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1 Introduction

This is a survey article on the results appeared in [1]. Recalling the results, we provide
several observations on related topics of singularity theory.

The notion of “phase” is very important in various area of mathematical analysis
and physical sciences related to phenomena of oscillations and waves. The phase
phenomena are described by “phase functions”. We mean by a “phase singularity” a
zero point of a phase function, and by a “phase criticality”its critical point. See also
related papers [2, 5, 6, 7, 19, 20]. Remark that also phase singularities appeared in
solutions of differential equations are studied in the paper [1]. See also [15, 14].

In the present survey paper we discuss only on properties of phase singular points
and phase critical points from the universal mathematical viewpoints, which are in-
dependent from physical settings.

2 Phase singularity and criticality

Let us denote by C the plane of complex numbers and write a complex number as

u+ iw = re®,

u, w being the real part and the imaginary part respectively, while 7, 8 are the modulus
(or the amplitude) and the argument (or the phase), respectively.
Let us consider a complex valued C*° scalar function,

U:RZXxR—C, U(xy,t)=u(zy.t)+iw(zy,t),

on the z-y-plane, depending on the “time” (or any other real single parameter) t.
If U(x,y,t) # 0 at a point (z,y) and at a moment ¢, we can write as

U(z,y,t)=r(x,y, t)eie(‘”’y’t),
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uniquely with r(z,y,t) > 0 and 6(z,y,t) mod. 2.
We are concerned with the zero-locus (“dislocation locus”) at a moment ¢ = ¢,

{(z,y) [ W(z,y,t0) = 0} = {(2,9) | u(z,y,t0) = 0, w(z, y, ) = O}.

Outside of the zero-locus, the phase function 6(x,y.to) is well-defined mod. 27, and
it may have critical points where

00

00
%(33711-,150) = a—y($7y7t0> =0.

3 Classification of phase singularities on the plane

Definition 3.1 Two function-germs ¥ : (R? x R, (0, 50, %0)) — (C,0) and ¥’ : (R? x
R, (x(,v0,ty)) — (C,0), at moments to and ¢, are called radially equivalent if the
diagram

(R, (20,%0)) —=% (C,0)

v|= x|

t=t()

commutes, for diffeomorphism-germ o and 7 of form
7T(u.w) = (p(u, w)(au + bw), p(u, w)(cu + dw))
p(u,w) > 0,a,b,¢,d € R,ad — bc # 0.

Remark 3.2 Note that the radial equivalence is weaker than the right-equivalence
and is stronger than the right-left-equivalence([3, 4, 13, 16, 21, 22]).

The radial equivalence on complex valued functions of real variables preserves
both the dislocation locus, that is the phase singularity, and the critical locus of
phase functions, that is the phase criticality.

Theorem 3.3 ([1]) For a generic complex valued function ¥ (x,y,t), the map-germ
of Uli—t,(x,y) around any point (xg,yo) at any moment ty in the dislocation locus
where U(xo,yo,to) = 0, is radically equivalent at tyg around (xo,yo) to one of the
followings (R?,0) — (C,0):

R :Y(z,y) = x + 1y, the regular singularity,

H :(z,y) = 2% — y? + iy, the hyperbolic singularity,
or to

E iz, y) = 2% + y? + iy, the elliptic singularity,
around the origin (0,0). (i =+/—1.)
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The black lines of the above three pictures indicate the “equi-phase” contour lines.
The images of the models R, H, E are depicted as follows:

w w w

Remark 3.4 Under the right-left equivalences, the both singularities H and E are
equivalent to the fold singularity (R?,0) — (C,0) = (R2,0), (z,y) — (22,9).

Remark 3.5 The proof of Theorem 3.3 is based on the results appeared in [12, 9].
See [1] for details.

Theorem 3.6 ([1]) The phase singularities arising from fold singularities are classi-
fied into
wm(.’I),y):.’Eziym-F’Ly, m:273?47"'7

under radial transformations (and diffeomorphisms on the source), provided the dis-
criminant curve has a contact with the tangent radial line at the origin in a finite
multiplicity m.

