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1 Introduction

Bertrand and Mannheim curves are classical objects in differential geometry. A Bertrand
(respectively, Mannheim) curve in the Euclidean 3-space is a space curve whose principal
normal line is the same as the principal normal (respectively, bi-normal) line of another
curve. By definition, another curve is a parallel curve with respect to the direction of
the principal normal vector. In [5], they investigated the condition of the Bertrand and
Mannheim curves of non-degenerate curves and framed curves. Moreover, we investigated
the other cases, that is, a space curve whose tangent (or, principal normal, bi-normal)
line is the same as the tangent (or, principal normal, bi-normal) line of another curve,
respectively. We say that a Bertrand type curve if there exists such another curve. We
investigated the existence conditions of Bertrand type curves in all cases in [8]. Moreover,
we also investigated curves with singular points. As smooth curves with singular points,
it is useful to use the framed curves in the Euclidean space (cf. [4]). We investigated the
existence conditions of the Bertrand framed curves (Bertrand types of framed curves) in
all cases in [8]. As a consequence, the involutes and circular evolutes of framed curves (cf.
[6]) appear as the Bertrand framed curves.

A framed surface is a surface in Euclidean 3-space with a moving frame (cf. [3]).
Framed surfaces may have singular points. By using a moving frame, we define Bertrand
framed surfaces as the same idea as Bertrand framed curves. Then the caustic and
involute appear as a Bertrand framed surface. In this paper, we give existence conditions
of Bertrand framed surfaces in all cases in §3. As a consequence, then the caustics and
involutes appear as Bertrand framed surfaces.

As applications, we can directly define the caustics and involutes of framed surfaces,
and give conditions that the caustics and involutes are inverse operations of framed sur-
faces like as those of Legendre curves in §4. Furthermore, we find a new such operation,
so-called, tangential direction framed surfaces in §5. Finally, we give concrete examples
of caustics, involutes and tangential direction framed surfaces in §6.

We shall assume throughout the whole paper that all maps and manifolds are C'*™
unless the contrary is explicitly stated.

The content of this paper is based on joint research with Masatomo Takahashi (cf.

[9])-



2 Preliminaries

Let R3 be the 3-dimensional Euclidean space equipped with the inner product a - b =
a1by + agby + asbs, where a = (a1, ay, az) and b = (by, by, b3) € R3. The norm of a is given
by |a| = +/a - a and the vector product is given by

€1 €3 €3
axb=det| a; ay az |,
by by b3

where e, e, e3 are the canonical basis on R?. Let U be a simply connected domain of
R? and S? be the unit sphere in R? that is, S* = {a € R%||a] = 1}. We denote a
3-dimensional smooth manifold {(a,b) € S* x S*la-b =0} by A.

Definition 2.1. We say that (z,n,s) : U — R® x A is a framed surface if x,(u,v) -
n(u,v) = x,(u,v) - n(u,v) = 0 for all (u,v) € U, where x,(u,v) = (0x/0u)(u,v) and
x,(u,v) = (0x/0v)(u,v). We say that x : U — R? is a framed base surface if there exists
(n,s) : U — A such that (z,n,s) is a framed surface.

By definition, the framed base surface is a frontal. The definition and properties of
frontals see [1, 2]. On the other hand, the frontal is a framed base surface at least locally.
In this paper, we consider framed base surfaces as singular surfaces.

We denote t(u,v) = n(u,v) x s(u,v). Then {n(u,v), s(u,v), t(u,v)} is a moving frame
along x(u,v). Thus, we have the following systems of differential equations:

(5= ) (2)

n, 0 er fi n n, 0 es  fo n
Su - —€1 0 g1 S 3 Sy == —€2 0 g2 S 5
t, —fi =g O t t, —fo —g2 O t

where a;, b;, €;, fi,g; : U = R, i = 1,2 are smooth functions and we call the functions basic
invariants of the framed surface. We denote the above matrices by G, Fi, F3, respectively.
We also call the matrices (G, F1, F2) basic invariants of the framed surface (x,n, s). Note
that (u,v) is a singular point of @ if and only if det G(u,v) = 0.
Since the integrability conditions @, = @, and Fo,, — F1, = F1F2 — FoF7, the basic
invariants should be satisfied the following conditions:
a1y — b1ga = agy — bag, €1 — J192 = €2 — fag1,
by — a2g1 = bay — 192, Jiv — €291 = fou — €192, (1)
arey + by fo = agzey + ba fi, Jrv — €1fa = Gou — €2 f1.
We have fundamental theorems for framed surfaces, that is, the existence and uniqueness
theorem for the basic invariants of framed surfaces.

Definition 2.2. We define a smooth mapping CF = (J¥, K¥ HY): U — R3 by
TP —det (M ) KF Zget (@ )
as by es fa

L {det (al fl) — det <bl 61) } .
2 az [ by e
We call CF = (J¥', KT HY) a curvature of the framed surface.
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3 Bertrand framed surfaces

Let (z,m,s) and (Z,7,3) : U = R x A be framed surfaces.

