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Abstract
The large deviation (LD) efficiency of estimators was discussed and the
maximum likelihood estimator (MLE) was shown to be second order LD
efficient for an exponential family of distributions. In this article, for the
Cauchy distribution with a location parameter, the MLE is shown to be first
order LD efficient, which implies that it is asymptotically Bahadur efficient.

However, the MLE is shown to be not second order LD efficient.
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1 Introduction

From the viewpoint of large deviation, the asymptotic Bahadur efficiency
of estimators is well known, and the MLE is shown to be asymptotically
Bahadur efficient under suitable regularity conditions (see Bahadur 1967,
1971, Fu 1973). Further, the Bahadur type second order asymptotic efficiency
is considered from the Fisher-Rao-Efron approach by Fu (1982) (see Efron
1975).

On the other hand, the LD efficiency of estimators is discussed up to the
second order, from a different viewpoint of the Bahadur efficiency (see
Akahira 2006, 2010). Its distinctive feature is the direct evaluation of the LD
probability of estimators using the saddlepoint approximation. For an
exponential family of distributions, the MLE is second order LD efficient in
the sense that it has the least LD probability up to the second order, i.e. the
order o(1/n) in a class of weakly asymptotically median unbiased estimators,
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where n is a size of sample.

In order to investigate the influence of the middle part of distributions to
the LD probability of estimators, we discussed the LD probability of
estimators in the class for flattened distributions in a middle part which do
not belong to an exponential family of distributions (see Akahira 2024). In
particular, for the flattened normal case in the interval [—¢, <], the sample
mean is seen to be asymptotically better than the sample median for both of
small and large (> 0) in the sense of the LD probability. For the flattened
Laplace case in the interval [—¢,¢], the sample median is seen to be
asymptotically better than the sample mean for smaller &, but the sample
median is done to be asymptotically worse than the sample mean for bigger
¢ in the sense of the LD probability.

For the Cauchy distribution with a location parameter 0, it is shown by
Bai and Fu (1987) that the MLE 8,,, of 6 based on a sample of size n is
asymptotically Bahadur efficient in the sense of
1(0)

—

where 1(8) is the Fisher information amount. Related results are found in
Akaoka et al. (2022). In this article we consider the LD efficiency of 8, using
the saddlepoint approximation from the viewpoint of the LD probability. In

o1 ~
lim, lim - =108 P {|6u. — 6] 2 a} = =

Section 3 the lower bound for the LD probability of weakly asymptotically
median unbiased estimators is obtained and the MLE is shown to be weakly
LD efficient in the sense that the MLE attains the lower bound. The result
brings that the MLE is asymptotically Bahadur efficient. Further, there
arises an interesting problem whether the MLE is second order LD efficient
or not. In order to solve it, we obtain the lower bound for the LD probability
of weakly asymptotically median unbiased estimators and the LD probability
of the MLE, up to the second order, i.e. the order o(n~!). As a result the MLE
is shown to be not second order LD efficient in Section 4. In the appendix of
Section 6, the classical saddlepoint approximations are summarized.

2 Definitions and the lower bound for the LD probability of estimators
Assume that X;,X,,-,X,,- 1s a sequence of independent and
identically distributed (i.i.d.) random variables with a probability density
function (p.d.f) f(x;8) with respect to a o-finite measure, where x € X, 0 €
2



® and O is an open interval in the real line R. Put X = (X;,---,X,). The
following definitions are given by Akahira (2006, 2010).
Definition 1 If an estimator 8, := 8, (X) of 8 satisfies

R 1 ~ 1
Pon{8, <6} = 5+ o(1), Pyn{8, =6} = 5+ o(1),

as n - o, then 8, is said to be weakly asymptotically median unbiased
(wAMU) for 6.
Let A be the class of all wAMU estimators of 6.
Definition 2 If there exists 8 :=8;;(X) in A such that for any 0, € A, any
6 €O and any a >0
Pon{|0n — 8] > a} = Py n{|8; — 6] > a1 + 0o(1)}
= B,(a,0){1 +0(1)} (say)
as n — oo, then 8 is said to be (first order) large deviation efficient (LDE). If
there exists 6, = 6;:(X) in A such that
. Pyn{8;—6]>a}
l&zn)g T!Ll—l;lolo B,(a,6) -

