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Abstract

We present four, not standard constructions of the Boy surface as directly and elementary
as possible by pictures. The purpose of this is to give miscellaneous views of the Boy surface
so that they can give a clue to the realizations of the other surfaces and higher dimensional
manifolds, or to the visualizations of manifolds in the 2- or 3-spaces.

1 Introduction

The Boy surface in this short article means the image of a generic smooth immersion of the
real projective plane RP? in R? which is ambient isotopic to the image of the Mdbius strip
described in the book of F. Apéry [Ap], pp. 51-53 when a suitable open 2-disc is removed
off. In this book, it is called the direct Boy surface and is distinguished from its mirror called
the opposite Boy surface. However we call both of them simply as the Boy surface.

The locus of the self-intersection points of the Boy surface is an immersed loop with
one triple point. It is isotopic to a bouquet of the boundaries of the three embedded 2-
discs whose interiors are mutually mutually disjoint and is called the three-bladed propeller.
We denote it by P and call each 2-disc bounding a component loop of P a blade of the
propeller. A thin neighbourhood of P in the Boy surface is made of the zy-, yz- and zw-
plane sections of the unit box I3, I = [1,1], in R? and three copies of a crossed band X x I,
X = {(s,t) € I? C R?; st = 0} connecting them in a trivial manner, that means, the band
{t =0} x I of one X x I lies on the xy-plane, that of another X x I lies on the yz-plane,
and that of the third X x I lies on the zz-plane. The neighbourhood of P has four boundary
loops and three of them are capped by some 2-discs contained in the blades of the propeller P
(refer to Fig.20, [Ap]). The Boy surface is obtained by attaching the fourth embedded 2-disc
along the fourth boundary of this neighbourhood, or in other words, along the boundary of
the neighbourhood of P capped by its three blades.

We present three pictorial constructions of the Boy surface to provide its topological view
as directly and elementary as possible. We do not take their explicit parametrization into
account and sometimes we use combinatorial pictures to represent the Boy surface. This is
because we give priority to a better understanding of its topological shape. However every
combinatorial picture used in this article can be easily modified to a smooth one.

2 Putting membranes on a trefoil knot

The first model of the Boy surface we present is by putting membranes on a trefoil knot.
We take a trefoil knot K passing through the 6 vertices a1, ay, b1, by, ¢1 and ¢4 of the unit
box in R? in this order as given in Fig.1, upper. We assume that K is transverse to the
three rectangles aibsaqby, bicsbscy and ciagcqar. Let p, ¢, v be the intersection points of
K with these rectangles, respectively. Second, for later convenience, we take a three-bladed
propeller P having a triple point s at the origin of the box and passing through p, ¢, r so
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that its three blades sit in the three rectangles mentioned above. In the figure, the part of
P beneath the plane passing through p, ¢, r is presented by broken lines, for visibility. Note
that P is divided into the three regular arcs psq, gsr and rsp. We put two points as, az on
the arc ajay of K so that p, as, as are lined in this order. Similarly, we take two points bo,
b3 on the arc b1by and further two points co, ¢z on the arc c¢icq.

Now we put three membranes Bl, Rd, Bk, each of which is topologically a closed 2-disc,
on K as follows (refer to Fig.1, lower). The membrane Rd is spanned between the arcs byby
and coc1 so that it passes through by as a boundary point (lower left of the figure). One can
make Rd smooth and contain the regular arcs psq and psr of P because these two arcs are
tangent to a common plane at s by nature of P. Note that Rd is transverse to the arc ajas
of K at p, by nature of P.

