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1 Introduction

In the study of the representation theory of a finite-dimensional algebra R over a
field, it is meaningful to decompose the identity element of R into a sum of pairwise
orthogonal primitive idempotents. Indeed, if such a decomposition can be given ex-
plicitly, a direct sum decomposition of the R-module R into projective indecomposable
modules is obtained, and furthermore, all projective indecomposable R-modules can
be obtained.

Now, let k£ be an algebraically closed field of characteristic p > 0 and G a simply
connected and simple algebraic group defined and split over F,. For r € Z-, let G,
be the r-th Frobenius kernel of G. The study of the representation theory of the hy-
peralgebra U, = Dist(G,) is indispensable for studying the representation theory of G.
Since U, is a finite-dimensional k-algebra, if one can obtain the above decomposition of
its identity element explicitly, then the projective indecomposable U,-modules can be
constructed. However, up to the present, almost nothing is known about the decom-
position in U,.. Only in the simplest case, where G = SL(2, k) and p is an odd prime,
has such a decomposition been given for U;, as shown by Seligman [3].

The author has recently succeeded in generalizing Seligman’s result to arbitrary p
and r. More specifically, the author has succeeded in constructing several elements of
U, for G = SL(2, k) (these elements are denoted by B'¢)(a, 5)), which include pairwise
orthogonal primitive idempotents of U, whose sum is the identity element. Further-
more, it has been found that these elements possess various interesting properties and
have several applications. In this article, we review the main results from the author’s
recent series of studies obtained using these elements. For details, see [5], [6], [7], and

8].
2 Preliminaries

=) =) =)

be the standard basis in the Lie algebra gc = s[(2, C). Let Uc be the universal envelop-
ing algebra of gc. Set X™ = X"/n!, Y =Yy /nl and (") = [T"_ (H+c—j+1)/n!
in U for n € Zs and ¢ € Z. Let Uz be the subring of Uc generated by all X (™ and
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Y (™) with m > 0. Let G = SL(2, k) be the special linear group of degree 2 over k.
Let U = Uy ®7 k(= Dist(G)) be the hyperalgebra of G. We use the same symbols for
images in U of the elements of Uy (for example, X (™ Y (™) (H+C) and so on). Then
we have U = (X™ Y | m > 0), ... Moreover, we define subalgebras U+, U™, U°,
and A as

A= <u°Y x|

For a fixed positive integer r, set

>k: alg.*

U= (XM Y 1 0<m<p" — 1),

UT=U"NU= (X" [0<m <P — e
U =U NU =" 0<m<p — ).,

H
u,E’:uOmuT:<< )‘Oﬁnﬁpr—1> ,
n k-alg.

A =AU, = U, Y™ XM 10 <m < p' — 1)
Then the multiplication maps
U U@ U U, U U U — U,

are k-linear isomorphisms.
The standard k-bases and dimensions of the above algebras are summarized in the
following table.

Algebra R A k-basis of R dimy R
U {Y ) (M) X M2) |y mg, n > 0} 00
ut {X™) | 'm >0} 00
Uu- {Y™ | m >0} 00
U° {(*Y | n>0} 00
A {Y () XM | m,n >0} 00
U, {ym)(M X m) | 0 <my,mg,n<p —1}| p*
us {XtW]0o<m<p -1} P
Uu- {ym |o<m<p —1} P
uy {G)lo<n<p -1} I
A, Y (M) XM 0 <m,n<p —1} p*r
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When performing calculations in Uy or U, the following well-known formulas are
often used.

Proposition 2.1. Let ¢ € Z and m,n € Z>y. In Uz, the following hold.

min(m,n) .
Xy () — Z v (n—i) (H —m—n + 22) i),

- 2
1=0

m m

H+c v _ym H+c—2n q
m m ’

) x(n) <”” T ”) Xmtn)  ymyy) <m T ”) ymtn).
n n

In U, the following formula, known as Lucas’ theorem, also plays an important role.