then 6, is said to be (first order) weakly large deviation efficient (WLDE).
Definition 8 If there exists 8;*:=8;*(X) in A such that for any 8, € A,
any 0 € © and any a(> 0)
Pon{|0n — 6| > a} b(a,b) (1)
, > ba, o) L
5,(a,0) =1+ +o0

as n - o and 6;* attains the lower bound in (2.1) up to the order o(n™1),

(2.1)

then 6 is said to be second order LDE, where B,(a,8) is given in Definition
2 and b(a,8) is a certain constant. If there exists 6" :=6;*(X) in A such
that

o Pg’n{ 0 — 9| > a} b(a,8)
lim, lim n B,(a,0) == =0

then 6 is said to be second order wLDE.

According to Akahira (2006, 2010), we derive the lower bound in a manner
of testing hypothesis in the following outline. First we assume that
{x]|f(x;0) >0} is independent of 6. Let 6, be any fixed in ® and a > 0.
Then we consider a problem of testing the hypothesis H: 8§ = 6, + a against
K: =6, ,where 6, +a € 0. Let ¢*(X) be the most powerful (MP) test of
level 1/2 +0(1) as n — oo. Letting 0,, be any wAMU estimator and
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Ag, ={x10, ) <6y+a},
we see that the indicator Xag of Ag. is a test of level 1/2 + 0(1) as n - oo,

where x:=(x;,-+,x,). Since

Eo, [¢7 = Eg, [Xa, | = Poyn{fn <60+a)

for large n, it follows that

Pon{0n —00>a}=1—E, [¢7]. (2.2)
In order to obtain the lower bound for the tail probability, i.e. the right-hand
side of (2.2), it is enough to get the power function of the MP test ¢*. Now, it
is seen from the fundamental lemma of Neyman-Pearson that a test with

rejection region of the type
1 n
Z(00,0) == 2 (85,0) > ¢ (23)
i=1

is MP, where

Zi(0,a) :==log(f(X;0)/fX;;0 +a)) (i=1,,n)
and c is a constant chosen so that the asymptotic level of the test is 1/2 +
o(1) asn —» o, It is noted that Z;(6,,a),: ,Z,(6,,a) are ii.d. Letting
1(8y,a) = Eg,+4[Z1(60,a)] and 6%(6y,a) = Vgo,a(Zl(QO, a)), we put
= %{z‘ (60,@) = u(6, )3,
where d(0y,a) = \/Wo,a) . Since the MP test with the rejection region
(2.3) is of asymptotic level 1/2 + o(1), i.e.

W

Vn 1
Pgy+an {Wn = 0_(907? ) (C — u(8,, a))} = > +0(1)

as n — oo, by the central limit theorem we choose u(6,,a) as c¢. Since
Eg, [¢*] = Pg,n {Z (6p,a) > u(6y, @)},
it follows from (2.2) that for large n

Poon {60 = 60 > a} 2 Py {Z (69, @) < (6, a)} 2.4)
for a > 0. In order to obtain the asymptotic expansion of the tail probability

of Z (8y,a), we apply the saddlepoint approximation to the right-hand side of
(2.4) (see Daniels 1954, 1987, Barndorff-Nielsen and Cox 1989, Jensen 1995).
In a similar way to the above, considering a problem of testing the hypothesis
H: 8 =6, — a against K: 8 = 6,, we can derive the lower bound
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Po,n {Z (69,—a) < u(6y,—a)}
for the tail probability Py, {9, — 6y < —a} (see Akahira 2024). Since 6, is
arbitrary, from the above and (6.2) in the appendix of Section 6 later we have
the following.
Theorem 1 (Akahira 2024). For any wAMU estimator 8, of 6(€ ©) and any
a(>0) with 6 + a(€ 0), it holds that for large n

PG,n{lén - 9| > a}

L)

where u= u(8,a), i=ud,—a), o =+0c2(0,a) and 6 = /o%(0,— a) .

>140 (%) , 2.5)

In the next section, for the Cauchy distribution we obtain the lower bound
for the LD probability of wAMU estimators and show that MLE is LDE.