Definition 3.1. We say that (x,n,s) and (Z,m,s) are (v, w)-mates if there exists a
smooth function A : U — R with A # 0 such that Z(u,v) = x(u,v) + A(u, v)v(u,v) and
v(u,v) = w(u,v) for all (u,v) € U, where v and w are n, s or t, respectively.

We also say that (x,n,s) is a (v,w)-Bertrand framed surface (or, (v,w)-Bertrand-
Mannheim framed surface) if there exists another framed surface (#,7,S) such that
(x,n,s) and (T, m,S) are (v, w)-mates.

We clarify the notation A #Z 0. Throughout this paper, A # 0 means that {(u,v) €
UlX(u,v) # 0} is a dense subset of U. It follows that @ and T are different surfaces. Note
that if A is constant, then A # 0 means that ) is a non-zero constant.

Let (z,n,8) : U — R? x A be a framed surface with basic invariants (G, Fy, Fs).
We give all characterizations of Bertrand framed surfaces. The proof of Bertrand framed
surfaces in all cases see [9)].

Lemma 3.2. If (z,n,s) and (Z,7m,3) : U = R* x A are (n,7)-mates, then \ is non-zero
constant.

Theorem 3.3. (z,n,s): U — R® x A is always an (n,T)-Bertrand framed surface.
By a direct calculation, we have the following (cf. [3]).

Proposition 3.4. Suppose that (x,m,s) and (£,7,5) : U — R® x A are (n,m)-mates,
where (Z,m,S) = (x + A\n,n,s) and X\ is a non-zero constant. Then the basic invariants
of (,m,8) are given by

g-g+r(2 ) PR e R

Remark 3.5. (1) If (z,n,s) and (Z,7.,3) : U — R x A are (n,m)-mates, then T is a
parallel surface of & (cf. [3]).

(2) On the moving frame of (Z,7,3), we can also take a rotation frame {n,s’ ¢’}
instead of {n, s, t}.

Theorem 3.6. (x,n,s): U — R® x A is an (n,s)-Bertrand framed surface if and only
if there exist smooth functions \,0 : U — R with X # 0 such that

ar(u,v) + Au,v)er(u,v) by(u,v) + Aw,v) fi(u,v))\ (sinf(u,v)) [0 @)
az(u,v) + Mu,v)ea(u,v)  ba(u,v) + Mu,v) fo(u,v)) ) \cosO(u,v)) — \0

for all (u,v) € U.

Proposition 3.7. Suppose that (x,n,s) and (Z,7,3) : U — R3 x A are (n,3)-mates,

where (€, m,8) = (x + In,sinfs + cosft,n) and \,0 : U — R are smooth functions

satisfying X Z 0 and condition (2). Then the basic invariants of (T, mn,S) are given by

a, @1 (A (@1 + Xey)cosf — (by + Afi)sind
Gy by)  \ N\, (a2 + Xez)cost — (by + \fy)sinf )’
(El zl §1) B (—61 sinf — fycosf 0,— g, ejcosf — fisin 9)

€ [y 0o —egsinf — focosf 6, — gy escosf — fosind
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Remark 3.8. If (z,n, s) and (Z,7,3) : U — R3 x A are (n, 8)-mates, then T is a caustic
(an evolute or a focal surface) of . By condition (2), we have

aq + )\61 bl + )\fl .
det <a2 +Aes by + A f2> =0 (3)

It follows that A\ must be a solution of the equation K*\2 — HFX + JF = 0. It is easy to
see that the converse does not hold in general in the case of da has a corank 2 singular
point, that is, condition (2) does not follows from (3).

Theorem 3.9. (z,n,s) : U — R3 x A is an (n,t)-Bertrand framed surface if and only
if there exist smooth functions X\, 0 : U — R with A\ Z 0 such that

ay (1, v) 4+ Mu, v)er (u,v) by (u,v) + Mu, v) fir(w,0)\ [ — cos8(u, v) (0
(en ) £ 2 ehent ) ) 2 e ) ( sin9(u, ) ) (o) @
for all (u,v) € U.

Proposition 3.10. Suppose that (x,m,s) and (Z,m,s) : U — R3 x A are (n,t)-mates,
where (T, m,8) = (x + An,cosfs — sint,sinfs + cos0t) and \,0 : U — R are smooth
functions satisfying A Z 0 and condition (4). Then the basic invariants of (€,m,8) are
given by

(61 El) _ [ (a1 + Aeq) sing—l— (b1 + Af1) COS@: Au
ay by (as + Nez)sin@ + (by + Afa)cos® A, |’

(El Zl §1) (- 5u —eq Cos 0+ fi sin 6 —e; sin ) — fi cosf
e fy Uy go — 0, —eycosl+ fosin® —eysinf — fycosf )

Theorem 3.11. (z,n,s) : U — R? x A is an (n,t)-Bertrand framed surface if and only
(x,m,8): U — R3x A is an (n,3)-Bertrand framed surface.