Remark 3.7 Also generic bifurcations of 1, under radial transformations can be
studied. For instance, for the case m = 2, the generic 1-parameter bifurcations of
hyperbolic and elliptic singularity are given by

Ht : q/(l‘,y,t) :$2_y2+t+iya(tER)7
By U(z,y,t) =22+ y2 +t+iy, (t €R).
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4 Topology of phase singularity and criticality

Let us recall the following works (see [18, 17]) to analyse the bifurcations of phase
singularities and phase criticalities.

Let, in general, f : (R™ x R, (0,0)) — (R™,0), fi(z) := f(x,t), (x,t) € (R x
R, (0,0)), be a 1-parameter family of map-germs.

We consider the bifurcation diagram of f,

D(f) :={(z,t) € (R" xR, 0) | f(x,t) = 0},

with the projection R” x R — R, (z,t) — t.
Denote by by (f) (resp. b_(f)) the number of branches located on ¢t > 0, (resp.
t <0), of f71(0) emanated from 0.

Define J f(x,t) := det (%)K' g (z,t). Note that, if Jf(0) # 0, then there is
<i,j<n

no bifurcation by the implicit function theorem. So we suppose J f(0) = 0.

Theorem 4.1 ([18]) Let f : (R™ x R,0) — (R™,0) be a K-finite map-germ with
Jf(0)=0. Then

by (f) +0-(f) 2deg(f,tJf),
bi(f) —b-(f) = 2deg(f,Jf).
Here (f,tJf), (f,Jf) : (R"T1,0) — (R"*1,0), are defined by

(f,t.]f)(l‘,t) = (f(:z:,t),tJf(a:,t)), (f7 Jf)($7t) = (f(as,t),Jf(m,t)),



respectively, and “ deg” means the mapping degree around 0 € R+,

See [11] as a related work.
Let F: (R™,0) — (R™,0) be a K-finite C*° map-germ. We set

QF) == En/(F1, ..., Fn)e,,

which is an R-algebra with dimg Q(F') < cc.
Denote by JF the Jacobian determinant of F. Let o : Q(F) — R be an R-
linear form with «(JF) > 0. Then we define a symmetric R-bilinear form @, :

Q(F) x Q(F) = R by ®q(u,v) := a(uv), (u,v € Q(F)).
Theorem 4.2 ([10]) deg(F) = sign(®,).
Here “sign” means the signature;

# (positive eigenvalues) - # (negative eigenvalues).

5 Bifurcations of phase singular loci and critical loci

We count the numbers of positive and negative branches of phase singularities and
phase critical loci by using Nishimura-Fukuda-Aoki formula (Theorem 4.1) and Eisenbud-
Levine formula (Theorem 4.2).
Let us consider a one-parameter family of complez-valued C*°-functions f : R? x
R — C = R?,
U(x,y,t) =u(z,y,t) +iw(z,y,t).
We are able to apply Nishimura-Fukuda-Aoki formula to f = W, for the study of

bifurcations of phase singularity.
Moreover we set I' := (71,72) : (R? x R,0) — R?, where

u w u w
71(%.%15) = oy dw |» 72(%.%75) = ou dw ‘
ox ox dy dy

Note that I'~1(0) give union of phase singular loci and phase critical loci around (0, 0).

If T'(0,0,0) # 0, then the phase critical locus is empty. Hence we suppose
I(0,0,0) = 0.

Remark that I'"!(0) consists of the phase singular loci ¥~!(0) and the phase
critical loci of ¥ which are located outside of ¥~1(0), traced along ¢, around (0,0, 0) €
R? x R.

Therefore we can (and do) apply also to f = I', Nishimura-Fukuda-Aoki formula
for the study on bifurcation of phase criticality.



Example 5.1 Let us consider the bifurcation of hyperbolic singularity:

Hy: U(x,y,t) =2 —y? +t+iy, (t € R),

In this case, we set f = (z? — 3% 4+, y) and we have

Jf = 20$ 21y = 2z. Then (f,tJf) = (22 —9?> +t, y, 2xt) and we have
Q(f,tJf) = (1,x,2*)g. Moreover J(f tJf) = 4x? — 2t which is equal to 4z? in
Q(f,tJf). We choose a by a(1) = 0, a(z) = 0 and a(2?) = 1.