3 The LD efficiency of the MLE for the Cauchy distribution
Suppose that X;,X,,-:+,X,,--+ 1s a sequence of i.i.d. random variables
according to the Cauchy distribution with p.d.f.
1

fO(x_6)=n(1+(x—9)2) (xeX=ROEOG=R). (3.1)
Foreach i =1,2, ---, we have
_ foX;i—8) a’—2a(X; — 0)
Z;(6,a) = long(Xi oo - log| 1 1T+, —0)2 )’

where — < a < o. For |a| < 1/v/2 we have for each i = 1,2,

o (—1)*1 (a? — 2a(X; — )"
7,(0,a) =k2=1 - { o o7 } . (3.2)

Then we obtain the lower bound for the LD probability for wAMU estimators
as follows.
Theorem 2 For any wAMU estimator @n of 8, it holds that
Py {16, — 6| >
lim lim _ o] L >} > 1.
=0 noo 2e @/ 9+0@®) /{\frn (a + 0(a))}

Proof Letting
a’?—2a(X;—0)

Vo9 = T, —o

we obtain



2 4

Egra [Y(6,)] =0,  Egyq [Y2(6,0)] = a? Eg.q [Y3(6,0)] = 3%,

3 5 25 35
4 _2 a4 6 5 — 6 8
Egiq [Y*(6,0)] = g @ + e Egiq [Y(6,a)] 28 @ +128a . (3.3)
It follows from (3.2) that for small a > 0,

(0]

—1)k-1
M(GI a) = E9+(1[Zl(91 a)] = Z ( 1]3 E9+a [Yk(er a)]
k=1
a’> a*
=—T+§+O(a6), (3.4)
2 2 2 az a4 6
0%(0,a) = Egyq[Z7(0y,a)] — u*(6,a) = 7737 + 0(a®). (3.5)

Since fi=u(0,—a), 0 =+0c2(0,a) and 6 =+/02(8,—a) , substituting (3.4)
and (3.5) into (2.5) we have

L Ponf|0n — 6] > a}
BTmo rlll—>_r20 2e~(@*/9+0@®) /{3 n (a + o(a))} =1
which completes the proof. O

Next, denote the likelihood function by L(8;x) = [1i-, fo(x; — 8). Letting
the MLE 0,, be a root of the likelihood equation (9/06)logL(6;x) =
0 which maximizes L(0;x). Then ,,, is seen to be wAMU, since the p.d.f.
fo(x —8) of (3.1) is symmetric around x = #. Then we have the following.
Theorem 3 The MLE §,,, is wLDE.

Proof First, for each i =1,2, -+, we put
2(X; — a)

Then we have for small a(> 0) and large n,

Wi(a) =

0

~ N 1 n
PonOus =0 > @) = Pon{Bi >} = Pon{ > —clogfolXi—a) >0}
=

- po,n{%z;% >0 } = P"'"{%Z;Wi (@) > 0} . (36

Then the moment generating function (m.g.f.) of W, (a) is given by

2t(X, —
MW1(a)(t) = EO [exp {1 _I_t((Xl _il))z}l
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_ (" 2t(x — a) 1
- -[—oo {exp (1 + (x - a)2>}7t(1 + x?) dx. (3.7)

For small a(> 0) and small |t| we have
2t(x — a) _ 2tx

22 0+ 23 T8 61 T 1536

(
L
Ll
(e 2tx
e
L

8 8

4

—00

3, 5t
2 - 6
el 16<1+8t +192>+0(t)

=3t 3+ 0([t]%),
2)n(1 + 22+ T 64 T 768
2tx x4 1/3 5 35

- 2 44 6
eXp1+x)7T(1+x2)5dx 8( + + t)+0(t)

16 64" T 6144
y (3.9) and (3.10)

8

2
T+ 1+2 + A;(x)a + B.(x)a* + , (3.8)
where
4tx? 2t
Ac(x) = (1+x2)2 1+x2’ (3.9
6tx 8tx3
B, (x) = — DL + ETOER (3.10)
From (3.7) and (3.8) we obtain for small a(> 0) and small |¢]|
y (t)_f“{ ( 2tx )} 1 J
m@t = | P\ a2 )ira+ 0™
° 2tx 1
+ f_oo {exp (m» {At(x)a + (Bt(x) + EA%(x)) az}
1 ————dx + 0(a®) (3.11)
AT D X a®). )
Since for small |¢]
® 2tx 1 N
— - 6
j_w(exp1+x2>n(1+x2) X = 1+4+64+0(t) (3.12)
°°< th) 1 I 1_|_1:2_|_1:4 ey
A\ P 2) r(1 + 22)? 278 " 128
@ 2tx ) 1 p 3 5t2 11t* £ 005
AP ) a2 T8 6s T 1536 T ’
@ 2tx X ottt
L 5
*PT+ xZ) Tt * =gty ol
2t x? 1 3t2 t*
- ) +0(t%),