Theorem 3.12. (z,n,s): U — R® x A is an (s,m)-Bertrand framed surface if and only
if det(b(u,v), g(u,v)) =0 for all (u,v) € U and A : U — R 1is given by

M, v) = — (/ al(u,v)du—i-/v: ag(uo,v)dv> be

for a point (ug,vy) € U and constant ¢ € R with A # 0.

Proposition 3.13. Suppose that (x,n,s) and (Z,m,35) : U — R?> x A are (s,m)-mates,
where (ZT,m,S) = (x + As, s, t) and

AMu,v) = — (/u ai(u, v)du + /U CLQ(U(),’U)dU> +c#0

for a point (ug,v9) € U and constant ¢ € R. Then the basic invariants of (€,m,S) are

given by
(al ?1) _ <b1 +Ag1 —)\€1> <El Zl §1> _ (gl —€ _fl)
az by bi+Aga —Aea)’ \& fo 9y g2 —ex —fa)’
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Remark 3.14. If (z,n,s) and (Z,7m,8) : U — R? x A are (s,7)-mates, then we may
consider T is one of involutes of x.

Theorem 3.15. (z,n,s): U — R3 x A is an (s,35)-Bertrand framed surface if and only
if there exist smooth functions X\, 0 : U — R with X Z 0 such that

<b1(u,v) + A 0)g1 (1, v) Alu, v)es (u, v)) ( sin 0(u, v) ) _ (8) 5)

bo(u, v) + AMu, v)ga(u,v) Au,v)eg(u,v)) \ —cosb(u,v)
for all (u,v) € U.

Proposition 3.16. Suppose that (x,m,s) and (Z,m,35) : U — R? x A are (s,35)-mates,
where (Z,m,8) = (x + As,sinft + cosfn,s) and X\, 0 : U — R are smooth functions
satisfying X Z 0 and condition (5). Then the basic invariants of (Z,m,S) are given by

a1 b ~far+ A, (by + Agy)cosO 4+ Aeysind
Ty by)  \az+ A, (ba+ \g2)cosf + Aeysind

e f1 g _ (—g1sinf +e;cos0 0,4+ fi gicost 4+ e sind
€9 ?2 o)  \—gosinf +egcos@ 6,4+ fo gacost + eysind

Remark 3.17. If (z,n, s) and (Z,7,s) : U — R3 x A are (s, 3)-mates, then

bh+Ag1 el
ot <b2 + Ag2 62)
by condition (5). It follows that det(b(u,v) ,0)) + A(u,v)det(g(u, v), e(u,v)) = 0. If
t

t(b(u, v), e(u
det(e(u,v),g(u,v)) # 0, then \(u,v) = de (b(u,v), e(u,v))/det(e(u,v),g(u,v)). Hence,

we have
det(b(u,v), e(u,v))
det(e(u,v),g(u,v))

Theorem 3.18. (z,mn,s): U — R® x A is an (s,t)-Bertrand framed surface if and only
if there exist smooth functions \,0 : U — R with X # 0 such that

<)\(u, v)ey(u,v) by (u,v) +A<u,v>gl<u,v>> (sin(?:(u, v)) _ (0> (6)

oL

0

T(u,v) = x(u,v) + s(u,v).

A, v)ea(u,v)  ba(u,v) + Au, v)ga(u,v) ) \ cosf(u, v) 0

for all (u,v) € U.

Proposition 3.19. Suppose that (z,n,s) and (T,7,3) : U — R’ x A are (s,t)-mates,
where (E,7,3) = (x + As, cos 0t — sin On, sin 0t + cosfn) and \,0 : U — R are smooth
functions satisfying X\ £ 0 and condition (6) Then the basic invariants of (T, m,S) are
given by

(dl l_)1> _ —)\ey cosg—l— (b1 + Ag1) siné: a1 + Ay
a —Xegcos B + (by + Aga)sinf ay + A, )

(él £ §1> _ (—H:U —fi —q cosbi—el sing —q1 sin@;—l— el cos@:).

—0, — fo —gacosf —eysinf  —gosinf + e, cos

>



Theorem 3.20. (z,n,s): U — R3 x A is an (s,t)-Bertrand framed surface if and only
(x,n,8): U — R3x A is an (s,8)-Bertrand framed surface.

We can prove from Theorem 3.21 to Proposition 3.27 by the similar calculations of
proving of from Theorem 3.12 to Proposition 3.20. Therefore, we omit the proof here.

Theorem 3.21. (z,n,s) : U — R3 x A is a (t,m)-Bertrand framed surface if and only
if det(g(u,v), a(u,v)) =0 for all (u,v) € U and and X : U — R is given by

AMu, v) = — (/ by (u, v)du + / bg(uo,v)dv) +e

for a point (ug,vy) € U and constant ¢ € R with A # 0.

