
Semantic evaluation, intersection types and
complexity of simply typed lambda calculus
Kazushige Terui1

1 RIMS, Kyoto University
Kitashirakawa Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
terui@kurims.kyoto-u.ac.jp

Abstract
Consider the following problem: given a simply typed lambda term of Boolean type and of order
r, does it normalize to “true”? A related problem is: given a term M of word type and of
order r together with a finite automaton D, does D accept the word represented by the normal
form of M? We prove that these problems are n-EXPTIME complete for r = 2n + 2, and
n-EXPSPACE complete for r = 2n+ 3.

While the hardness part is relatively easy, the membership part is not so obvious; in particular,
simply applying β reduction does not work. Some preceding works employ semantic evaluation
in the category of sets and functions, but it is not efficient enough for our purpose.

We present an algorithm for the above type of problem that is a fine blend of β reduction,
Krivine abstract machine and semantic evaluation in a category based on preorders and order
ideals, also known as the Scott model of linear logic. The semantic evaluation can also be
presented as intersection type checking.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases simply typed lambda calculus, computational complexity, denotational
semantics, intersection types

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Beta reduction vs. semantic evaluation. Let us begin with a simple puzzle. Consider
the simply typed lambda calculus. For every simple type σ, let N(σ) := (σ → σ)→ (σ → σ).
Then every Church numeral n has type N(σ), and the exponentiation function 2x has type
N(σ → σ)→ N(σ) for an arbitrary σ. Let B := o→ o→ o (where o is the base type) and
tt := λxy.x : B.

Now the question is as follows. Fix a type σ and a closed term M of type N(σ) → B.
Then what is the computational complexity of deciding whether Mn =β tt, when n ranges
over the set N of natural numbers?

Since arbitrary hyperexponential functions are available in M , one might be tempted to
answer that it requires hyperexponential time in n in general. Although it is true if one uses
β reduction, there is actually a much more efficient algorithm, according to which it can be
decided in linear time in n, for fixed M , with a huge coefficient depending only on σ.

Such an algorithm is most easily provided by semantic evaluation in the category Set of
sets and functions. Define [[o]] = {0, 1} and [[σ → τ]] = [[τ]][[σ]]. The denotation [[n]] of n can
be computed by induction on n, and each inductive step requires only constant time (which
depends on σ). We then apply the function [[M]] (which may be precomputed independently

© Kazushige Terui;
licensed under Creative Commons License NC-ND

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

Order 2 3 4 5 6 7
Complexity P PSPACE EXPTIME EXPSPACE 2-EXPTIME 2-EXPSPACE

Figure 1 Time-space alternation in simply typed lambda calculus

of n) to [[n]]. Since the semantics is sound and [[tt]] 6= [[ff]], we can check if Mn =β tt by
comparing [[Mn]] with [[tt]]. Clearly the total runtime is linear in n.

This demonstrates that β reduction is desperately inefficient for computing a finite-valued
function in simply typed lambda calculus. It may be ascribed to the fact that β reduction is
a versatile machinery independent of typing, so that it does not take advantage of the type
information at all. In contrast, semantic evaluation fully exploits the type information and
that is the main reason why it is so efficient for some problems.

Order and complexity. Turing to a more general situation, it has been observed by
Statman [20] that the problem of deciding β-equivalence (or βη-equivalence) of two simply
typed terms is not elementary recursive. The explosion of complexity is caused by the
increase of the order of the input terms. Hence it is interesting to study the complexity of
Statman’s problem with restricted order. In this context, Schubert [19] has shown that the
problem of deciding β-equivalence is PTIME complete for terms of order up to 2, and is
PSPACE complete for terms of order up to 3, provided that one of the input terms is in
normal form.

