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Abstract

We define the Blaschke-like map on a domain with a parabola boundary using conformal deformation
and study the geometric properties of the maps. In particular, we give an extension of Chapple’s theorem
and show each Poncelet’s triangle inscribed in a parabola and circumscribed about an ellipse constructed
from a Blaschke-like map.

1 Introduction

Every triangle is bicentric, i.e., it has both an inscribed circle and a circumscribed circle. The distance d
between the circumcenter and incenter of a triangle is given by d?> = R(R — 2r), where R and r are the
circumradius and inradius, respectively. In particular, if the circumscribed circle is the unit circle, then
the distance is given by d? = 1 — 2r. This formula is known as Chapple’s formula [Cha46].

This Chapple’s formula gives no information about the location of the triangle. But the following
Poncelet’s theorem [Pon66] guarantees that any point on the outer circle can be a vertex of an inscribed
triangle. See [F1a08] for details about Poncelet’s theorem.

Theorem 1 (Poncelet [Pon66])

Let Ey and E5 be two conics. If there exists an n-sided polygon inscribed in E; and simultaneously
circumscribed about Es, then for any point Py of E1, there exists an n-sided polygon with P, as a vertex,
inscribed in Ey and circumscribed about Es.

The n-sided polygon that satisfies the above conditions is called Poncelet n-polygon with respect to
Ey and E5. The above Chapple’s formula and Poncelet’s theorem are the subject of algebraic geometry.
Here we approach these problems analytically.

A Blaschke product of degree d is a rational function defined by
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In the case that § = 0 and B(0) = 0, B is called canonical.
For a Blaschke product of degree d, set
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Then, the composition fs o B o f; is a canonical, and geometric properties with respect to the preimages
of B and f; 0 B o f; are the same. So, we will only consider canonical Blaschke products in the following
discussions.

Remark that there are d distinct preimages z1,--- ,z4 of A € 0D by B because the derivative of B
has no zeros on 9D (see, for example, [Mas13]).



Let z1,--- ,zq be the d distinct preimages of A € dD by B, and £, the set of lines joining z; and z;
(j # k). Here, we consider the envelope Ig of the family of lines {€)} ep. We call the envelope Ig the
interior curve associated with B.

The interior curve associated with a Blaschke product of degree 3 forms an ellipse, and corresponds
to the inner ellipse of Poncelet’s theorem. See also [Fuj13] for the case of degree 4.

Theorem 2 (Daepp, Gorkin, and Mortini [DGMO02])
Let B(z) = z 12 —_a 1Z _l_) be a canonical Blaschke product of degree 3. For A € 0D, let 21, z2, and
—az ]l — 0z
z3 denote the points mapped to A under B. Then the lines joining z; and zy, for j # k are tangent to the

ellipse £ with equation

|z —al+ ]z —0b] =1 —ab|.

The following result guarantees that any 3-inscribed ellipse, i.e., Poncelet’s inner ellipse of a triangle,
in 0D can be constructed from a Blaschke product of degree 3.

Theorem 3 (Frantz [Fra04])
For the case of a triangle inscribed in D, the ellipse F is a Poncelet’s inner ellipse if and only if E is the
interior curve for some Blaschke product of degree three.

The two theorems above allow the result of Chapple’s formula to extend the inner circle to the inner
ellipse. If we could extend the outer circle to a conic in the above theorems, would we obtain a result
more similar to Poncelet’s theorem? In [Fuj23], we extended the outer circle to an ellipse. The main aim
of this report is to extend the outer circle to a parabola.

2 Blaschke-like maps on a domain with parabola boundary

Let 9, be
1—w
s=hw) = (1

and P, = {36 C; z = x +1iy, y?> + 4tz > 0}. Then, ¥, conformally maps D onto P; and continuously
maps D to P; (see Fig. 1).

+t)2—t2 (t > 0),

Figure 1: The map ; conformally maps ID onto P;.

Any two parabolas are similar to each other. So, without loss of generality, we can assume ¢t = 1. Let

Pw) = gy (w) = BT )

(14 w)? and P=P; = {2 € C; z =x +iy, y> + 4z > 0}.



For a canonical Blaschke product B, let By, =1 oBo YL
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Since (3—(2+w))(1+(2+w))

(1-(24w))?
holds, the map ¢ conformally maps {|w + 2| < 1} onto P as well as conformally maps D onto P. So, for

each z € P we can choose a unique branch ¢~! that satisfies |w| < 1. Hence, By, is well-defined and maps
IP onto itself. We call By, a Blaschke-like map associated with B and 1.

v(=2+w) = = 9 (w)

For Blaschke-like map associated with a canonical Blaschke product of degree 3, we have the following
results (see Fig.2 and [FG24]).

Theorem 4
Let By, be a Blaschke-like map associated with a Blaschke product B of degree 3 and . Then, the
interior curve with respect to By is an ellipse.