8 §

8

m\v\'\\g\\\
8

(=n



*© 2tx 1 t t3 G5t°
- - —_— e 6
f_ (exp n 2>At (%) L+ 20 dx = >~ 16 384 + 0(t%), (3.13)

@ 2tx 3t?  13t*
[E— 6
f_ (eXp1+ ) Be (x )n(1+x2)d 8 96 +0@), (3.14)

% 2tx 7t2  3t* 107t°
2 | | | 7
f_w (expl + x ) (x )n(l +x2)d 8 32 3072 o(el"). (3.15)

Substituting (3.12) to (3.15) into (3.11), we have for small a(> 0) and small
|t

at 1 a?
My, () =1—=— +Z(1 + —) t? +0([¢]),

2 4
which yields the cumulant generating function (c.g.f.)
at 1 a? a*
Ky, (@)(t) :==log My, (o(t) = — > t2 <1 -7t a’ —7> t2 +0([t]*) (3.16)
of Z,(a). Letting K]jl,l(a)(t) = (0, we obtain
t=t =a+0(a?), (3.17)
which yields
M}, (@) = e {(@/41+0(a) (3.18)
and
2 17 2 1
i, (@B = Kip, (@ =5 (1+ 0(a?)). (3.19)

By the saddlepoint approximation (6.1) in the appendix of Section 6 later and
(3.17) to (3.19) we have for small a(> 0)

n My, (@@
PO'”{%EL-:lWi (@>0}= \mtjm{\/;—n +0 (%) |

—n((a?/4)+0(a?))
= 3%(61 " O(az)){ 140 (%) } (3.20)

(see Jensen 1995, Section 2.2 and Akahira 2024, Appendix).
In a similar way to the above, we obtain the LD probability

Pe,n{éML —-—0< _a} = PO,n{éML < _a}

1" 0
—POn{ Z 3 —log f (X; +a)<0}
i=



1 n
- Po,n{— W (—a) <0 } (3.21)
n i=1
for large n. Letting Klj,,l(_a) (t) = 0, we obtain for small a(> 0)
t=t =—a+0(a?), (3.22)
which yields
M, ooy (B = e {(@/4140@), (3.23)
2 " 2 1
O'ﬁ/l (_a)(t) = le(_a)(t) = E (1 + 0((12)) (324)

Then it follows from the saddlepoint approximation (6.2) in the appendix of
Section 6 later and (3.22) to (3.24) that for small a(> 0) and large n

n My, —a)®
PO'"{%ziﬂWi (—a) <0 } = ﬁlflvf/m {\/;—n +0 (%) }

—n((a?/4)+0(a?))
“Ferom 0] e

(see also Akahira 2024, Appendix). From (3.6), (3.20), (3.21) and (3.25) we
have for small a(> 0) and large n
P n{|Oy — 6] > a} B
Ze—n((a2/4)+0(a3))/{\/ﬁ (a N O(az))} =
From (3.26) we obtain

140 (%) . (3.26)

L PB,n{léML_el > a} _q
tlll—l>r<1) rlzgglo Ze‘”((az/“)*"(“z))/{\/ﬁ (a+o0(a)} . (3.27)

Hence it is seen from Definition 2, Theorem 2 and (3.27) that 0,,, is wLDE.
o
Remark 1 It is easily seen from Theorem 2 that 8, is asymptotically
Bahadur efficient in the sense of

lim 71i_r)1c}on—:lzlog Pon {0y, — 6| > a} = —% ) (3.28)
which is consistent with the result of Bai and Fu (1987). Indeed, it follows
from (3.27) that for small a(> 0) and large n



1 ~

Wlog Py {|9ML — 9| > a}
R O P L
=——3)log2 —n|-+ola >logm —-logn

—log(a + o(a)) + log <1 +0 (%))}

which yields (3.28). Here, it is noted that the Fisher information amount 1(0)
1s 1/2 in the Cauchy case.

