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§1. Introduction

In this paper, we propose a new and efficient method that is applicable
for the computation of the Fourier transform of a function which may possess
a singular point or slowly converge at infinity. The proposed method is based
on a generalization of the method of the double exponential (DE) formula;
the DE formula is a powerful numerical quadrature proposed by H. Takahasi
and M. Mori in 1974 [1]. Although it is a widely applicable formula, it is not
effective in computing the Fourier transform of a slowly decreasing function.
Actually it is not very efficient even if one wants to compute the value of
a Fourier transform at a particular point, i.e., a Fourier-type integral. To
conquer this weakness at least for a Fourier-type integral, M. Mori and the
author proposed a new DE formula in 1991 [2]. See also [3] for a further
improvement. The method proposed there is effective for Fourier-type integrals,
but it is still weak in the computation of the Fourier transform. Here we propose
another DE formula which is applicable to the computation of the Fourier
transform. One point in the new method proposed here is that it makes use of
fixed sampling points even if we change the point where the Fourier integral is
evaluated.

In this paper we propose the new method and illustrate the efficiency of
the new method in several concrete examples through the comparison with the
older methods.
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§2. DE Formula for Integrals

We first review the classical DE formula for integrals. For the sake of sim-
plicity, we restrict ourselves to the following integral including a sine function
and a parameter ω > 0

(2.1) I =
∫ ∞

0

f(x) sinωx dx,

assuming that f(x) converges very slowly as x → ∞. We apply to (2.1) a
variable transformation

(2.2) x = Mϕ(t), ϕ(t) =
t

1 − exp(−2t − α(1 − e−t) − β(et − 1))
,

where M, α, and β are positive constants, and obtain

(2.3) I =
∫ ∞

−∞
f(Mϕ(t)) sin (ωMϕ(t))Mϕ′(t) dt.

Applying the trapezoidal rule with mesh size h, we have

(2.4) Ih = Mh

∞∑
n=−∞

f(Mϕ(nh)) sin (ωMϕ(nh))ϕ′(nh).

We assume that M satisfies ωMh = π. Then, sin (ωMϕ(nh)) → sin nπ = 0
rapidly as n → ∞ since ϕ(t)/t → 1 as t → ∞, and (2.4) converges to I in (2.3)
very quickly. Thus, the following formula is obtained [3].

Approximation Formula 1. Choose h > 0 and two integers N+ and
N−. Compute

(2.5) I
(N)
h =

π

ω

N+∑
n=−N−

f
( π

ωh
ϕ(nh)

)
sin

(π

h
ϕ(nh)

)
ϕ′(nh),

where the parameters of ϕ(t) are chosen as α=β/
√

1 + log(1 + π/(ωh))/(4ωh),
β = 0.25. If N = N− + N+ + 1 is appropriately chosen, the error is bounded
as |I − I

(N)
h | < c′ exp(−c/h) < C ′ exp(−CN/ log N) for typical f ’s, where

c, c′, C, C ′ are positive constants depending only on f(x) and ω.

The integrand and the sampling points in the case of f(x) = x−1/2 and ω =
1 are shown in Figure 1. We can see that the sampling points are dependent on
the period π/ω. We note that the change of ω forces the change of the sampling
points. Hence, the computation on varying ω’s of the Fourier transform using
Approximation Formula 1 requires many sampling points.
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Figure 1. Integrand of (2.3) and sampling points of (2.4).

§3. DE Formula for Transforms

We now propose a new method. We will derive an approximation formula
for the Fourier transform

(3.1) F (ω) =
∫ ∞

0

f(x) exp(iωx) dx.

By applying the variable transformation (2.2), we obtain

(3.2) F (ω) =
∫ ∞

−∞
f(Mϕ(t)) exp (iωMϕ(t))Mϕ′(t) dt.

Next we define

(3.3) E(ω) =
∫ ∞

−∞
f(Mϕ(t)) exp (iωMϕ(t) − iω0Mϕ̂(t))Mϕ′(t) dt,

where ϕ̂(t) = ϕ(t) − t and ω0 is a positive constant to be fixed later. Then,
|E(ω)| is very small for large M , and the order is

|E(ω)| = O(exp(−d′M min(ω, ω0)))

for typical f ’s, where d′ is a positive constant depending on f(x). As the proof
of this fact is rather complicated, it will be given elsewhere. We calculate
F̃ (ω) = F (ω) − E(ω) instead of F (ω). Then,

F̃ (ω) =
∫ ∞

−∞
f(Mϕ(t)) exp

(
iωMϕ(t) − i

2
ω0Mϕ̂(t)

)
(3.4)

· 2iM sin
(

1
2
ω0Mϕ̂(t)

)
ϕ′(t) dt.

