stable envelopes for the equivariant elliptic cohomology of the instanton moduli

space Er(M(n,r)) were constructed in [4,16].

3.1 The instanton moduli space M(n,r)

Let M(n,r) be the moduli space of framed rank r torsion free sheaves S on P? with
c2(8) = n. One has a natural action of G = GL(r) x GL(2) on M(n,r). Let T be the
maximal torus of G and set A =T N GL(r). The parameters t1,t, are identified with the
generators of the character group of 7'/A. The rank 1 case is isomorphic to the Hilbert

scheme of n-points on C2.
M(n,1) = Hilb"(C?).

Let us consider the case 7 = 1, the Hilbert scheme H, = Hilb"(C?), A = C*. We

denote the coordinate on A by u such that
t, = uhl/27 ty = u~ B2,
There are a finite number of the A-fixed points of H,, labeled by partitions of n. Let
Po={ AeP||AN=n}
We regard \ € P, as a Young diagram with n boxes. For a box [J = (i,j) € A\, we deine
cg:i=1—73, hg:=14+7—-2, pg:=cog—chg
with 0 < ¢ < 1. We introduce a canonical ordering on the n boxes of A\ by
a<b & p,<pp a,be A
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and define a bijection ¢ : A — [1,n] if a € X is the ¢(a)-th box in this order. In the
following we often denote the box a by [J,4) or simply ¢(a).

Let us consider the following presentation of the equivariant K-theory of H,,.

KT<H7I) = Z[Iit, U :Ci tit7 t;:]Gn/Ry

b n?

where G,, denotes the symmetrization in x,’s, and R the ideal of Laurent polynomials
vanishing at all fixed points in H}. We often loosely use z, as z,) for a € A and vice

versa. For [0 = (i,7) € A\, we set
oy =105" e Ke(ph).
The restriction of a K-theory class f(z1,- -+, &y, t1,t2) to a fixed point labeled by A € P,
is given by
(@1, Tty te) = F(00,, - bt o).

Here 7, : A — H, denotes the canonical inclusion of a fixed point.

Let V be the rank n tautological bundle on H,,. We present V as
V — xl + cre + :En

regarding x1,--- ,x, as the Chern roots of V.

For r € Z, fixed points in M(n, ) are lebeled by a r-tuple partition A = (A1) ... A(")
with |[A| = >°I_ |]A\®| = n. We denote the Chern roots of the rank n tautological bundle
YV on M(n,r) by x = (21, ,x,) and a coordinate of A = (C*)" by u = (uq,--- ,u,). We
define a canonical ordering on the n boxes of A by extending the one for each partition

A with adding the following condition, for i < j

a<b < ae XV pe V).

3.2 Elliptic stable envelopes

The elliptic stable envelopes for Ep(#H,) was constructed in [16]. Let T%/? € Ky (H,) be a

polarization of H,, satisfying
TH, =T + W(TY?)" € Kp(H,).

7



For A € P,, let us set

Sfll(:l:lv“' 7115717“')
[T ever O(tiza/ap) [T ever O(taxp/xa) [] aer O(xa/u) [] aer O(hu/x,)
pat+1<py pat+1>py pa<0 pPa>0
[Taver O(xy/xp)0(hay/xp)
Pa<pp

. (3.1)

Let t be a A-tree, see Definition 1 in Section 4.2 of [16]. Namely, t is a rooted tree
in a Young diagram A with vertices corresponding to boxes of A, edges connecting only

adjacent boxes and the root at the box (1,1) € A. Let us set (formula (54) in [16]):

A
r Lh(e)Pt(e)
VVEll/l2 (t; Ty, 0 5T, Uy 2’) = (_1)Kt¢<x_’ Zn(tth)VT) qb(—? 2" (tth)ve)
! u 11 o) Pie)
with
0(xy)