4 Second order LD efficiency

It 1s interesting to consider the problem whether the MLE is second order
LDE or not in the Cauchy case. In a similar way to the theorem in Akahira
(2024), the lower bound for the tail probability P ,{8, — 6 > a} in the class
A is given up to the order o(n™'), under the same setup in Section 3 as
follows.
Theorem 4 For any 6, € A, and any a > 0, it holds that for large n

Pg’n{én -0> a} 1o 1 + (3(=1;6,a)
enu(G,a)/\/m - no2(0,a) 2no (8, a)

where

05 (=1;6,) = ks 94a(2:(6,0))/(%(8,0))”?,

{4 (=1;,0,a) = k4044(Z,(6,0))/0* (6,a)
with third and fourth cumulants K3,9+a(21(9, a)) and K4'9+a(Z1(9, a)) of
Z,(6,a).
The proof is straightforward from (2.4), (6.2) and Remark 3 in the
appendix of Section 6 later (see Corollary in Akahira 2024).
Remark 2 Denote by A(6,a) the coefficient of order n~! in the right-hand
side of (4.1). For any 0,, € A, and any a > 0, it holds that for large n

P, {0, —0 < —a 1 1
o {On ) >1+=A(6,—a) + 0 <_2) - (4.2)
en(6-a)/\[21ne2(0, —a) n n

Let u=u8,a), i=uld,—a), c =+02(0,a) and 6 = \/o%(0,—a).
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Corollary 1 For any 6, € A, and any a > 0, it holds that for large n
Pg,n{lén - 9| > a}

(Lo 3o

-1

1/1 1 1 1
>1+ —(—en“ + 59”“) {;e”“A(B, a) + Een“A(H,—a) }

n\o
1
+o(ﬁ). (4.3)
The proof is straightforward from (4.1) and (4.2). Suppose that
Xi,X,,,X,, -+ 1s a sequence of 1.i.d. random variables according to the

Cauchy distribution with p.d.f. (3.1). Then we obtain the lower bound for the
LD probability of wAMU estimators as follows.
Theorem 5 For any 6, € A, and small a > 0,
Py {8, — 6] > a} 1(3.,2 (1)
ze_n((a2/4)+o(az))/{\/ﬁ (Cl N o(a))} >1 16 + O(Cl) R (44)

Proof In a similar way to (3.4), we have from (3.3)

2(6,0) 1= Egul{Z:(6,) — w(6, )] = ~=a* + 0(a®),

k4(0,0) := Ep,4[{Z,(0,a) — u(6,a)}*] — 36*(8,a) = —%a“ + 0(a®),

which yields
0, 3v2
2
2, (=1;6,a) = Ka(0@) 3 a7 o (4.6)

o4(0,a) 274
from (3.5). Then it follows from (3.4), (3.5), (4.1), (4.5), (4.6) and Remark 2 that
for small a(> 0)

1 {3(=1,6, a)
02%(0,a) 20(0,a)
3 ( 3 2 ) ‘o <a2>

16 n

for large n, which yields

A(B,a) = —

54( 10, a)——iz( 1;6,a)
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3 2 2
A, a) = A6, —a) = _(R+ﬁ) +0<%>.

Since from (3.4) and (3.5)
2 g4

a
& o 6
u(6,a) =u6,—a) = 4+32+0(¢1)
2
3
6%(8,a) = 02(6,~a) = a——312+0(a6)
for small a(> 0), it is seen from (4.3) that
P 0,—0|> 1 3 2 1
_ Gn{lz | a} +0(a) (_)
_n((a /4)+o(a ))/{ﬁ (a + o(a))} 16 2
for large n, which yields (4.4). Thus we compete the proof. O

Theorem 6 For small a > 0, the LD probability of the MLE 8,,, of 6 up to
the order o(1/n) is given by

Pyn{|Oms — 6] > a} 11 2 1
Ze—n((a2/4)+o(a2))/{\/ﬁ (a+o(a))} =1+ n\16 a2 Tol@)+0 (aznz) (#.7)
for large n.