Proposition 3.22. Suppose that (x,n,s) and (Z£,7,8) : U — R® x A are (t,7)-mates,
where (Z,M,S) = (x + A\t, t,n) and

Au,v) = — (/u by (u, v)du + /U bg(uo,v)dv> +c#0

for a point (ug,vo) € U and constant ¢ € R. Then the basic invariants of (x,m,s) are

given by

ay §1 _ (M o= Ag €1 Zl 9\ _(—h —9n e

az by —Af2 az—Ag2) \ex fo Gy —fa —g2 e)”
Theorem 3.23. (z,n,s) : U — R® x A is a (t,5)-Bertrand framed surface if and only
if there exist smooth functions \,0 : U — R with X # 0 such that

Gl e oteme)) G =) @

for all (u,v) € U.

Proposition 3.24. Suppose that (z,n,s) and (£,7,8) : U — R> x A are (t,5)-mates,
where (,m,8) = (x + At,sinfn + cosfs,t) and \,0 : U — R are smooth functions
satisfying X Z 0 and condition (7). Then the basic invariants of (T, m,S) are given by

@ b (b + A —AficosO — (ag — Agy)sind
T by)  \ba+ X, —Afacos — (ag — \gz)sind )’

e f1 9\ _ [(fismO+gicosd 0,—e —ficosd+ g sind

e fy Go) \JasinO+gacosf 60,— e —fycosf+ gasinf )’

Theorem 3.25. (z,n,s): U — R3 x A is a (t,t)-Bertrand framed surface if and only if
there exist smooth functions X\, 0 : U — R with X\ # 0 such that

()\(u,v) fi(u,v)  ay(u,v) —A(u,v)gl(u,v)> (cos?j(uw)) _ <0> (8)

AMu,v) fa(u,v)  ag(u, v) — Mu,v)g2(u,v) ) \ sin 6(u, v)

for all (u,v) € U.



Proposition 3.26. Suppose that (x,m,s) and (£,7,3) : U — R® x A are (t,t)-mates,
where (T, m,S) = (x + At,cosfn — sinfs,sinn + coss) and \,0 : U — R are smooth
functions satisfying A £ 0 and condition (8). Then the basic invariants of (x,m,S) are
given by

<51 §1> . —Afl sin §+ (a1 — Agl) COSg b1 + )\u
ay by ~Afosin® + (ag — Aga)cos@ by + N, )’

(51 zl §1>: —Q:U—el flcosg—glsin@; flsin@;+glcosf9~v
€ [o 9o —0, — ey facost — gosinf fosinf + gocosf )

Theorem 3.27. (x,n,s) : U — R x A is a (t,t)-Bertrand framed surface if and only
(x,m,8): U — R x A is a (t,5)-Bertrand framed surface.

Table 1 : Bertrand framed surfaces

A n s t

T
n parallel surface involute involute
s caustic exist exist
t caustic exist exist

4 Caustics and involutes of framed surfaces

The caustics (evolutes or focal surfaces) are classical object and it is well-known properties
of caustics of regular surfaces, for instance [1, 2, 7]. By using Bertrand framed surfaces,
we define caustics and involutes of framed surfaces directly. We denote

F(UR? x A) :={(z,n,s) € C°(U,R* x A)|(x,n,s) is a framed surface}.
Let (z,m,8): U — R3 x A be a framed surface with basic invariants (G, Fi, F»).
Definition 4.1. (1) The map C* : F(U,R? x A) — F(U,R? x A) is given by
C(xz,n,s) = (x°°,n*°, %),
% (u,v) = x(u,v) + \*(u, v)n(u, v),

n®*(u,v) = sin 0“°(u,v)s(u, v) + cos 0“°(u, v)t(u, v),

$°°(u,v) = n(u,v),
where there exist smooth functions A“* 6%° : U — R such that

(b Saemt i) ooy 3 ) ontiren) = (0) @

for all (u,v) € U. Then we say that %% : U — R? is a caustic of the framed surface
(x,n,s).



(2) The map C' : F(U,R3 x A) — F(U,R? x A) is given by

Ct(:c, n,s) = (:cc’t, n®', sc’t),
" (u,v) = x(u,v) + X" (u,v)n(u,v),
n°'(u,v) = cos 0" (u, v)s(u,v) — sin 6 (u, v)t(u,v),

8% (u,v) = sin 0" (u, v)s(u, v) + cos 0 (u, v)t(u, v),
where there exist smooth functions ¢!, 0%t : U — R such that

(a1<u,v> 0, v)en(,0) by (u,v) + A, ) £ (u, v)) (— cos 6% (o, v)) _ <0> (10)

as(u,v) + A (u,v)ez(u,v)  ba(u,v) + A (u, v) fa(u, v) sin 6% (u, v) 0

for all (u,v) € U. Then we say that ' : U — R® is a caustic of the framed surface
(x,m,s).