¢ ‘/I"?y = —7
29 = 5)00)

where the product runs over the edges of the tree t and h(e) € A, t(e) € A denote the head
and tail box of the edge e. And, k¢, we, Ve € Z are certain integers computed from the tree
in a combinatorial way, we refer to Sections 4.2-4.5 in [16] for definitions of these integers.
The symbol z denotes the Kéhler parameter in Ex(H,,) [1]. In the below we identify the
dynamical parameter 3 with the Kahler parameter z. Finally, let T, be the set of A-trees
without J-shaped subgraphs, see section 4.6 in [16]. Then, we have:

Theorem 3.1. [16] The elliptic stable envelope of a fived point X € H: is given by

Stabe 71/2(A; 2) = Sym (SAE”(xl, Cee T, W) Z W (b 21, T, U5 z)) , (3.2

0ET )

where the symbol Sym stands for symmetrization over x1,--- ,T,. The chamber € is taken

as a stability condition ty/ty > 0.

The elliptic stable envelope for Er (M (n,r)) is constructed by taking the shuffle product
2] of those for the Hilbert schemes. Let A, \” be two partitions with |\'| = n’, |\’| = n” and
consider the elliptic stable envelopes Stabgi/z ¢ (X';2') and Stabzi/z ¢ (A"; 2") for Er(H,.)
and Er(H,») with the equivariant parameters uy, us, respectively. Here one takes ¢ = ¢”

as t1/ts > 0. We take the canonical ordering on the n’ 4+ n” boxes in the double partition
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(N, A") as defined in Sec.3.1. Then the following Stabg 71/2((X', A"); 2) gives the elliptic
stable envelope for Er(M(n' +n”,2)) with the chamber € given by |ui| < |uz|.

Stab¢7T1/2 (()\/, )\//); Z)

0(trwg/xy)0(tawy/xy)
:Sym{xa}aew,m H 0t [2) O (hat /) H 0(huy/zy) H9 x! Jus)

a€N beXN beN”’ agN

X Stab€/7T1/2 ()\/, Z/h_l)stab@/,:pug ()\//; Z//) . (33)

Here 2/, (a € X') and z} (b € A\”) are the Chern roots for the tautological bundle on #,,
and H,», respectively, and we set {24 }acov vy = {2 }aex U {x} }rerr. The formula (3.3)
is called the shuffle product [2]. By taking the shuffle product 7 times, one obtains the
elliptic stable envelopes Stabg 71/2(A; 3) for Ex(M(n,7)). Here A = (AW, .- A(") denotes
a r-tuple partition with [A] = Y7, [A®| = n. An explicit formula for Stabg 71/2(X;3) is
given in Proposition 3.2 in [12].

—

In the next sections, we use Stabg 71/2(A;3) defined by

Stabe r1/2(A;3) = (=)*AO(TY?)Stabe 712 (A; 3) (3.4)
where (X, ) Z Z 1 and
=1 a€EAX
Pa>prl

O(tiza/p)
1/2 14a/4Lb
o) = TT ML [T T ot/
;z;;eli a i=1 a€X

Proposition 3.2. The shuffle product formula for %¢7T1/2(A;3) 's 15 given by

Stab¢T1/2 )\I )\” ,5

O(to! /) hu’/:r
- Sy {Za}aE(X Ay tlfL' /’E hl’a/x” H H (

eX beX” =1 peX”

X S/t-fﬁ)e:/,Tl/2 (A/, 577)_7‘”_2”,/)8/}5-373@//,7’1/2 (A”; 5)) . (35)



We also use the elliptic stable envelopes for E7(M(n,r)) with the opposite polarization
Tal? = R(T'?)", the elliptic nome p* and the Kéhler parameter 3%

Stabg 112 (Ai3" ") i= Stabe ri/2(Ni3) [ a/a i e, e (3.6)
and its hatted version defined by

Stabg 1/2(X; 3771 = (=) M O(17)Stabe iz (X577, (3.7)
where £* Z Z 1 and

=1 P:S;\rl

0" (tawa /)
1/2 2 a b *
TOPP lb_[ 9* hx /$b HH9 hul/$“
/?a;fp)z\, =1 a€X

4 Vertex Operators of Uy, 4, (gl ;)

We first define the basic vertex operators which correspond to Hilb™(C?) and then construct

the ones for general M(n,r) by composing the basic ones.