Proof Substituting (3.12) to (3.15) into (3.11), we have for small a(> 0) and

small |t|
at 1 a? a
MW1(a)(t) = 1—7+Z<1 + 4)t2 —Etg

1 17 5a
(1 ——a2> t4 ——t5 + 0(t°)

64 3 384
=14+ A,() (say), (4.8)
which yields the c.g.f.
Ky, @) =logMy, (t) = log(l + Aa(t)) (4.9
of Z;(a). Then we have
Ay (t)
K@ ® =172 (4.10)
" _ Ag(t) r 2
le(a)(t) T 144,00 - (le(a)(t)) ) (4.11)

3
(3)
W (@ (t) de3 KW1 (a) (t)
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B SROIIRVOIHG
1480 (144,0)°

= 2Ky, (@) (O Ky, )@, (4.12)

(4)
W (a) () = dt4‘ KW1 (@) (t)

L AP0 80890 80800 + (850)°
1+48.0)  (1+4,(0))° (1 +8q(0))°

Z(A’ (t)) HON
(1+4 (t))

From (4.8) we obtain for small a(> 0) and small |¢|

a 1 a? 3a 1 17
AL (1) =——+§<1+ )t——t2+—(1——a )t3

(wwo(t)) — 2Ky, (@ DK, (a)(t). (4.13)

2 4 16 16 3
—%t“ +0qtl9), (4.14)
AI(E) = %(1 +a72> - 38—“t + 136 (1 - gaz) 2 —%H +0(tY,  (4.15)
AP (p) = 38a+%<1—ga2>t—235—2at2 + o), (4.16)
AP (1) = (1 —%aZ) —%at +0(t2). (4.17)

From (4.8), (4.10) and (4.14) we have for small a(> 0) and small |¢]

, a1 a? 3a a? .2 t3 28 1
Kin® = =3 +3(1-F )+ 5 (1-F ) -1 -F @ +5)

— %8#‘ (? + %az +3a® + %a“‘) +0([t]®).
Letting K‘;l,l(a) (t) = 0, we obtain for small a(> 0)
t=t =a+0(@®), (4.18)
which yields
. a? . 1 a?
8y(B) = =7+ 00", 8;(D) = 0@, ML) =5 =7 +0(ah,

AP® =06, AP = g +0(a?)

from (4.8) and (4.14) to (4.17). From (4.8) to (4.17) we have for small a(> 0)
13



2
A a
Kw, @) = ——+ 0(a*), (4.19)

Ky, (@) (®) = 0(:5), (4.20)

K, o)(B) = + 1—2 +0(a"), (4.21)
Kipyoy® = 0(a®), (4.22)
Koy ® = —= + 0(a?). (4.23)

Then it follows from (3.19), (4.18), (4.20) to (4.23) that for small a(> 0),

A =+nt ’O-W @® f (1 +—+0(a4)> (4.24)

(3) (
s (i) = — @ = = 0(a*), (4.25)
(0%, @ ®)
o Kgo® 3
(4(15) m = —E + O(az) . (4.26)

Since B;(*) (i =0,3,4,6) are defined in the appendix of Section 6 later, it is
seen from (4.24) and Remark 3 in Section 6 that

Bo(1) _&{1—%+%+0<‘i>}+0(a‘}n) (4.27)
B;(1) = - ;a{ul%a +0(a4)} (%) (4.28)
B,(2) = \/2_” +0 (a§n> , (4.29)
Be(1) = —% +0 (ain) (4.30)

From (4.19), (4.24) to (4.30) and the saddlepoint approximation (6.1) in the
appendix of Section 6 later, we have for small a(> 0)

Po.n { %Z?zlwi (a) >0 }
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—n((az/4)+0(a4)) 1/1 ) .
e
= Vrn (a + 0(a?)) {1 +- <E -t 0(a2)> +0 (aznz)} (4.31)

for large n. Replacing a with —a in the above and using the approximation
formula (6.2) in the appendix of Section 6 later, we have for small a(> 0)

1 n
pO,n{— W, (—a) < o}
n i=1

=

e—n((a2/4)+0(a4)) 1/1 2 , 1
== (e v 0@) {1 + 5<1—6 =t 0(a )) +0 <a2n2>}
for large n. Then it follows from (3.6), (3.21), (4.31) and (4.32) that

~ 1" 1
Pon{|Ou — 0] > a} = PO,n{;Z, Wi(@> 0}+P0,n{; ACOR o}
1= =

i

Cgen(@/mrele) g g 1
= Ne=s (a n o(a)) {1 + ;(E — ; + O(Cl)) +0 (aznz)} ,

which yields (4.7). Thus we complete the proof. O

From Theorems 5 and 6 it is seen that the MLE ,,, does not attain the
lower bound, i.e. the right-hand side of (4.4) up to the order o(1/n), which

implies that ), is not second order LDE.