The membrane Bl is spanned similarly between the arcs ajas and boby of K, passing
through a4, containing the arcs psq and gsr of P, and is transverse to cyco of K at ¢ (lower
middle of the figure). The membrane Bk is spanned similarly between the arcs cico and ajcq
of K, passing through ¢4, containing the arcs gsr and psr of P, and is transverse to b;by of
K at r (lower right of the figure).
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Fig. 1: Trefoil knot K (upper) and membranes Rd, Bl, Bk (lower)

The intersection of Bl and Rd is the regular arc psq of P, that of Bl and Bk is the
regular arc gsr of P and that of Bk and Rd is the regular arc rsp of P. One can make these
intersections transversal, that means, in a small neighbourhood of each intersection point in
R3, the union of the two membranes is diffeomorphic to the union of z = 0 and = = 0 or to
the union of z = 0 and the half plane z = 0, y > 0 restricted to the unit open 3-disc.

Note that each of the arcs ajas, b1by and cico of K is shared by two of the three mem-
branes Bl, Rd, Bk and one can make the two membranes pasted smoothly along these arcs.
We denote by Mo the union of Bl, Rd, Bk, which is illustrated in Fig.2, left. It is a Mobius
strip when each of its self-intersection point is regarded to be two distinct points, as seen
directly from the construction, and is actually an immersed Mobius strip having a triple
point at s, by the transversality mentioned above. The boundary of Mo is the simple loop
made by a1bs, babsby, byci, crasz, asasay, asby, bica, cacscy and cqaq, as seen in the figure.

By taking new arcs agby, bscy and czay, we can put the fourth membrane Top, a 6-gon
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Fig. 2: Mo (left) and 1/2-twisted band attaching (right)

whose boundary is made of aga4, aqcs, czcyq, c4b3, b3bs and bsaz, on K so that the three
sides agay, czcq and bzby are shared in common with the boundary of Mo. One can make
its interior disjoint from Mo by placing it over Mo and also make the attaching along the
common boundary sides smooth.

To make the union of Mo and Top closed, we attach three 1/2-twisted bands Bd;, Bds
and Bdj as follows (refer to Fig.2, right); the band Bd; is spanned smoothly between asas
and bycy so that the two side edge of the band are asbs and asc;. The bands Bds and Bds
are spanned similarly between byobs and cqaq and between cocs and agb;.

Theorem 2.1. Let Bo be the union of the four membranes Bl, Rd, Bk, Top and the three
1/2-twisted bands Bdy, Bda and Bds.

1. After smoothing, Bo is the image of an generic immersion of RP?.

2. Bo is the Boy surface.

Proof. 1. The union Mo of Bl, Rd, Bk is the image of a smooth and generic immersion of the
Mobius strip as mentioned. On the other hand, the union of Top and the three 1/2-wisted
bands is topologically an embedded 2-disc, and one can make it also a smoothly embedded
2-disc. Hence one can make Bo the image of a smooth and generic immersion of RP2.

2. Let N be the neighbourhood of the three-bladed propeller in the Boy surface after
the three bouquet loops of the propeller are capped by the blades of the propeller. We are
enough to show that Mo, which is Bo with a suitable embedded 2-disc removed, is isotopic
to N. The self-intersection locus P of Mo is the three-bladed propeller, up to isotopy, and
recalling that each blade lies on one of the membranes Bl, Rd, Bk, one can see in the picture
of Mo (Fig.2, left) that Mo deformation retracts to a subset of Mo which is isotopic to N. O

3 Construction from an embedded Mobius strip

We make the Boy surface by starting from an embedded Mobius strip. This construction
gives a reason why a trefoil knot appears in the previous construction and how the three-
bladed propeller appears in the Boy surface.