4.1 OPE of the elliptic currents

Let us consider the level (1, N) representation given in Sec.2.2.1, on which p* = ph™!.

For the elliptic currents x*(u), 2™ (v), one gets the following operator product expansion

(OPE).

0" (tyv/u)0* (hu/v

o (u)zt (v) =< 2t (w)a(v) >V™ 65(;/1/02*@(2“//@)) Cx

sym O(v/1)0(tau/v) -
O(tyv/u)0(hu/v)

r (waz (v) =<z (uw)z (v) >

with
<zt (wat(v) >¥m= 7! (p*tav/u, p*tou/v,v/u, u/v; p*)oo (43)
' (p*hU/U,p*hU/U,U/tlu,u/tlv;p*)oo’ )
<z (W)r (v) >V= 1] (pty v /u, pty i u/v, ho Ju, hu/v; ) (4.4
| | B (pv/u, pujv, tov/u, tou/v; p)ss :
Here we set
M
(al, e /aM7p)OO — H(a“p)oo
i=1
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4.2 Vertex operators for Hilb"(C?)

Let us define

Py(u) == (—u) e exp {— Z %a’_m(hlmu)m} exp {Z %aﬁn(hmu)_m} , (4.5)

i(u) i= (—u)®er 9% exp {Z imoz_m(hlﬂu)m} exp {— Z éam(hlpu)_m} .(4.6)
One can show the following commutation relations.
Proposition 4.1.
Vil (0) = g ()W), (1)
Ba(wa(0) = =Gt o (0(u), (1.9
T (0)Py(u) = Pp(w)a™(v), @ (V)Tj(u) = Vi(u)z™ (v), (4.9)
3o(u) = W' Py(u)y,  y(u)s™ =N Th(u), (4.10)
[25(2),3) = [95,3] = 0, [27(2),5"] = [®y(u),5"] = 0. (4.11)

Definition 4.2. We define the type I (u) and the type II dual V*(u) vertex operators to

be the following linear maps.

D(u) : ]:(lN) N }-(0 1)®]_-(1N+1)

—’U’LL

() : FOMGFe-D o FOND

with
=D IN,&8a(u)
AEP
/Hdaza : Ha: Zq) : Pylu H <x(xg)x™ (xp) >5M Stabch/z()\ 3),
aE a€E Pa<pp
and

‘1’*(U)£ H(u)(ERIN),),  vEe FY,

(u) / Hdwa StabQTl/g (A3 h H:v Tq)  Wy(u H < xt(zg)zt(xp) > .

a€ aEA Pa<pPp
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The integration cycles C,C* are chosen appropriately depending on the situation of the
application. We call y(u) ( resp. Ui(u) ) with A\ € P, the type I ( resp. type II dual )
vertex operator for Hilb"(C?).

4.3 Vertex operators for M(n,r)

Let X', ) be two partitions with |X'| = n/, |[\’| = n”. Let us consider the following compo-

sition of the two type I vertex operators for the Hilbert schemes.
D (u1) P (u2)

/Hdm /H dry H x” : Pp(ug) H <z~ (2))x " (xp) >V S?ajagl,Tl/2(>\/;3)

acN be ) acN Pa<pPb

X H T : Dy (uz) H < (2" (x])) > Stabg Ti2(N'53).

beN" Pc<pPd
Here the chambers €', €” are the same and taken as the stability condition t1/ty > 0. We

also assume |u;1| < |ug|. In a similar way to the type A linear quiver case studied in [9],

let us arrange the order of the elements in the integrand as follows.

1. Move S/t-ai)€/7T1/2(A/;3) to the right of all operators.
2. Move : [] o\ 27 (23) : to the left of ®g(uy) by using the formula (4.8).

