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Abstract

We consider a one parameter deformation of a cuspidal S; singularity and
its differential geometric properties. For that, we give a form representing the
deformation using only diffeomorphisms on the source and isometries of the target.

This note is an addition to the author’s talk given in the RIMS workshop
“Singularity theory of differentiable maps and its applications” which is held
from December 16th to 18th, 2024.

1 Introduction

Singularities are deformed and turn into various singularities. The cuspidal ST singu-
larities correspond to the appearance/ disappearance of cuspidal cross caps. Therefore,
it is natural to include the deformation when we study such singularities In this paper,
we give a normal form for the deformations of the S,;t (k € Z-) singularities using a
diffeomorphism-germ on the source space and an isometry-germ on the target space.
Furthermore, using this form, we investigate the differential geometric properties of the
deformations of the cuspidal ST~ singularities.

The cuspidal S,f (k € Z-¢) singularities are map-germs A-equivalent to the map-
germ defined by (u,v) — (u, v?, v3(uF +0?)) at the origin. The cuspidal Sj singularity
is also called a cuspidal cross cap. Here, two map-germs f; : (R* 0) — (R? 0) and
fo : (R?,0) — (R?0) are A-equivalent if there exist a coordinate change of source
space ¢ and a coordinate change of target space 1 such that f, = ¢ o fiop™t. A
map-germ f : (R?0) — (R?,0) is called a frontal if there exist a normal vector field
v : (R*0) — R? along f such that (df(X),v) = 0 holds for any p € (R*0) and
X e TpRQ. This v is called the unit normal vector field.

2 Normal forms of deformations of cuspidal S,;t sin-
gularities

Definition 2.1. A map-germ f : (R’ x R,0) — (R?0) is a deformation of g :
(R?,0) — (R?0), if it is smooth and f(u,v,0) = g(u,v) and f(0,0,s) = (0,0,0).



In this definition, the parameter s € R as the third component of the source space
is called the deformation parameter. We define an equivalence relation between two
deformations preserving the deformation parameters.

Definition 2.2. Let f,, f, : (R*> x R,0) — (R?,0) be deformations of g. Then f; and
f2 are equivalent as deformations if there exist orientation preserving diffeomorphism-
germs ¢ : (R*> x R,0) — (R? x R,0) with the form

0,0.9) = (sl 0,3) alu . 5)al9) (22000 > 0) 2.1)

and ¢ : (R*,0) — (R?,0) such that ¢ o f; 0 0 (u,v,8) = fo(u,v, s) holds.

The above form on ¢, namely 3 is defined depending only on s, implies that we allow
change of parameter of deformation itself and prevent affecting the other parameters
to the parameter of deformation. Since the third component of the source space is the
deformation parameter, therefore this definition means an A-equivalence that preserves
the deformation parameters is defined.

Example 2.3. Let f,* be a deformation of cuspidal ST singularities defined by
f(R2 X R,0) 3 (u,v, 8) = (u,v?, v3(u? £0?) + s0%) € (R?,0).

We show the deformation of f,* in Figure 1 and f,~ in Figure 2.

and f;')

Figure 2: Deformations of cuspidal S| singularity (from left to right f=, f~, /2> fos fl_/2
and f})

Theorem 2.4. Let f : (R* x R,0) — (R?,0) be a deformation of g : (R?,0) — (R?,0)
such that the 2-jet of g is A-equivalent to (u,v? 0) or (u,v* uv). Then there exist an
orientation preserving diffeomorphism-germ ¢ : (R*x< R, 0) — (R*x R, 0) with the form



(21), T - 50(3) CLTLd th@ fU’I’LCt?:OTLS fgl,fgl - Coo(l, ]_)7f24,f33,f34 € COO(Q, ]_),fgg -
C>(3,1) such that

fu® = Tofop(uwv,s)
= (u,u? for(u) + v* +usfou(u, s), (2.2)
u? a1 (w) + v* fao(u, v, 8) + vfsz(u, s) + usfsa(u, s)),
where f35(0,0,0) = f33(0,0) = 0. If the 2-jet of g is A-equivalent to (u,v? 0), then
(f33)0(0,0) = 0 holds, and if it is A-equivalent to (u,v? uv), then (f33).(0,0) # 0
holds.

In Theorem 2.4, the given f and f,;® are equivalent as deformations (Definition 2.2),
and they have the same differential geometric properties.
For the frontality of the form f,;°, we have the following theorem.

Theorem 2.5. A map-germ fu1° is frontal for any s if and only if fs3(u,s) = 0 holds
identically.