Proposition 2.2. Let m,n € Zso. Let m = Y mip' and n = Y, np' be their
p-adic expansions. Then we have

()11 (5)

Let Fr : U — U be a k-algebra endomorphism defined by

X®/P) ifp|n Yy ®/®) i p | n
(n) p ) (n) p )
X { 0 ifptn e 0 ifptn

(cten (1) -+ ) Pl

There is an k-linear map Fr' : i — U defined by

y (m1) H X (m2) |y y(mip) H X (map)
n np

Clearly we have Fr o Fr' = idy,. Ft' is not an k-algebra homomorphism, but Fr'|y,
Fr'|4-, and Fr'|0 are (see [1, Proposition 1.1 and Corollaire 1.2]).



3 Primitive idempotents in I/’

To construct the elements B®)(a, j) of U, that we are seeking, primitive idempo-
tents in U are required. For a € Z, set
H—a-1
ul) = ( ) ceu’.
pr—1
Ifr=1,set u, = ,ugl).
The following facts are easy to check (for details, see [2, 4.7]).

Proposition 3.1. For a € 7Z, the following hold.

i) (¢ )/Lff) (¢ )MEP for anyn € {0,1,...,p" —1}.
(ii) For b € Z, we have
p =4\ = 0 =b (mod pr).

(iii) The elements [L( " with b € {O 1,...,p" — 1} are pairwise orthogonal primitive
idempotents in UY satisfying Eb 0 ,ubr) =1.

4 The elements B (a,j) in U,

Here, following Seligman [3], we construct the elements B)(a, 5) in U;. These are
the specializations at r = 1 of the elements B*)(a,j) in U, constructed in the next

section.

Suppose for a moment that p is odd. Set S = {0,1,...,(p—1)/2} (C Z) and let S
be the image of S under the natural map Z — F,. For ¢ € Fy = {0,1} and j € S, we

define polynomials wj(-a)(a:) € F,[z] as

Py =v'@) = [[ (=-)7,

i€S\{0}
vO@) =22 (z+5%) J[ (2-3)° (seS\{0}),
i€S\{0,s}
V@) =a@ -5 J[ (2-3)° (seS\{o}).
i€S\{0,s}

Set Pz =7 x S and
1\ 2
B®)(a,j) = @Z’( <#GYX+<%>)',U(1€AI
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for e € Fy and (a, j) € Pxz.
Suppose that p = 2. Then we consider the set

P, — { <2¢, %) (14200, (1+2i,1)

iEZ}CZxQ

and define B®)(a, j) € A, as

1 1
B (QZ} 5) = po, BWY (2i7 5) = oY X,
B9(1+42i,0) = BY(1+42i,0) = Y X,

BO(1+2i,1) = BW(1 4+ 2i,1) = i Y X + 1y

for any ¢ € Z.
Let p be an arbitrary prime number again. For ¢ € Fy and (a1, j1), (a2, 72) € Pz,
we have
B9 (a1, j1) = B9 (ay, j;) <= a1 = ay (mod p) and j; = j.

Set P ={(a,j) € Pz|0<a<p—1}. So we have

7)_{{071’"-7p—1}X8 ifp;éQ,
a {(07 1/2)7(170)7(171)} ifp:Q .

The following proposition is a result by Seligman and served as a motivation for
our present study.

Proposition 4.1 ([3, Theorem 1]). If p # 2, the elements B (a, j) with (a,j) € P
are pairwise orthogonal primitive idempotents in Uy satisfying -, »ep BO(a,j) = 1.

5 The elements B®)(a,j) in U,

In this section, we finally construct the elements B®)(a, 5) of U, that we are seeking.
However, some further preparation is necessary before doing so.

For an integer n € Z, we denote by n mod p a unique integer n with n = n (mod p)
and 0 <7 < p— 1. We classify pairs (a, j) € Pz under the following four conditions:

(A)@isevenand (p—a+1)/2<;j<(p—1)/2,
(B)aisevenand 0 < j < (p—a—1)/2,
(C)aisoddand 0 < j < (a—1)/2,
(D)aisoddand (a+1)/2<j<(p—1)/2,

where @ = a mod p.