3. Make : [T e 27 () 2 [Tpenr @~ (@) : totally normal ordered product by the formula

: H = (2)) = H x(zy) == H < (x)r™(x]) > : H 7 (z4) ¢

aeN beN” aEN bEN" a€(N N
Here we set {z iy = {20 Yaenv Uda) boerr. We define the order of boxes in the
afac(N ") afae b Sbe

different partitions by p, < pp for a € X', b € \".

4. Divide < ™ (2)z~ (x}) > into the symmetric and the non-symmetric parts as (4.2).

5. Symmetrize the integrand over {4 }aec(nv,\7)-

One thus obtains

By ()P (ug) = / T doa = ] 2 (@a) : ®o(un)@o(u2)

CXC ge (v .a7) a€(N N7

x I <2 (wa)a(xs) >¥™ Stabe gz (N, N):3),
a,be (N )
pPa<pp
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where we set

.1 IO L\ t2$1 /:L’ ) (hul/wb)
Stabe /2 (X A")i3) = Symyeyy ( 11 6 tlm o (ha!, ) 1 ( 0 () /ur) )

a€XN ,beN’ beX”

X S/JEQDQ‘/JI&M (A/, 3h_1)s/t-§3¢u,:p1/2 ()\//; 3)) .

Then it is remarkable that S/tﬁ)@jl /2((N'; A7);3) coincides with the hatted version of the el-
liptic stable envelope for Er(M(n'4n",2)) given in (3.3). We hence regard the composition
Dy (uy)Pyr(usz) as a vertex operator for M(n' +n”, 2).

In general, one obtains the type I vertex operator for M(n,r) by composing the basic

vertex operators repeatedly.

(1d® - - - RIdRP(uy)) 0 - - - (I[dRDP(up_1)) 0 P(u,)
P FON o FOVE . g FO IR FEN

)T'u/ul U

Defining the components @ (uy, - ,u,) by

(1d® - - - @idDP (ug)) 0 - - - (IdRXP(uy—1)) 0 D(uy)
= Z Z |)\(T)>UT® e @A(l)%l@ DPa(ur, -5 uy), (4.12)

NEL>g A=(A(1) ... A(r))
[A|=n

one finds

(I)A(Ufl? , U ) = (I))\(l) (ul) (I))\(T) (ur)

/dea Hm xq) @ Pp(uy) o(u) H < x(zg)r (xp) > S/t-;bQTuz()\;j),

aEX aEX a,beX
Pa<pp

(4.13)

where S/tzﬁ)QTl/z()\; 3) is the hatted version of the elliptic stable envelope for Ep(M(n, 7))
satisfying the shuffle product formula (3.5). We hence regard ®(uq,-- - ,u,) as the type I
vertex operator for M(n,r).

We also have a similar construction for the type II dual vertex operators.

13



5 The K-Theoretic Vertex functions for M(n,r)

A vertex function for a quiver variety X is a generating function of counting quasi maps
from P! to X [15]. We show that the vacuum expectation value of the vertex operator
constructed in the last section gives the K-theoretic vertex function for X = M(n,r).
Let A, u be two partitions with |A| = |u| = n. There is a bijection ¢ from boxes in A to
those in p defined by ¢(a) = b € p for a € X if 1(a) = ¢(b). Here ¢ is defined in Sec.3.1. For
abox a = (i,7) € p, we set o = t;97 V1, as before. For the Chern root z, (a € A)

we take the Jackson integral

.Sog(a) i ’ i ’
/ dyraf(xa) = (1= p)@lin D J (e’

J0 deN

in the vertex operators for Hilb™(C?). Let |O>£17N) be the vacuum state (2.2) in FEN and
(LN)(0] be the dual state satisfying

/10y = 1.

One finds that the following normalized vacuum expectation value gives the K-theoretic

vertex function for Hilb™(C?).

- L qn-
V(R 5) = 77 R 012a w0y

n
Y ¥ty ] (Pt /5 P (PPl /ey Petaa (020) | Ly Paa—a
denr aex (p‘ng(a)/wp)da abeA (ptl_lSDg(a)/SOg(b);p)da—db(hSO?(a)/SO?(b);p)da—db

PaFpp

Here we take N, as the the specialization of the integrand of _v/u(Ol(I)A(h’lu)]O)f}l’N) to
To = @ (@) (a € \). We also use the following quasi-periodicity of the ESE.