Remark 4.2. (1) The caustic % (respectively, ') is corresponding to the (n,s) (re-
spectively, (n,t))-Bertrand framed surface.

(2) By a direct calculation, we have t“*(u, v) = cos 0“*(u, v)s(u, v) —sin 0°°(u, v)t(u, v)
and t'(u,v) = n(u,v).

(3) Suppose that there exist smooth functions A“* §* : U — R such that the condition
(9) satisfies. If we take smooth functions A\, 0%t : U — R by A\ = A\ and 0! =
0* + 1 /2, then the condition (10) is satisfied (cf. Theorem 3.11). The reflection frame of
C%(x,m, 8) is corresponding to the moving frame of C'(x, n, s). It follows that the map
C' is given by C'(z,n,s) = C*(x,—n,t).

Definition 4.3. (1) Suppose that det(b(u,v), g(u,v)) = 0 for all (u,v) € U and (ug, vy) €
U. The map Z° : F(U,R?® x A) — F(U,R? x A) is given by

Is(ma n, S) = (ml’,s’ nI7S> 8175)7
b (u,v) = x(u,v) + X% (u, v)s(u, v),

Z,s(

n"*(u,v) = s(u,v),

s (u, v) = cos 5% (u, v)t(u, v) — sin 65 (u, v)n(u, v),

where 67 : U — R is a smooth function and A\ : U — R is given by

AT (4, 0) = — ( / ay (u, v)du + / ag(uo,v)dv> .

Then we say that & : U — R? is an involute with respect to s at (ug,vy) € U of the
framed surface (x,n, s).

(2) Suppose that det(a(u,v), g(u,v)) = 0 for all (u,v) € U and (ug,v9) € U. The map
It F(UR? x A) = F(U,R?* x A) is given by

T'(x,n,s) = (x5!, nt' 5,
't (u,v) = @(u,v) + X (u, v)t(u, v),
n®'(u,v) = t(u,v),

I,t(

st (u, v) = cos 05 (u, v)n(u, v) — sin 65 (u, v)s(u, v),



where 6%t : U — R is a smooth function and A% : U — R is given by

Nt (u,v) = — ( / by (u, v)du + / bg(uo,v)dv> .

Then we say that &@! : U — R? is an involute with respect to t at (ug,v9) € U of the
framed surface (x,n,s).

Remark 4.4. (1) The involute =¥ (respectively, %) is corresponding to the (s,7)

(respectively, (¢,7))-Bertrand framed surface under the condition #%* = 0 (respectively,
6%t = 0). However, we consider a framed rotation of the framed surface in Definition 4.3.
Moreover, we consider constant ¢ € R is zero.

(2) By a direct calculation, we have %% (u, v) = sin 6% (u, v)t(u, v)+cos 6% (u, v)n(u, v)
and 5! (u, v) = sin 05 (u, v)n(u, v) + cos 05 (u, v)s(u, v).

We consider conditions that caustics and involutes are inverse operations of framed
surfaces.

Theorem 4.5. Let (z,n,s) : U — R® x A be a framed surface with basic invariants
(gaflan)‘

(1) (i) Suppose that det(b(u,v),g(u,v)) = 0 for all (u,v) € U, 6%° : U — R is a
smooth function and a smooth function X2 : U — R is given by

NS (u,0) = — (/ a(u, v)du+/ ag(uo,v)dv> ,
ug Vo

for a point (ug,ve) € U. If we take \>*,0%° : U — R by \* = —XI° and 0°° = —05°,
then C*(Z°(x,n, s)) = (x, 1, ).

(i) Suppose that det(a(u,v),g(u,v)) =0 for all (u,v) € U, - : U — R is a smooth
function and a smooth function X5t : U — R is given by

Mot (u,v) = — (/ by (u,v)du + / bQ(Uo,U)dU) ,
Jug Jg
for a point (ug,ve) € U. If we take Ao, 0%t : U — R by Aot = =\t and 0%t = —6¢, then
C'(Z(x,n,s)) = (x,n,s).

(2) (i) Suppose that there exist smooth functions A“* 0%° : U — R such that the
condition (9) satisfies. If we take 675 : U — R by 055 = —0°°, then I°(C*(x,n, 8)) =
(x 4+ \*(ug, vg)n, n, 8) for a point (ug,vy) € U.

(i) Suppose that there exist smooth functions \*, 0" : U — R such that the condition
(10) satisfies. If we take 6% : U — R by 65 = —0°t, then T'(C'(x,n,s)) = (x +
A (ug, vg)n, M, 8) for a point (ug,v) € U.