Definition 5.1. Let ¢ € Fy and (a,j) € Pz, and set a = a mod p. Then define
nonnegative integers n®)(a, j) and 1) (a, j) every condition of (a,j) from (A) to (D)
as follows:

(a.g) || n9a.j) nM(a, j) 7 (a, ) n(a, j)
(A) p—g—1+j 3p—26—1_j —p+2a—1+j p+g—1_j
B) p—;i—l_j p—?;—l_{_j p—l-g—l_j p—i—f;—l_{_j
© 2p—2a—1_j 2p—26—1+j 651_j a;1+j
D) ]_a-gl 2p—2a—1_j 6;1+j 2p+2a—1_

Apart from (A)-(D), we also consider the following condition for (a, j) € Py:
(E)j=0ifp#2ora=1 (mod 2)if p=2.
Remark. For (a,j) € Pz and ¢ € Fy, we easily see the following.
(a) 79(a, j) = n(=a.j).
() 0 <n(a,j) <nM(a,j) <p—1and
n9(a, ) = nY(a,j) < (a,j) satisfies (E).

() n®(a, j) + 7 (a, j) = n(a, j) + 7 (a,j) = p— 1.

Lemma 5.2. Let (a,j) € Py and ¢ € Fy. Then the element B®(a,j) € Uy can be
written as

p—1
B(E)(aaj) = Ha Z C,(qi) (a>])Yme
m=n(*)(a.j)
p—1
=pa Y, &)@, HXTY™
m:ﬁ(g)(a,j)

for some 5 (a,7), 85 (a, 5) € F, with cff()e)(a oa.j) #0 and E;f()s)( (a,j) # 0.

a.j)



Set @ = a mod p. If (a,j) € Py satisfies (A) or (C), then define an integer s(a, j)
as

—at1 ~
L 2 if p # 2 and @ is even,
s(a,j) =q 5+ ifp#2andaisodd,
1 ifp=2

For e € Fy and (a, j) € Py, we write

p—1
B9 (a,7) = jta Z (a, j)YymX™

m:n(g) (avj)

following the previous lemma.
Then we define Z® (z; (a, 7)) for z € U as

p—1
7() (z; (W])) = lUq Z 01(2) (af7j)Yme_s(a’j)FI'/(Z)XS(a’j)

m=n()(a,)
if (a, j) satisfies (A) or (C), and

29 (2 (a,5)) = B'(2) B9 (a,j) (= B(a.j)F'(2))
if (a, ) satisfies (B) or (D).

Consider ((a;,7;))—y
write it as

((ao, jo)s - - - (a1, jr—1)) € Pj. For convenience we shall

((CL(), s 7a7”—1)7 (j07 s 7j7”—1))
or (a,j) with a = (ag,...,a,-1) and 3 = (Jo, ..., Jr-1)-
We are now finally ready to define the clements B®)(a, j). For e = (gg,...,5,_1) €
Fy, (a,5) = ((a;,ji))izy € Py and 2z € U, we define an element Z(©) (2;(a,j)) € U
inductively as

. Z(eo) (Z. ((L 7 )) lf T = ].
© (.. _ ; /07J0 )
A (2, ((17.7)) { 7(<0) (Z(c-:) (2‘; (a,7j,)) : (CL(J,]'O)) ifr>2 "7

where e’ = (¢1,...,&,1) and (a’,j') = ((as, 5:))/—1. Thenset B (a,j) = Z©) (1;(a,j)) €
Ar-

Set 0 = (0,...,0), 1 =(1,...,1) € F5. The following theorem is a generalization
of Proposition 4.1.

Theorem 5.3 ([5, Proposition 5.5 (iii)]). The elements B (a, j) with (a,j) € P" are
pairwise orthogonal primitive idempotents inU, and A, satisfying 3, i cpr B©(a,j) =
1. In particular, U.B® (a, j) and A,B®(a,j) are projective indecomposable modules
for U, and A, respectively.