S/tai)q:’Tl/Z(A;Z) :5—Za€)\da X %¢7T1/2(A;3)|

— oM d,
1a7¢§(a)P a
(aeX)

W
where

S/tfﬁ%mﬂ()\;é)‘u = STEQ%,TW()\;Z))

=) "
(a€X)

The special case p = A, hence ¢ = id, of this expression coincides with the formula obtained

geometrically in [17].

14



In the same way, the vertex function for M(n,r) is obtained from the vertex operator
(4.13). One obtains the following result.
1 .
VR 15) = i D (010 (/B e [1)|0)

1
Z H PNy aew)daHH h% /ul,p)
deNn i=1 i=1 a€X p%(a)/u“
(PeLiay/ e)s P)da—dy (208 10y [ PLiby P)da—di
e (P [y P da—a, (REE 0y [ PEy P da—a,

PaFPp

Here d = (d,), a € A= (AW ... X)), This agrees with the formula in [4].

6 Exchange Relations of the Vertex Operators

Let (P, = {a = (/") € Px P | |a] = [+ |a"| = n }. For a = (/,a"),
let @ = (o’,a’). We define the elliptic dynamical instanton R-matrix Rpi/2(ug,us;3) €
Endp(Fu; (0.~ 1)®.7-"152 1)) as the following transition matrix of the elliptic stable envelopes.
For a, 3,7 € (P?),,

Rpva(un, u)|8), 818", = S Bpa(un, usia)fla),, Fla",,,  (6.1)
ae(P2)71
RT1/2 (Ul, U2, 3)'2 = /1/(’(1,1 /“’2)RT1/2 (’11,1, U2, 3)5, (62)
Stabg 1/2(@;3)], = Y Staberi2(8:3)] Rpvz(un, 12 3)8. (6.3)
BE(P?)n

Here p(u) is a scalar function defined by
(/) g (ur) o (uz) = Po(uz) Pg(ur). (6.4)

It is explicitly calculated by using (4.5) as

U(hus; ty, to, p)

T (pu;ty, ta,p)’

where I'(2;t1, t2, p) denotes the triple Gamma function defined by

p(u) =

L(z;t1,ta,p) = (231, L2, P) o (titap/ 25 th, t2, P) oos

o0

(Z;t17t27p)oo == H (1 — Ztgnltghpmg)

my,mz,m3=0
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By definition, Rpi/2(u1, ug;3) preserves the representation level w.r.t. C' = he/? :
[Repuja(u, 13 3), ¢ + ¢ = 0. (6.5)
In addition, we assume the property
Repaga (ur, g 514 = R, s 3)- (6.6)

We use this in Proposition 6.1, 6.3 and as a consistency condition in a derivation of the
dynamical Yang-Baxter equation (6.12). See [12] for detail. Note also that S/taﬁoQTl/z(a; 3)
is depend on wuq,us only through the chamber € : u; < wuy essentially. Hence for any
ae C*

Rps(aur, aug;3) = Ry (ur, uz; ). (6.7)
Proposition 6.1. The type I vertex operators satisfy the following exchange relation.

Dy () Py (ur) = Z R 2 (ua, 23 3)3 v (ua) o (ua),
A=(N N)E(P2),

where w = (W', w") € (P?),.

Similarly, let us define 127, > (u1, u;3™~ 1) € Endg(Fo V&FL™Y) as the following tran-

Topp

sition matrix of the elliptic stable envelopes StabﬁTolépz(o;;,*’l). For «, 3,7 € (P?),,

R;I/Z (U17u2;3*_1)ﬁ = *(UI/UQ)R;l/z (U17U2;5*_1)§7 (68)
Stab@Tj,{,?( Z Stab@:n},{,? B3 )|,y R;C}Z{Ig (U17U2§5*_1)g, (6.9)
BE(P?)n

where p*(u) is a scalar function satisfying
Wy (un) Wylug) = p* (ur /ug) Uy (uz) Wy (ua). (6.10)

Explicitly it is given by

['(p*hu; t1, Lo, p*)

s <U) B F(u;t17t27p*)

Proposition 6.2.
RT1/2(U17u2;3) :tRT;Z{I?(ul,Ug;jil). (611)
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Proposition 6.3.

o (u) T (un) = Y U (u) U () Ry o (1, 123 37)5,
A:(X,A”)e(PQ)n

where w = (W', w") € (P?),.