Proof. (1) (i) By Definition 4.3 (1), the map Z% : F(U,R? x A) — F(U,R? x A) is given

by I*(z,n, s) = (x2°, n?* sH°) = (x+ s, s, cos 075t +sin 67*n). The basic invariants
of I*(x,n, s) is given by (G%*, FI*, FF*). The condition (9) for Z%(x,n, s) is given by

a{’s + )\C’Se{’s b{’s + /\cvsfll’S sinf*\ (0
ay® + A\ey® by + Ny ) \cos 0o 0)
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By a direct calculation, we have

<b1 + (A + M%) g (A° + )\I’S)q) ( sin(6%% + 6%°) ) _ (0>

by + (A" + A5%)ga (A9 + M%)ey ) \ — cos(69° + 65%) 0 (11)

If we take A\**, 0% : U — R by A\>® = —AD* and 6°° = —¢%*, then the condition (11) is
satisfied. Thus, the map C® of the map Z*° exists. By Definition 4.1 (1), the map C* of
the map Z°, C*(Z°(x, n, s)) is given by
CS(IS(LB, n, S)) — (mc,s(wI,s nI’S, SI’S), nc,s(wI,s’ nI’S, SI’S), SC’S(CUI’S, nI’S, SI,S))7
LBC’S(CCI’S,TLI’S, SI,s) — LE )\cs Z,s — -+ ()\cs )\I’S)S =,
’I’LC’S(CCZ’S, nZ’S, SZ,s) — sin ec,ssl,s 4 cos Qc’stz’s
= (—sin #°° sin #©° + cos 0° cos #**)n
+ (sin 8°° cos 6 + cos 0“° sin H7°)t
= cos(0°° + 07%)n + sin(0°° + 67°)t = n,

Sc,s(ml,s’ 'I’LZ’S, SZ,S) — nZ,s — g

(ii) We can also prove by the same method of (i).

(2) (i) By Definition 4.1 (1), the map C* : F(U,R* x A) — F(U,R® x A) is given by
Ci(x,n,s) = (x°*,n*, s°°) = (x+\“°n, sin 0“°s+cos §“°t, n), where there exist smooth
functions A\>*,0° : U — R such that the condition (9) satisfies. The basic invariants of
C*(x,m, s) is given by (G=*, F1*, F3°). By the integrability conditions (1), we have

det(bc’s(uv U)v gqs (u7 U)) = CL;’;(U, U) - a;i(uv U) = )‘275 (uv U) - )‘Zi(uv U) = 07

for all (u,v) € U. Thus, the map Z° of the map C*® always exists. By Definition 4.3 (1),
Ao U — R is given by

M5 (u,v) = — (/ ay®(u, v)du —I—/ ag’s(uo,v)dv>
ug )

= (/ Ao (u, v)du+/ /\f;s(uo,v)dv)
uo Vo

= — (A“*(u,v) — A\**(ugp, vo)) ,

for a point (ug,vy) € U. if we take 67 : U — R by 67° = —0%*, the map Z° of the map
C*, I*(C*(x,n, s)) is given by

IS(CS(m n S)) _ (mI’S(.’.CC’S, nc,s’ Sc,s)’ nI,s(mc,s’ nc,s’ Sc,s)’ SI,s(mc,s’ nc,s’ Sc,s))’

mI’S(.’.CCS c,s cs) — &S +)\Is c,s —x 4+ (/\c,s + /\I,s)n — $+>\C’S(U0,U0)n,
I,s(

Cc,8

wCS

n ©389%) =
T (25%, n*, 87°) = cos GI stcs sin 67510
= (— sin 0% sin 6% + cos 0°° cos 6% s
— (sin 6% cos 0* + cos 6% sin 0%t
= cos(0°° + 05%)s — sin(6°° + 05*)t = s.
(ii) We can also prove by the same method of (i). O
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5 Tangential direction framed surfaces

Let (x,m,8): U — R3 x A be a framed surface with basic invariants (G, Fi, F).
Definition 5.1. (1) The map S : F(U,R?* x A) — F(U,R® x A) is given by

St(:v n,s) = (', n% s

Y )

) =

254 (u,) = {u,0) + A5 (u, 0)a(u,v),

n5! (u,v) = cos 0% (u, v)t(u, v) — sin 85 (u, v)n(u, v),
*(u,v) =

v) = sin 0% (u, v)t(u, v) + cos 0 (u, v)n(u,v),

where there exist smooth functions A%t 8%t : U — R such that

(AS»t(u,v)el(u,v) bi(u, v) +AS’t(u,v)gl(u,v)> (sines’t(u,v)> _ <0> (12)

N, v)eq(u, v)  ba(u, v) + A (u, v)ga(u,v) ) \ cos 0% (u, v) 0

for all (u,v) € U. We say that (2%, n%! s%!) is a tangential direction framed surface
with respect to s of the framed surface (x, n, s).
(2) The map T° : F(U,R® x A) — F(U,R3 x A) is given by
Ts(m n,s) =
,v) = x(u, v) + M5 (u, v)t(u, v),
v) = sin 07 (u, v)n(u, v) + cos 0% (u, v)s(u, v),
,v) = t(u,v),

( T,s’ ST,S)

T (u
T (u,
T (u
where there exist smooth functions A%, 7 : U — R such that

(AT,s(u,U)fl(u,v) ay (u,v) — )\T’S(u,v)gl(u,v)> (—sinaT»S(u,v)) _ (o) (13)

)\T,s(u’ 'U)fZ(u> 'U) a2 (U, U) - >\T,s (U, U)QQ (U, U) COs QT,S (U, U) 0

for all (u,v) € U. Then we say that (&%, n™* s7*) is a tangential direction framed
surface with respect to t of the framed surface (x, n, s).