For (a,j) € Pz, i € Z, and n € {0,1,...,p — 1}, define ;(a, ), Yi(a, ), Bula,7),
and f,(a,7) in F, as follows:

vila,§) = j% — <a;1>2—i(i+a+1) <:j2— (a;1+i>2>,

72'(&,]‘) = 71(—@,]),

6n(a7j> = nyi(ahj)?

Bn(CL?j) = 6n(_a7j) <: ]i[ﬁfy/z(CL?])) .

Here if p = 2, v;(a, j) is defined by regarding the right-hand side (which is an integer
in this situation) as the image under the natural map Z — Fy. Clearly we have
Bo(a,j) = Pola,j) = 1 by definition. For i € Z and s € Z>, we have

A/H—S(avj) = fyi(a + 287j)’

Yirs(a, j) = i(a — 2s,7)
by definition. Moreover, if 0 <7 < p — 1, we have

vi(a,j) =0 < i € {na,j).n"(a,j)},
i(a,j) =0 <= i€ {719(a,5),7"(a, )}

Let us state some properties of the elements B®)(a, j).

r—1

Proposition 5.4. Let (a,j) = ((a;,Ji));—y € Py and € = (gg,...,5,-1) € Fy. The
following hold.

(1> (ZI)B(E)(G/,]) — (z;ﬂ:_ipibi)B(e)(aaj) for 0<n<p —1, where

A mod p —p if (a4, J;) satisfies (A) or (C)
‘| a; mod p if (a;, j;) satisfies (B) or (D)

(ii) For 0 <i<r—1, we have

s—1 .
YO X0 B (a,5) = Bu(as, ) B (. 5) + 472 3 V8T pletecsi(q, ),
; Yi(ai, ji)

t 3 .
i i . = . . . i, Ji cte; .
Xty BE) (g ) = By(ai, ;) B (a, §) + 457 Z MB( teirt) (g, 5)

—1
I ;‘71(@2'7]‘2')

=0



ife;=0,0<s<nO0a;j), and 0 <t <7 (ay, ji),

s—1
vOrxerp@a ) =4 | JI  wlawd) | B, g),
1=0, 1#n©) (a;,5;)
X@ry @) pE)(a, 5) = 457 II  Aah) | BE+)(a, 5)

1=0, 17 (a;,55)

if e =0, na;, j;) < s <p—1, and n(a;,j;) <t <p—1, and
Y(pi)SX(pi)SB(E) (avj) = ﬁs(al»]Z)B(s) (a’7j)7

Xty 0B a, §) = Bi(ai, ji) B (a, 5)
ife;=1and 0 <s,t<p-—1.

(iii) We have

B®)(a,j)B(a,j) = B (a,j)B'(a,j) = B (a,j).

iv) For € = (gy,...,&,—1) € FY, we have
2

B®)(a.j) = B®(a,j) < &; = & whenever (a;, j;) does not satisfy (E).

=0

(v) For <a73) = ((@‘Ji))r_l € P, we have

B®)(a,j) = B® (6,3) <= a; = a; (mod p) and j; = i for each i.

6 Some applications

In this section, we give some results obtained through the study of the elements
B®)(a,j). To begin with, as a preparation, we introduce some notation.

Definition 6.1. Let (a,j) = ((a;,5:))i—y € Pj.

(1) Fore = (go,...,6r-1), € = (€0,...,6,_1) € F}, define e < € if e; < &; for each i,
regarding €; and g; as the corresponding integers (i.e. 0 or 1 in Z). This gives a partial
order in 5.



(2) Two subsets X,(a,j) and Y, (a,3) of Fy are defined as
X.(a,3) ={(c0,...,60-1) € Fy | £; = 0 whenever (a;, j;) satisfies (E)},

Vi(a,j) ={(c0,...,6r-1) € F5 | & = 1 whenever (a;, j;) satisfies (E)}.
(Each of X,(a, j) and Y,(a, j) is used to remove duplicates from the elements B (a, j)
with e € FY.)