Proposition 6.1 and the associativity for the composition of three type I vertex operators

yield the following dynamical Yang-Baxter equation under the assumption (6.6).

c (1)
R(Tlf/)z (1, ug; 37 (3>)R(Tlf’/)z (U17U3;3)R§?13/)2 (ug, uz; 30 1 )

@)
= Rff’/)z (U27U3;3)R£plf/)z (U17U3;3h ’ )R(Tlf/)a (Uh Uz;é)- (6~12>

Similarly, Proposition 6.3 and the associativity for the composition of the type II dual
vertex operators yield the same dynamical Yang-Baxter equation for R, ,(u1,ug;3").

Finally, the type I and the type II dual vertex operators exchange by a scalar function.

Proposition 6.4. In the level (1, N) representation, one has

Or(w) V() = x(w/0) U (0)Px(u) YA 1€ P,
1

- TP usty, ty).
D ) L/t t)

x(u) =

Here T'(z;11,t2) denotes the elliptic Gamma function given by

(tita/ 2311, t2) 00 "
[(z;ty,t) = , 2y, = 1 — 275,
Gt ) = (2381, t2)oc mﬂzo( ")

7 L-operator of Uy, 4, ,(gl; ;o)

Combining the type I and the type II dual vertex operators, we construct the L-operator
LT satisfying the RLL-relation. We then derive the exchange relations between LT and the
vertex operators, which can be regarded as the intertwining relations w.r.t. the standard

comultiplication A.
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7.1 L-operator on Fi

Let 0% : £@n — @& and consider the following composition of the type I and type II
vertex operators.

<1> h/24)®id 1dV* (u
F (0,—1) ®F}$/]2V f;}/év) ®f ( _>)® f}gl/z ‘F(l’uj\gﬂ f1507— ) ® ( ) ‘/—_-}g?/z 1) f(l N)

Hence we have the operator
LY (u) = g(idgVU* (u)) o (®(hY?u)®id)o” - .7-—750’_1)@5.7: }/ZQV) — }_F?/Q 1)®]-—(1 N)
for N € Z, v € C*. Here we set g = (h;11,12)00. Define the components of L™ (u) by

LHw)- (1), R = D |u)pe, Lk (W,

for |p), &€ € Fo 1)®]-"é11/j2v) One finds

Ly, (u) = 905 (w), (R ?u). (7.1)

pv

Now let us consider the following elliptic dynamical R-matrices.
RE o (u,053)8 = pF (u/v) Repaje (u,033)85, (7.2)
where Rpi/2 is given in (6.3) and R}Y, = RY, ,[pesp.

Proposition 7.1. The L™ operator satisfies the following relation.

",

;AV + + + v
g RT1/2 U, v;3) " L Vy,, g LW v) L )RT1/2(“ V33 )“ -

7.2 Intertwining relations

Proposition 7.2. The type I and the type II vertex operators satisfy the following relations.

, (%) Ly ( ZRTU? V33, Y Ly (w) @ v (h720), (7.3)
W'
Lot (u) W (v) = Z\I/;,(v)ﬁ' (u) RS, (u, 1);3*)5/,,”,". (7.4)
W'

Assuming the existence of the universal L-operator £*(u) € Endp(Fe. -1 )é U, which
coincides with R, ,(u,v;3*) for U = F ™ and with Lt(u) for U = FEYone can
define a comultiplication A as a matrix tensor product of £ (u). Then the relations in

Proposition 7.2 turn out to be the intertwining relations w.r.t. A.
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