Corollary 2.6. Let f : (R*x R,0) — (R?0) be a deformation of g : (R?,0) — (R*,0)
such that the 2-jet of g is A-equivalent to (u,v?,0) or (u,v*, uwv) and f is frontal for
any s. Then there exist an orientation preserving diffeomorphism-germ o @ (R* X
R,0) — (R* x R,0) with the form (2.1), T € SO(3) and the functions f1, fs1 €
C>®(1,1), foa, f3a € C°(2,1), f32 € C>(3,1) such that

fu2® = To foop(u,v,s)
= (u,u® for (u) + v* + us fos(u, s), (2.3)
u? fa1(u) + 2 fao(u, v, 8) + us fau(u, 5)),
where
faa(u, v, 8) = co(u, 8) +vey (u, s) + viea(u, v?, ) + v es(u, v?, s) (2.4)

and f32(0,0,0) = ¢0(0,0) = 0. Furthermore, f(u,v,0) = g(u,v) is a cuspidal S;
singularity (respectively, cuspidal S, singularity) if and only if d'c;/0u’(0,0,0) = 0
(i=1,...,k) and 9% 1c; /OuFT1(0,0,0)c3(0,0,0) > 0 (respectively, < 0) hold (k € Z ).
If (dey/ds)(0,0) # 0, then one can further reduce ¢,(0,s) = s.

In Corollary 2.6, the given f and f»® are equivalent as deformations (Definition
2.2), and they have the same differential geometric properties.

We remark that normal forms for the cuspidal S;- singularities itself is given in [2].
If (dcy/ds)(0,0) # 0, then fo° is a generic deformation. In what follows, we assume
(de1/ds)(0,0) # 0 and ¢1(0,8) = s in fy2°. When k = 1, the form f»* is called the
normal form of the deformations of a cuspidal Si° singularity. We see the set of singular
points S1(fu2®) of fu2® is

S1(fn2”) = {(w,v)[v =0}
We set Sy(fu2®) to be the set of singular points that are not cuspidal edge. Then it
holds that
So(fn2®) = {(u,v) |v=0,c¢1(u,s) = 0}.

The uniqueness of the normal form holds as in the following sense.
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Definition 2.7. A function g(u, s) is said to be regular of order k in s if 9g/0s(0,0) =
o= M lg/0sF71(0,0) = 0, 9%g/0s*(0,0) # 0. A function g(u, s) is reqular of finite
order in s if there exists k& such that g is regular of order £ in s.

Proposition 2.8. Let £, : (R* x R,0) — (R*,0) (z = 1,2) be a map-germ given by
the form (2.2) or (2.3) satisfying that foy or fs4 is reqular of finite order in s. If there
exist orientation preserving diffeomorphism-germ ¢ : (R* x R,0) — (R* x R,0) with
the form of Definition 2.2 and T' € SO(3) such that

Tofl opluwvs)=f3 (uv,s).

Then for any k € Z, it holds that 4 = w and j*9(0) = j*v(0) and j*3(0) = j*s(0),
where p(u,v,s) = (1,0, §).

3 Geometry on deformations of cuspidal S; singu-

larities

In this section, we consider geometry on the case of £ = 1 in Corollary 2.6. We set
f = fa2® (see (2.3)). Here, we assume ¢1(0,s) = s

3.1 Description of singular point

To obtain the location of the singular point, we set s = —§2, since Sy(f) # 0 is equivalent
to s <0. If (u,v) € Sa(f), then v = 0 and u depends on 5. We set this function u(S).
Since ¢1(0,0) = (¢1)4(0,0) = 0 in (2.3), we set

c1(u, s) = s+ usdy(s) + uldy(s) + ulds(s) + u'dy(u, s). (3.1)
Rewriting f3» as (2.4) and (3.1), then we have the following theorem.

Theorem 3.1. If (u,v) € So(f) and da(0) > 0, then v = 0 holds, and the function u(3)
can be expanded as follows:

~ 1 1 2 32
u(s) = -5+ ﬁ%@l(o)dzo . d3(0))5
+ 550 ((d(0) +4(d2)(0)) by

— 2(3d,(0)d5(0) + 2d4(0. 0))d2, + 5«1;(0))(53 +O(4),

where dy(0) = d3y. If w(s) # 0, f at (u(£5),0) are both the cuspidal cross caps.

If d2(0) < 0, the same calculation can be done by setting dy(0) = —d3,, and we
obtain the same results.



3.2 Self-intersection curves

In this section we focus on self-intersection curves of deformations of cuspidal S; singu-
larities. In particular, deformations of the geodesic curvature and the normal curvature
of self-intersection curves are considered.