(3) Fore € Y,(a.), define a subsct ©, ((a,5).€) of Fy X Z" as

e<0¢e)l(a,j) and }

&rlla.4).€) = {(9,15(9)) _ﬁ(eﬁl)(az‘v]‘z‘) < ti(0:) < n(0i+l)<ai7ji) for each i

where @ = (90, e )er—l) € Fg, t(0) = (to(eo), e ,tr_l(er_l)) e7Z".
(4) Fori € Zso and t € Z, define an element u™) in U as
(")t '
S0 X o if t >0,
(Y(p >) ift <0

Moreover, for e = (go,...,6,_1) € Fy and t = (to,...,t,_1) € Z", define an element
B© ((a,5);t) in U, as
BY ((a,j);t) = u®ult) ...yt BE (g, ).

(5) Fore € Y,(a,j), define a subset B, ((a,j).€) of U, as

~

B, ((a.5).¢) = { B ((a.5):4(8)) | (6.£(6)) € O, ((a.5).€) } .

The following proposition says that the order of the elements e in each of X,(a, 5)
and Y, (a, j) defined in Definition 6.1 (1) corresponds to the inclusion relation among
the U,-modules U, B®)(a, j).

Proposition 6.2 ([7, Remark (g) of Definition 4.1]). For e, p € V.(a,J), we have

U.B®(a,j) CU.BP (a,j) < e > p,
U,B%(a.j) =B (a,j) < e = p.

Moreover, these equivalences also hold for €, p € X, (a, ).

Let {L(X) | A € Z>o} be the set of isomorphism classes of simple &/-modules. Then
{L(X) | 0 <X <p"—1} is the set of isomorphism classes of simple U,-modules.
The following theorem is about the structure of the U,-module U, B (a, j).
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Theorem 6.3 ([7, Theorems 5.1 and 5.3 and Corollary 5.6]). Let (a, j) = ((ai, ji))i—, €
Py.

(i) Fore € Yy(a, ), the set B, ((a, ), €) forms a k-basis of the U,-module U, B© (a, j).
(ii) U, BV (a, 5) is a simple U,-module which is isomorphic to L (Z;:& p'K;), where

[ 25—1 if (a;, Ji) satisfies (A) or (D),
i = p—25;— 1 if (a;,7;) satisfies (B) or (C)

(iii) Fore € %, the U,-module U, B'®)(a, j) has head and socle isomorphic to the simple
U,-module U,BY(a, 7).

If p is odd, set

. H + 2p'v H+2p'v —1
h(v,i) = ( 2piv ) - ( 2piv ) € uz‘o+1

forve{1,2,...,(p—1)/2} and i € Z,.

The following theorem is a generalization of Wong [4, Main theorem].

Theorem 6.4 ([8, Theorem 4.1]). (i) Suppose that p is odd. Let v, be integers with
1<y <(p—-1)/2 forl€{0,...,r—1}. Then the set

{h(ui,z)XW)p—W, YErvipy, i) | 0<i<r— 1}
generates the Jacobson radical radld, as a two-sided ideal of U,..

(ii) Suppose that p = 2. Then the set
{piOX XYy @y m G 0 <i<r—1,0<m <2 -1}
generates the Jacobson radical radld, as a two-sided ideal of U,.
For e = (gq,...,6,_1) € F, set W(e) = #{i | ¢, = 1}. For (a,j) = ((a,»,j,»));:_& €
Py, set w = #{i | (a;, j;) does not satisty (E)}.

A, B9 (a, 7) is a commutative k-algebra. Actually, the radical series of the algebra
can be written in terms of the elements B)(a, j) with € € X,(a, j).
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Theorem 6.5 ([6, Proposition 3.10]). For a positive integer i, we have

(rad(A, - BO(a, 7))’ = Y. A-B9a.j)

0cX, (a.j), W(O)=i

- > k-B9(a,j).

e, (a.j), W(O)>i

In particular, (rad(.Ar . B(O)(a,j)))i =0 if and only if i > w.
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