Proof Using Risa/Asir, a symbolic computation system, a defining equation of the interior curve is
given by . -
¢V () =U2+Pz+UZ+V2+VZ4+Q =0,

where
U= (lab2 — 1) — 2(a + b+ 2)(@+ b)(|ab|> + 1) + 4(a + b)(@> + ") + 4(@ — b)* + |a + b[*,
P=2((|ab]* = [a+b]*)* —2(a+ b+a+b+1)(Jab]> — [a + b]> + 1)
— 4ab(@+ b+ ab) — 4ab(a + b+ ab) — 5),
V = —4((|ab]* — |a +b|* + 1)* + (|ab]* — 1)(a + b — (@+b))
—@+0)(a+1)*+ b+ + (a+b—2)@ +b +2) +4(ab + 2)),
Q=4((lab]® = |a+b[*)* +2(Jab|* + 1)(a + b+a+b—3)
—2@+b)(a®+ %) — 2(a+ )@ +5°) + (a — b)> + (@ b)* +3).
Here, P and @ are written as
P= 2((|ab|2 — |a+b]*)* — 2(2Re(a + b) + 1)(|ab|* — |a + b* + 1)
~ SRe(ab(a+b+ab)) - 5),
Q = 4((|ab]* = |a + b[*)* + 2(|ab|* + 1)(2Re(a + b) — 3) — 4Re((a + b)(a® + b?))
+ 2Re((a — b)?) + 3).
Hence, P,Q € R, and g}f’(z) = 0 gives a defining equation of a conic.

Next, we need to check P? — 4UU > 0 in order to verify that g}b(z) = 0 gives a defining equation of
an ellipse. We have,

P? —AUU
— —6411 — abb|(1 — [af*)(1 — o) ((1 — [af2)(1 = [b*) — 4(1 ~ Re(a)) (1 ~ Re(2))).



The last factor of the above equality is written as
(1~ Ja)(1 — [b]%) ~ 4(1 ~ Re(a)) (1~ Re(b))
< (1 —Re(a)®) (1 — Re(b)*) — 4(1 — Re(a)) (1 — Re(b))
= (1= Re(a)) (1 = Re(b)) ( (1 + Re(a)) (1 + Re(b)) — 4).

Since —1 < Re(a), Re(b) < 1, the last factor is negative and (1—|a|?)(1—|b[*)—4(1—Re(a)) (1-Re(b)) < 0
holds. Therefore, P2 — 4UU > 0 and the conic defined by g?’(z) = 0 is an ellipse or its degenerate. 1

Remark 1
On the unit circle 0D, v is written as

—w 4+ 3w — 2
\If V) = =
(’LL) ¢|81D>(w) w+T+2 ;
that is,
v oD — oP
w w
The inverse is given by
_ _ -2z —2
VE =9 () = 55
that is,
(s P — oD
w w
iy - —IH 42

Note that ¥ maps the unit circle to the parabola OP, and ¥~ maps 0P to oD.
Let gr(w) = 0 be a defining equation of the ellipse |w — a| + |w — b| = |1 — ab|, i.e., the interior curve
- —b
of B(z) =z 1Z _a lz o Then, from the calculation of substitutions, we can verify the following
—az ]l — 0z

(z+7 2%, 0 U 1(2) = g} (2),

and

1 —
51w T T+2)%g] 0 (w) = gr(w).

The map ¥ has the following properties.

Lemma 5
U is a map which corresponds a line on the z-plane to a line on the w-plane.

Proof Consider a line on the z-plane L(z) =az+az+ =0 (5 €R).

Then,
1 _ _ — _ .
LEW) = —— ((3@ — @+ B)w+ (33 — a+ B)T — 4Re(a) + 2/3) =0 (w# 1)
The factor
Ba—a+ p)w+ (3a—a+ B)w — 4Re(a) + 26 =0
represents a line on the w-plane. 1
Lemma 6

U is a map which corresponds an ellipse on the z-plane to an ellipse on the w-plane.



Figure 2: The envelopes indicate the interior curves of the Blaschke-like maps associated with the canon-
ical Blaschke products with zeros 0, % + %i, —0.3 — 0.2¢ and ¢ (upper) and 0, —0.7, —0.2 — 0.7i

and ¢ (lower), where ¢)(w) = W



Proof Consider an ellipse E in the z-plane that is contained in the C\ P and is given by the equation
|z —¢| + |z — d| = r. Note that ¢,d € C\ P. This ellipse has following general form,

ER)=(z-0)Z-0)+Gz-d)EZ—-d) —r)?—-4(z- )z —-0)(z —d)(z—d)
= (- 3)222 +2(Je — d|2 — 27‘2)224— (c— d)222
—2((e—d)(|e]* — |d*) — (e + d)r?)z — 2((c — d)(|e> — |d|*) — (¢ + d)r?)Z
+ (le|? = |d|*)? = 2(|c]* + |d*)r* +r* = 0.