The self-intersection curves are determined by f(uy,v1) = f(ug, v2) in general. In
our case, by looking the first component of f.2°, we see u; = u,, we rewrite as u.
Focusing on the second component, v? = v3 holds. If we set v = v; = —wvs, then the
self-intersection curves are determined by i(u,v,s) = ci(u, s) + v?c3(u, v?,s) = 0 from
the third component. Since i,(u,0,s) = sdi(s) + 2udsy(s) + 3u?dz(s) + 4uddy(u, s) +
u*(dy)u(u, s) and by the assumption do(0) > 0, it holds that i,(u,0,s) # 0 for small
s # 0 and u # 0. By the implicit function theorem, there exists a function u(v, s) such
that i(u(v, s),v,s) = c1(u(v, s), s) + vie3(u(v, s),v%, s) = 0 holds for any v and s # 0.

Theorem 3.2. Let k,4(v,5) be the geodesic curvature and k,(v,S) be the normal cur-
vature of self-intersection curves v — f(u(v,3),v,—5%). Then these curvatures can be
expanded as follows

(_2f21 (0)05(07 07 0) + (cl)uu(ov 0))
c3(0,0,0)

rg(0,5) = =+ + Os(1),

In particular, both of the geodesic curvature and the normal curvature are bounded for

fized 5 # 0.

When s = 0, only cuspidal S| singularity has self-intersection curves. Therefore,
we assume (¢1)4,(0,0)e3(0,0,0) < 0.

Theorem 3.3. If (¢1)uu(0,0)c3(0,0,0) < 0, then the geodesic curvature k, and the
normal curvature K, of the each branch of self-intersection curves are bounded and they
are

o — 2£21(0)c3(0,0,0) — (¢1)wu(0,0)
! ¢3(0,0,0) ’

Furthermore, these coincide with the absolute value of the limits of the geodesic curva-

Ry = 2f51 (O) .

ture and the limits of the normal curvature of the self-intersection curves on the case
of 5 # 0 respectively.

3.3 Geometric invariants of deformation

In [1], the bias and the secondary cuspidal curvature are defined for non-degenerate
singular point which is not a cuspidal edge. The bias measures the bias of a curve
around the singular point, and the secondary cuspidal curvature measures sharpness of
5/2-cusp. We calculate these invariants for deformations of cuspidal Si° singularities.

Definition 3.4. [1, Definition 3.7] Let f : (R* 0) — (R’,0) be a frontal satisfying
72f(0) = (u,v?, 0) such that f at v = 0 is not a cuspidal edge. We take a coordinate
system (u, v) satisfying the set of singular point of f S(f) = {v = 0}. Then there exists
a vector field 7|;,—0} such that

if(w,0) =0, {(fu,Bf)(u,0) = (fu, i) (u,0) = 0.
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Then there exists £ such that 73 £(0,0) = £72f(0,0). Using this vector field 7 and £ the
bias r, and the secondary cuspidal curvature r. are defined by

Sl det(fu, 201 f)

Ty = ~ ’
|fu X 7]2f|3 (u,v)=(0,0)
ro— |fu|5/2 det(fu7 ﬁ2f7 3775f B 10£ﬁ4f>
| fu x D2 f|7/2 (u,0)=(0,0)

Theorem 3.5. Let f: (R?,0) — (R?,0) be a deformation of cuspidal Sy singularities.
Then the bias 1, and the secondary cuspidal curvature r. of f at (u(#£3),0,—5%) can be
expanded as a function of s as follows:

ry = 6c2(0,0,0) + 6<_2f21(0)(c°>“(%22) *(2)u(0,0,0) Os(2),
ro = 45v/2¢5(0,0,0) + 45\/5(62)“(0’ 0.0)5 05(2).

3.4 Geometry on trajectory of singular points

We give a geometric meaning of the lowest order coefficients fo4(0,0) and f34(0,0)
including the deformation parameters. The trajectory of the singular points Sy(fu * )
for the deformation of the cuspidal S singularities f = fuo° is a space curve passing
through the origin. It is parameterized by

Y(3) == far " (u(3),0),

where u(8) is given in Theorem 3.1. Then the curvature x of 7 as a space curve at § = 0
satisfies k = 2(f2,(0) + f2(0))"/2. Moreover, if f2(0) + f2,(0) # 0, then

£u(0.0) KT f31(0) — f21(0)dgoK’ +3n%(0)
T 3rds
and |
KT f21(0) 4+ f31(0)dogr’ — 3,{%(())
f34(0,0) = — o :

hold, where 7 is the torsion of v, and &’ = dkr/ds.
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