Remark 5.2. (1) The map S’ (respectively, 7°) is corresponding to the (s,t) (respec-
tively, (¢,5))-Bertrand framed surface.

(2) By a direct calculation, we have +%*(u,v) = s(u,v) and t**(u, v) = cos 67 (u, v)
n(u,v) — sin 07 (u, v)s(u,v).

We give conditions that tangential direction framed surfaces are inverse operations of
framed surfaces.

Theorem 5.3. Let (x,mn,s): U — R® x A be a framed surface.

(1) Suppose that there exist smooth functions >, 65 : U — R such that the condition
(12) satisfies. If we take N1 07 : U — R by \T'¥ = —\% and 675 = —05, then
T(S(x,m,s)) = (x,n,s).

(2) Suppose that there exist smooth functions X5, 075 : U — R such that the condition
(13) satisfies. If we take A5, 05" : U — R by A3 = —\T* and 05" = —07%, then
SY(T*(x,n,s)) = (x,n,s).

11



Proof. (1) By Definition 5.1 (1), the map 8*: F(U,R3 x A) — F(U,R® x A) is given by
Sl(x,n, s) = (25, n% %) = (x + \%!s, cos 05t — sin 05'n, sin 05t + cos §5'n) where
there exist smooth functions %! 5% : U — R such that the condition (12) satisfies.
The basic invariants of S'(z,n,s) is given by (G5, Fo', Fo''). The condition (13) for

St(x,n,s) is
A8 fls ot af’t — /\T75gf’t —sinf"\ (0 (14)
ATos fi0 St \Tos g5 cos@T* ) —\0)"

If we take AT 67 : U — R by A\T* = —\%t and 67* = —0%!, we have

— NI 50 sin 075 1 (0P — AT gP") cos 67
= —\T8(—g; cos 6% — ¢; sin #5)
+ (—)\S’tei cos 0%t + (b; + )\S’tgz-) sin 0t — A5 (—g; sin 05t + e; cos Gs’t)) cos 01
= AT g sin (0% + 67°) — AT%¢; cos(07 + 67)
+ (—/\S’tei cos 0% + (b; + A%'g;) sin Gs’t) cos 1+
= A%, — A¥e; cos? 07 4 (b + A5 g;) sin 05 cos 0
= A%e; sin® 05 + (b; + A% g;) sin 0% cos 0
= sin ¢ ()\S’tei sin 0% + (b; + \%'g;) cos Gs’t)
= O’
for i = 1,2. It follows that the condition (14) is satisfied. Thus, the map 7* of the map
S* exists. By Definition 5.1 (2), the map T° of the map S, T°(S'(x,n, s)) is given by
'TS(St(:c, n,s)) = (mT7s(mS,t’nS,t’ SSJ)’ nT7s(mS,t’ nS7t’ SS,t)’ ST,S(:CSJ’ nS,t’ SS,t))
2T (25, nSt §5) = g5 4 ATo6Ts — 4 (A 4 AT¥)s = a,
nT (25 nS*, §5) = sin 675" 4 cos §75 55
= (—sin 6% sin 07 + cos 0" cos 7 )n
— (sin 05 cos 67 4 cos 6% sin §7*)¢
= cos (0% 4 07" )n — sin(0°" + 67°)t = n,
St pSt g5 = 51 — g,

S

T’S(CC

(2) We can also prove by the same method of (1). O

Remark 5.4. (1) If e;(u,v) = 0 and ey(u,v) = 0 for all (u,v) € U, then (x,n,s) is
always an (s, t)-Bertrand framed surface for any A% : U — R and for any constant 65!
with cos 0%t = 0.

(2) If fi(u,v) =0 and fo(u,v) =0 for all (u,v) € U, then (x,n, s) is always a (t,s)-
Bertrand framed surface for any A7 : U — R and for any constant §7>° with cos 7% = 0.