Then ®,, is represented as , and sign(®,) = 1. Thus we have deg(f,tJf) =

= o O
o~ O
S O =

1.
For (f,Jf) = (22 —y? +1t, y, 22), we have that Q(f, Jf) = (1)g, J(f,Jf) <0 in
Q(f.Jf), and that deg(f,Jf) = —1. Therefore we have

bi(f) +b-(f) = 2deg(f, 1) f) = 2,
bi(f) = b-(f) = 2deg(f, Jf) = —2.

Thus we have by (f) = 0,b_(f) = 2 for the bifurcation of hyperbolic phase singulari-
ties of Hj.
Moreover applying to I' : R? x R — R? Nishimura-Fukuda-Aoki formula, we have
b (T)+b_(T') =4,b4(T") — b_(I") = —4, and therefore we have b_(T') = 4,b,(T") = 0.
We denote by p_ (resp. py) the number of branches of negative (resp. positive)
phase singularities, and by c_ (resp. cy4) the number of branches of negative (resp.
positive) phase criticalities. Then

o= b_(f)ps = by (f),
¢ =b () =b_(f).ex = b () = b_(f).

Thus we have
p—:27 p+:O7 C—:27 C+:0

for the hyperbolic case.
Example 5.2 (Bifurcation of elliptic singularity). Let us consider
By U(x,y,t) =2® +y> +t+iy, (t € R).
Similarly to the hyperbolic case, we can calculate that
b-(f) =2, b4.(f) =0, by (1) =2, b_(I') = 2,
and therefore we have
p—=2,p+r =0, c_=0, cp =2,

for the elliptic case.



6 Phase singularity of Whitney’s cusp

A map-germ 1 : (R2,0) — (C,0) = (R?,0) is called a Whitney’s cusp if 1 is right-left
equivalent to (x,y) — (23 + 2y, y).

Theorem 6.1 (The radial classification of Whitney’s cusps [1]) Any Whitney’s cusp
s equivalent to

b(a,y) = 2° + zy + iy,
under radial transformations. The generic bifurcation of the phase singularities of
the Whitney’s cusp is given by

Yap(z,y) =23 + 2y +b+i(y +a), (a,bER).

Note that our classification is closely related to the web-geometry. See [8].

7 The case of three variables

Theorem 7.1 ([1]) For a generic complex valued function ¥ : R? x R — C, the
germ of U at any point (xo,yo, 20) € R? and any moment to with ¥(xq,yo, 20,t0) = 0



is radially equivalent to

R :V(z,y,2) =z + 1y, (regular singularity),

DH : ¥U(x,y,2) = 2% + y? — 22 + iz, (definite hyperbolic),
DE : U(z,y,2) = 22 +y? + 2% + iz, (definite elliptic), or
I:9(z,y,2) =2 —y? — 2% + iz, (indefinite),

at the origin (x,y,z) = (0,0,0).

Similarly to the case of planar complex scalar waves, the generic bifurcations on
t of the definite hyperbolic singularities, the definite elliptic singularities, and the
indefinite singularities are given by

DH; : W(x,y,2,t) = 2 +y? — 22+t + iz,
DEt : U(x,y,z,t) = 2> +y? + 22 + t + iz,
I U(z,y,2,t) =22 —y? — 22+t +iz.

8 Open questions

1. The question on degenerate phase singularities. Give the classification results for
degenerate phase singularities and criticalities under the radial equivalence of complex
valued functions.

2. The question on topological classification. Two complex valued function-germs
Y (R2,(w0,90)) — (C,0) and ¢’ : (R2, (x),y5)) — (C,0) are called topologically
radially equivalent if the diagram

(R2, (0, %)) —— (C,0)

o|= x|

(B2, (z.47)) —— (C.0)

commutes, for homeomorphism-germs o and 7 such that 7 maps any radial line to
a radial line. Then study on phase singularities and phase criticalities under the
topological radial equivalence.

3. The question on radial codimension of complex valued function-germs. Formulate
the notion of radial codimension of complex valued function-germs.

4. The question on phase-amplitude singularities. Classify complex valued function-
germs under the diffeomorphisms of C preserving both phase and amplitude.
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