1

Then, we have E(¥(w)) = [CEEDE
W+ W

(Tw? + pw + uw? + Tw + v + q) = 0, where

w=r*—2((d—3)d+ €+ 1)c+d—3¢—6)r*+(d — 3)d+ (—¢— 1)c +d + 32)°,

p= 2(r4 —2((d—1)d+ (E— ) —d—z+ 10)r2
+((d—3)8+(—6—1)c+d+35)((d+1)3+(—E+3)c—3d—5)),

v= 4(r4 —2((d-1)d+ (c+1)c+d—c—2)r?
+((d—3)E+(—6—1)c+d+35)((d+1)21+(—6—1)c+d—5)),

q= 4(7’4 —2([d+1)d+ @+ De+d+ec+2)r*+ ((d+1)d+ (¢ — 1)c+d—E)2>.

Moreover, the coefficients p and ¢ are expressed as
p= 2(r4 —2(|d[2 + |e|> — 2Re(c + d) + 10)r2 + [|d|> — [c[?> — 3d+d — c + 3Ey2> eR,

and
q= 4(r4 —2(|d]> + |c|* + 2Re(c + d) + 2)7* + (|d|* — |c|* + 2Re(d — c))2) €R,

respectively. Therefore, the factor Tw? + pww + uw? +vw +vW + ¢ = 0 represents a conic on the w-plane.
Next, we will check p? — 4uw > 0. In fact, we have

p® —duu = —256r2(r? — |d +¢ — 2|*)(r? — |c — d|?).

Since E is an ellipse, the inequality 72 > |c — d|? holds and the last factor of the right side of the above
equality is positive. So, we need to check r? < |d + ¢ — 2|? holds.

Now we will show that the ellipse E(z) = 0 intersects the imaginary axis if r2 = |d + ¢ — 2|2, The
intersection points of the ellipse E (z) = 0 and the imaginary axis are given as the solution to the equation

(Re(c+d) — 2)°2% + 2(21m<c +d)(Re(c+d) — 1) — Re(c + d)Im(cd))iz
+4(Re(c+ d) — 1)* = 2(Re(c+ d) — 1)Re(cd) — Im(cd) = 0, (1)
where (1) is obtained by eliminating z from E(z) = 0 and z + z = 0. The above equation (1) has two
pure imaginary solution,
1
(Re(c+d) —2)
+2|c +d — 2| /2(Re(c) — 1)(Re(d) — 1)(Re(c + d) — 1))1. (2)

. (Re(c + d)Im(cd)) — 2Im(c + d)(Re(c + d) — 1)

Therefore, the ellipse E (z) = 0 and the imaginary axis intersect at exactly two points. Such an ellipse
always intersects with OP. So, the ellipse defined by E(z) = 0 with 72 > |d +¢— 2|? always intersects OP.
This is contrary to the assumption that E contained in the C\ P.



Therefore, 72 < |d + ¢ — 2|2 holds, and we have p? — 4u@ > 0. Hence, E(¥(w)) = 0 gives a defining
equation of an ellipse or its degenerate. ]

Although ¥ is not conformal, we can see that the point of tangency between a line and an ellipse
corresponds to the point of tangency between a line and an ellipse.

Theorem 7 _
For the parabola 0P, Cs is a 3-inscribed ellipses in C\ P if and only if Cy is the interior curve with respect
to a Blaschke-like map By for some Blaschke product B of degree 3 and 1.

Proof From Theorem 4, since the interior curve of B, is a 3-inscribed ellipse in C \ P, it is sufficient
to show that any 3-inscribed ellipse in C \ P is the interior curve of Blaschke-like map for some Blaschke
product of degree 3 and .

Suppose that Cy is a 3-inscribed ellipse in C\ P. That is, there exists a triangle Aabe inscribed in P
and circumscribed about Cs.

From Lemmas 5 and 6, the map U~! maps the parabola dP, Aabc inscribed in 0P, and Cy inscribed
in Aabc to the unit circle D, and the triangle A( = Ay~ (a)y~1(b)yp~!(c)) inscribed in dD, an ellipse

E inscribed in A, respectively.
From Theorem 3, this ellipse E is the interior curve for some Blaschke product B of degree 3. From

the construction method, it is clear that C5 is the interior curve of the Blaschke-like map associated with
B and . ]

Although the details are omitted here, the characterization of an ellipse inscribed in a triangle inscribed
in the parabola OP is given as follows. For the parabola 0P and the ellipse E : |z —c|+ |z —d| = r
(c,d € C\ P), if there is a triangle inscribed in JP and circumscribed about E, then r satisfies the
following condition,

" +2(2Re (cd) — e — 4> = |[d — 4]*)r* + [(c — d)* — 8(@4—8)’2 =0.

For a positive solution r of the above equation, if £ C P, then there is a Poncelet triangle with respect
to 0D and OP.

Remark 2

For a quadrilateral inscribed in the unit circle, an ellipse E is a Poncelet’s inner ellipse if and only if E
is an interior curve of the composition of two Blaschke products of degree 2 ([Fuj13, Theorem 2]). So,
Fusse’s theorem on bicentric quadrilateral can be extended in a similar way.

The hyperbolic case remains. This is a future work in progress.
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