5. Concluding remarks

In the problem of estimating a location parameter of the Cauchy
distribution, we consider the LD efficiency of the MLE. First, using the
saddlepoint approximation we obtain the lower bound for the LD probability
of wWAMU estimators. Second, the MLE is shown to be LDE in the sense that
it attains the lower bound, and it follows that the MLE is asymptotically
Bahadur efficient in the sense of (3.28). Further, it is interesting whether the
MLE 1is second order LDE or not. However, it is shown that the MLE is not
second order LDE, since the MLE does not attain the lower bound for the LD
probability of wAMU estimators up to the order o(1/n).

In the higher order asymptotics evaluated by the concentration probability
of estimators around the true parameter, it is known that the MLE is (first
order) asymptotically efficient, but not third order asymptotically efficient for
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the Cauchy distribution (see Akahira and Takeuchi, 1981, pp.110, 111).

6 Appendix
We consider the classical saddlepoint approximation. Suppose that
X1,X5,+, X, 1s a sequence of i.1.d. random variables with p.d.f. fy(x) w.r.t.
a o-finite measure u. Let X be a sample space of X;. Then the m.g.f. and
c.g.f. of X; are given by
My (t) = E[e**1] = f e fo(x) du

x

and Ky (t) = log My (t), respectively, where
teT :={t| My, (t) < oo}.
Letting
feG) = e¥fo(0) /My, (1), tET

we see that for each t € T, f,(x) is p.d.f. (w.r.t. p). A set of distributions with
p.d.f. fi(x) generates an exponential family of distributions. The mean and
variance of X; w.r.t. p.d.f. f; are given by

d
E KXl (t)l

2
dt?
respectively. The mth cumulant of X; is also obtained from
m
dt™
for m > 3. Here, we consider only those values of x which there exists t =
t(x) such that u(t) =x, and the upper tail probability P{X >x} of X =
(1/n) ¥, X;, where x = u(0). Then it is noted that ¢ > 0. When x < u(0),
we can consider the lower tail probability P{X < x} by replacing X; by
—X;for each i =1,2,-- and note that £ < 0.
The approximation formula to the upper tail probability for x > u(0) is

u(t) == EfX;] =

o?(t) = V(X)) = =5 Kx, (1),

km (t) = =Ky, (t)

given by
{MXl (f) }ne —nix
Vnto(£)

n{&(t) B,(1) + (53( )) B6(2)]+0(n—12)] 6.1)

16

5o+ £2 8,2

P{X =x}=




where o(t) =/02(t) , 1 =+nta(®), ¢, () = K, t)/{c(®O}" with &=1t(x),

and
Bo(A) = 2e*/2{1 - ©(1)},

Ba() =~ {1By (D) ~ == - D},

V2r
1
B4(ﬂ) = 1430 (/1) - \/T_T[ (/14 - /12) )
1
Bg(d) := A5B,(1) — = (A6 — A% +322)

(see Jensen 1995, Section 2.2). The approximation formula to the lower tail
probability for x < u(0) is also given by

{My, D)} e 53<> A
Valtle(® l o) - BM

n{&(t) B,(1) + ((3( )) B6(i)]+0(n—12)], (6.2)

P{X <x}=

where 1 = n|t|lo(?).

Remark 3 Mills’ ratio is expanded as

1 3 35 1
1-o() = qb(/l){/1 SrtE- Tt +(/12k+1(1 3 (2k—1))+0(/12k+3)}

for large 1 (see Jensen 1995, page 24), where ®(-) and ¢(-) are the c.d.f.
and p.d.f. of the standard normal distribution N(0,1). Then

s = i1 3B o (L))
o= ro(3)

B,(1) = i+0(1)

V2m 22
15 1
Bs(1) = _\/T_+O(/12)
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