Since ϕ̂(t) → 0 as t → +∞ and ϕ′(t) → 0 as t → −∞,
∣∣sin (

1
2ω0Mϕ̂(t)

)
ϕ′(t)

∣∣
converges to zero rapidly as t → ±∞. Therefore the integrand of F̃ (ω) is a
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function to which we can readily apply the ordinary DE method. This means
that we can choose the mesh size h independently of ω. As an illustration, the
imaginary parts of the integrands of F (ω), E(ω) and F (ω) − E(ω) in the case
of f(x) = x−1/2 are shown in Figure 2. To compute integral for ω ∈ (0, 2ω0),
it suffices to choose M = π/(ω0h). Then, the following formulas are obtained.

Approximation Formula 2. Let us compute the integral (3.1) for ω

in the interval (0, 2ω0). Then, the approximation formula we propose is as
follows:

F̃
(N)
h (ω) =

2πi
ω0

N+∑
n=−N−

f

(
π

ω0h
ϕ(nh)

)
sin

( π

2h
ϕ̂(nh)

)
ϕ′(nh)(3.5)

· exp
(

πiω
ω0h

ϕ(nh) − πi
2h

ϕ̂(nh)
)

,

where the parameters of ϕ(t) is chosen as α=β/
√

1 + log(1 + π/(ω0h))/(4ω0h),
β = 0.25. This formula is approximated in the interval 0 < ω < 2ω0, and the
error is bounded by |F (ω)− F̃

(N)
h (ω)| < c′0e−c0/h + c′1e−c1ω/h + c′2e−c2(2ω0−ω)/h,

where ci, c
′
i are positive constants depending on f(x) through d′.

Once ω0 is fixed, the sampling points of Approximation Formula 2 need
not be changed. Moreover, the imaginary part of Approximation Formula 2
in the case of ω = ω0 is the same as Approximation Formula 1. Therefore,
Approximation Formula 2 is a generalization of Approximation Formula 1.
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Figure 2. Integrands of (3.2), (3.3), (3.4).
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§4. A Numerical Example

To illustrate the effectiveness of the proposed method, we consider the
following integral:

(4.1) F (ω) =
∫ ∞

0

log x√
x

exp(iωx) dx,

which cannot be computed efficiently by the FFT-based method since the in-
tegrand has a singularity at x = 0 and decays very slowly as x → ∞. Figure 3
shows the absolute error of the computation by using Approximation Formula
2 with parameters ω0 = 1, h = 0.075, N− = 94, N+ = 69. In the parameters,
the interval of effective accuracy is 0 < ω < 2ω0 = 2. The computation was
done in double precision (53-bit precision) so the round-off error is about 10−15.
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Figure 3. |F (ω) − F̃
(N)
h (ω)|, (h = 0.075, N− = 94, N+ = 69).

Figure 4 and Figure 5 show the absolute error when the mesh size h is
changed on the same computation environment. We observe that the interval
of effective accuracy becomes larger if the mesh size h is reduced. Here we
note the following: when the mesh size h is reduced the accuracy improves but
bigger N+ and N− are needed. To compute for a wider range of ω, the method
of changing ω0 and the re-computation is recommended.

§4.1. Comparison with a conventional method

Let us compare the labor we need to compute (4.1) approximately by our
new method and that by the conventional DE method: we want to compute
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Figure 4. |F (ω) − F̃
(N)
h (ω)|, (h = 0.15, N− = 44, N+ = 35).
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Figure 5. |F (ω) − F̃
(N)
h (ω)|, (h = 0.03, N− = 253, N+ = 173).
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(4.1) with the absolute error tolerance 10−12 and the interval of ω is set to 0.5 ≤
ω < 1.5. We computed 128-point transform F (0.5+k/128), k = 0, 1, 2, · · · , 127.
Table 1 shows the total number N of the function evaluations and the execution
time.

Table 1. Comparison of quadrature methods.

h N
CPU time

(Xeon 3.06GHz + gcc3.2)
Proposed DE (Formula 2) 0.075 164 0.07 m sec

DE Formula [3] (Formula 1) 0.15 20096 2.42 m sec

As another example, let us consider

(4.2) F (ω) =
∫ ∞

0

1√
1 + x2

cos(ωx) dx.

This time we also try another powerful method: the continuous Euler transfor-
mation [4] with FFT, which is applicable to (4.2). The absolute error tolerance
is set at 10−12 and the interval of ω is set to 0.5 ≤ ω < 1.5. We computed
128-point transform. Table 2 shows the result of the computation.

Table 2. Comparison of quadrature methods.

h N
CPU time

(Xeon 3.06GHz + gcc3.2)
Proposed DE (Formula 2) 0.075 157 0.04 m sec

DE Formula [3] (Formula 1) 0.15 9856 0.89 m sec
Continuous Euler Transf.+FFT π/16 2049 0.12 m sec
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