6 Examples

We give concrete examples of caustics, involutes and tangential direction framed surfaces.
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Example 6.1. (A cuspidal edge) Let (z,n,s) : U — R3 x A be

(Y S T - = (1,0,0
m(U,U)— U,;,g ; 'I’L(U,'U)—Uz—_'_l( , —U, )a S(U,U)—( s Uy )

Then t(u,v) = (0,1,v)/v/1+v? and (z,n, s) is a framed surface with the basic invariants

aq bl - 1 0 €1 f1 g1\ _ 0 0 0
as by)  \O vWvr+1)  \ea fo g2) \O —1/(v*+1) 0)°
It follows that the curvature C of (x,n, s) is given by
1
2002 +1)

If we take A\**(u,v) = v(v? + 1)*% and 6*(u,v) = 0, then condition (9) is satisfied.
Therefore, we have a caustic of the framed surface, C*(x, n, s) = (%, n*, s),

JE (u,v) = vvo? + 1, KX (u,v) =0, H (u,v) =

4
x%%(u, v) = (u —vt— % ' 3Y —|—U> n®*(u,v) = t(u,v), s°°(u,v) = n(u,v).
Moreover, if we take A(u,v) = v(v? + 1)*? and 0°(u,v) = —n/2, then condition

(10) is satisfied. Therefore, we laso have a caustic of the framed surface, C'(x,n,s) =
(mc,t nc,t Sc,t)
) Y Y

24,
mC7t(u>'U) = (u _U4 - % g’U + 'U) nc,t(u’v) = t(u,v), Sc,t(u’,u) = —S(U,’U).

Since det(b(u,v),g(u,v)) = 0 for all (u,v) € U, if we take \2*(u,v) = —u, 07%(u,v) =
—m/2 and (uo, vo) = (0,0), then we have an involute with respect to s at (0,0),
) =

( Z,s Is I,s)

Z*(x,m, s .S

)

U3

Z,s _ 0 U_ e
o) = (055
Moreover, since det(a(u, v), g(u,v)) = 0 for all (u,v) € U, if we take X (u, v) = —1((v?+

1)% — 1), 6% (u,v) = 0 and (ug,vy) = (0,0), then we have an involute with respect to ¢
at (0,0), Z!(x,n, s) = (2, n** sIt)

) , nT(u, ) = s(u,v), s5%(u,v) = n(u,v).

1 v( 1
’LL, s T o 1_—) )
3\/v2+1 3 v?2 41 )

Lt (u, t(u,v Lt u,v) = n(u,v).

hN SN @S

cuspidal edge caustic C* and C*
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Figures 1 : (z,n,s) and (&,m,s) of Example 6.1

Example 6.2. (A cuspidal cross-cap) Let (@, n,s): U — R® x A be

x(u,v) = (u,vz,uv3) ,n(u,v)

1
(—20v°, —3uv, 2),

1

Tra oY)

s(u,v) =

VA4S £ 9u2e? + 4

Then t(u,v) = (—3uv?, 2(v5+1), 3uv)/V4v0 + 9u?v? + 44/1 + 06 and (z, n, 8) is a framed

surface with the basic invariants

(al bl) vV 1+ 00 0
= 3uv® vV4v8+9u2v244 |

as b

2 2 V1406 V1408

0 __ 6vV1406 0
e1 1 ¢ _ 4v6+9u2v2+4
ey f2 g2 - . 6v2y/1+06 6u(20°—1) Juv? :
V1+08V406419u2v2 +4 (408 4-9u2v2+4)V14+08  (14-06)v4v8 +9u2v24-4

It follows that the curvature C of (x,n, s) is given by

JE (u,v) = vvV4dob + 9u2v? + 4, KF(u,v) = —

3u(5v° — 1)
HY =— .
(u,v) 408 + 9u20? + 4
If we take
ASH(u, ) = — (40° + 9u?v? + 4)v/1 + 08

360°
(408 + Juv? + 4)3/2’

1
, sin 0% (u, v) = —

Yuv? + 64/1 + vb
v
V1402

cos 0% (u, v) =

14

V14?



then condition (12) is satisfied. Therefore, we have tangential direction framed surface
with respect to s of the framed surface (x,n, s), S'(x,n, s) = (x5, n5, s5),

x5 (u,v) = x(u,v) + X\ (u,v)s(u,v)
B 400 + uPv® + 4 400 + uPv® + 4

~ (u- v (u ).
uv? 4 6v/1 4 v° uv? 4 6v/1 4 v°
L t(u,v) + ———n(u,v)
= ——t(u,v) + —=n(u,v),
V1402 V1402
1 v

Sit
7N (u,v) = ————=t(u, V) + ————=
(u,0) \/1—|—U2( ) V1+v?

S,t(

n”"(u,v)

n(u,v).

Moreover, if we take AT*(u,v) = —A5!(u,v) and 07%(u,v) = —0%!(u,v), then we have
T% o S (x,n,s) = (x,n,s). Note that % at (0,0) is also a cuspidal cross cap.

T S

Lo kN ow s

=T R S TR

cuspidal cross cap « and (s, t)-Bertrand framed surface S*

Figures 2 : (x,n,s) and (,m,s) of Example 6.2
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