Consider first the embedded Mobius strip in R? as illustrated in Fig.3 (A), where the
three arcs ajas, b1ba, cico separate the Mobius strip into three rectangles. Then pull a
side of each rectangle to the location indicated by the broken lines so that they make a



triple point. The result illustrated in Fig.3 (B) is an immersed Md&bius strip whose locus
of self-intersection points is the three line segments meeting at a triple point. To make the
locus of self-intersection points closed, we stretch the three rectangles further so that each
makes a transverse intersection with one of the separator above, as illustrated in Fig.3 (C).
These moves are followed by a sequence of immersions and the final immersed Mé&bius strip
illustrated in Fig.3 (D) is the image of a generic immersion with one triple point. Its locus of
self-intersection points is a three-bladed propeller and it agrees with the one denoted by Mo
in Section 2. By attaching the three 1/2-twisted bands as before we obtain the Boy surface
(Fig.3 (E)).

pull

Fig. 3: Immersed Mobius strip Mo; (A) embedded Mobius strip (B) immersed one
with a triple point, (C) modification to make the self-intersection locus closed, (D)
Mo, (E) 1/2-twisted band attaching

Note Three arcs ajcsczca, c1bgbzbs and byagazas of the boundary of Mo combined with the
three separators cacq, boby and asa; of Mobius strip make a trefoil knot. It appears to make
the self-intersection locus of the immersed Mdébius strip Fig.3 (B) closed, as mentioned, and
the three-bladed propeller is obtained by this closing.

4 Realization by a combinatorial map

The Boy surface can be achieved by a combinatorial map of RP? to R2. Let us consider the
subdivision of RP? into four 6-gons Bl, Rd, Bk, Top and 4-gon neighbourhoods of the three
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points A, B, C, as in Fig.4 (A), where the boundary of the large triangle ABC is suitably
identified to represent RP2.

To define the map we take a frame in R® by points called vertices and some line segments
between them as follows. Take two unlinked triangle frames, and besides the vertices of
triangles put one extra vertex on each side of the triangles, and then take six line segments
between the vertices on the two triangles as in Fig.4 (B). We further attach the three-bladed
propeller P with triple point s to the frame at certain point p, g,  on each side of a triangle,
as in the figure. Now we map the 6-gons Top, Bl, Rd, Bk so that their boundaries are
mapped onto the positions indicated in Fig.4 (B-D). Note that the map on each piece is not
linear but smooth. We can adjust each piece so that the mutual intersections among Bl,
Rd, Bk form the propeller P, that means, the regular arcs psq, gsr and psr of P are the
loci of intersections of Bl and Rd, Bl and Bk, and Rd and Bk, respectively, and that these
intersections are transversal, and further that Top is disjoint from the other three, as in the
construction in Section 2.

(B) ©) (3]

Fig. 4: Combinatorial map from RP? to R3; (A) subdivision of RP2, (B) images of
Bl and Top, (C) those of Bl and Rd, (D) those of Bl and Bk. In (C,D), relevant part
of P is marked.

Next, the 4-gon neighbourhood of C are first made into a 1/2-twisted band Bdj; (Fig.5,
left) and then mapped so that the boundary edges are as indicated in Fig.5, right. Other
two 4-gon neighbourhoods of A and B are similarly made into the 1/2-twisted bands Bd;
and Bds, respectively, and then mapped as indicated in the figure.

Note that the piecewise linear loop made by the points a; — a4, by — by and ¢; — ¢4 in
Fig.4 (B) form a trefoil knot. Then it is direct to see that this map gives the combinatorial
representation of the construction in Section 2.

This construction of Boy surface implies the following observation.

Proposition 4.1. Let ® : RP? — R? be the combinatorial representation of the Boy surface
defined as above. It can be deformed to the momentum map ®g : RP? — R? onto a triangle,
of a linear O(1) x O(1) action on RP?.
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Fig. 5: Combinatorial map from RP? to R3 on the 4-gon neighbourhoods of A, B,
C; (left) make 1/2-twist, (right) positions where the twisted bands are attached

Proof. We give the deformation on the 4-gon neighbourhood of C in Fig.4 (A) as follows.
In R2, we move the triangle T in Fig.6, upper to the back of the image of T, so that the
images of a4 and by are moved toward those of co and c3, respectively. Then the map on the
4-gon neighbourhood of C is deformed to a map that folds a square into quarter, as in Fig.6,
upper. The deformations on the 4-gon neighbourhoods of A and B are similar.

On the three 6-gons Bl, Rd, Bk, we move their images in R? as illustrated in Fig.6, lower,
that means; the images of the edges bscy and asas, cqsa; and bobs, aqb; and cocs are made
close to each other, respectively. As a result, the images of ¢icy and agay and other two
similar pairs of edges are made close, and hence the images of Bl, Rd and Bk are moved to
the same truncated triangle as indicated in the figure.

Fig. 6: Deformation of the combinatorial map; (upper) on the 4-gon neighbourhood
of C, (lower) on the 6-gon Bl

The deformations on the above pieces are well pasted and extend to the 6-gon Top, so
that the final map of this deformation is the map of RP? onto a triangle indicated by ABC
in Fig.6, lower right. It is the momentum map of the O(1) x O(1) action on RP? that folds
the large triangle ABC in Fig.4 (A) into a quarter triangle ABC along the three lines AB,
BC and CA O



5 Putting membranes on a chain of three twisted loops

We construct the Boy surface from a cyclic chain of three loops in R3. Each pair of the loops
meet at a point so that the tangent lines are different, and each loop is a trivial knot, that
means, bounds an embedded 2-disc, but is not on any plane and makes a figure eight shape
when it is orthogonally projected to the plane passing through the three intersection points
of the chain, as illustrated in Fig.7. We put points a1, as, by, b3 on a loop, by, ba, c4, c3
on another loop, and ¢y, ¢o, a4, az on the third loop, and further attach the three-bladed
propeller P to this chain at certain three points p, q, r as in the figure. We may adjust P
and the chain so that at the intersection points, each of the arcs ajas, b1bs, ¢1co is transverse
to the plane on which the blade of P lies. We denote by s the triple point of P.

Fig. 7: Cyclic chain of three loops (bold part)

We put membranes Bl, Rd, Bk on the chain of loops as in Fig.8 so that the regular arcs
gsp and rsq of P mentioned in Section 2 are on Bl, gsp and psr are on Rd and psr and
rsq are on Bk. This implies that the locus of intersection among Bl, Rd, Bk is P and one
can make the membranes so that the intersection of any two is transversal, as mentioned in
Section 2. The intersection of Rd, Bl, Bk with the chain at p, g, r, respectively, are then
transverse. We put the final membrane Top on the chain so that it is disjoint from any of
BIl, Rd, Bk except the chain, as in the figure.

Fig. 8: The membranes Bl, Rd, Bk and Top attached to the cyclic chain

The obtained object is the same one as in Section 4 as seen in Fig.9; each component
loop of the chain can be identified with the loop obtained from certain two edges of the
fame used in Section 4 (for the loop c¢iceaqas in Fig.9 right, for example, they are cjce and
aszay in Fig.9 left) by jointing them using certain two arcs in Bd;, Bds or Bdz (one in Bd;
connecting co and a4 and another in Bds connecting az and ¢;, for the above example). The
membrane Bl in this section, for example, is the union of a quarter piece of Bd; divided by
the chain, another quarter piece of Bds divided by the chain, and the 6-gon Bl in Section 4, as
illustrated in Fig.9 by the regions with dotted boundary. Hence the object we have obtained
by putting membranes on the chain is, after suitable smoothing, the Boy surface. We note
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that this chain is a cannonical divisor, which can be seen in Fig.4 (A) without so much
difficulty.

Fig. 9: Membrane Bl in the combinatorial construction and its corresponding mem-
brane attach to the cyclic chain

Note: apparent contour of the Boy surface through an orthogonal projection We
note that each Boy surface in the previous constructions, after suitably smoothed, admits
an apparent contour through an orthogonal projection from R? to R? depicted in Fig.10.

locus of self-intersection points

Fig. 10: Apparent contour of the constructed Boy surface in R?
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