In the meantime, a curious phenomenon on the order and complexity has been observed
in some extensions of simply typed lambda calculus. Goerdt and Seidl [8] have studied
interpretations of higher type primitive recursive definitions (i.e. System T terms) in fi-
nite structures, and proved that terms of order 2r+2 characterize r-EXPTIME predicates,
while terms of order 2r+3 characterize r-EXPSPACE predicates. Namely, time and space
complexity classes alternate when the order increases. Similar results have been shown by
Kristiansen and Voda [14, 13] for System T withour successor and by Hillebrand and Kanel-
lakis [9] for simply typed lambda calculus with equality test. A remarkable similarity among
all these works is that they employ a hybrid algorithm that mixes β reduction and semantic
evaluation in Set.

About this paper. The goal of this paper is to show a similar time-space alternation
result in plain simply typed lambda calculus. We consider the following decision problems
(see the next section for precise definitions of order r and word type W).
1. Bool(r): Given a closed term M : B of order r, does M reduce to tt?
2. RegLang(r): Given a closed term M : W of order r and a nondeterministic finite

automaton D, does D accept the word represented by the normal form of M? (The size
of D is defined to be the number of states.)

3. Term(r): Given a closed term M : τ of order r and another term N : τ in normal form,
do we have M =βη N?

We prove:

I Theorem 1 (Time-Space Alternation).
1. Bool(2r + 2) and RegLang(2r + 2) are complete for r-EXPTIME.
2. Bool(2r + 3) and RegLang(2r + 3) are complete for r-EXPSPACE (see Figure 1).

The third problem, that is essentially Schubert’s problem, is subtle and will be discussed
in Section 5.

K. Terui 3

To show the membership part, we basicaly follow [8, 9, 14] and employ a hybrid algorithm.
However, it turns out that evaluation in the category Set is not efficient enough for our
purpose (see Subsection 4.2). We are thus led to work in another cartesian closed category
that arises by the Kleisli construction from a model of linear logic based on prime algebraic
complete lattices and lub-preserving maps [10], or equivalently based on preorders and order
ideals [23, 24]. It is simply called the Scott model of linear logic in [6]. Evaluation in this
category can be expressed as type checking in an intersection type system that is essentially
due to [18], and is similar to the essential type assignment system [21, 22]. Our algorithm
also employs the mechanism of Krivine’s abstract machine (KAM, [15]).

The rest of this paper is organized as follows. Section 2 is a preliminary, Section 3
introduces the semantics and the associated intersection type system, and Section 4 discusses
some optimization techniques. Sections 5 proves the membership part of Theorem 1, while
Section 6 proves the hardness part. Finally, Section 7 concludes the paper.

2 Preliminary

Given a set Q,]Q denotes its cardinality. Similarly,]Γ denotes the length if Γ is a list. The
hyperexponential function hyp is defined by: hyp(0, n) := n and hyp(r + 1, n) := 2hyp(r,n).
We let hyp(−1, n) := logn for convenience.

We write poly(x) to denote a function bounded by some polynomial in x that depends
on the context. The hyperexponential complexity classes are defined by r-EXPTIME :=⋃
c>0 DTIME[hyp(r, nc)] and r-EXPSPACE :=

⋃
c>0 DSPACE[hyp(r, nc)]. In particular,

we have 0-EXPTIME = P and 0-EXPSPACE = PSPACE. The classes r-AEXPTIME
and r-AEXPSPACE are similarly defined by means of alternating Turing machines. The
following relations are fundamental:

r-AEXPTIME = r-EXPSPACE, r-AEXPSPACE = r + 1-EXPTIME.

We work on the simply typed lambda calculus with a single base type o and without
any term constants; the restriction to the single base type is inessential. So types are of the
form o or σ → τ . Provided that countably many variables xσ, yσ, zσ, . . . are given for each
type σ, terms are generated by the following rules, where x �M : τ indicates that M is a
term of type τ whose free variables are among the list x:

x = xσ1
1 , . . . , xσnn

x� xi : σi
x, yσ �M : τ

x� λyσ.M : σ → τ
x�M : σ → τ x�N : σ

x�MN : τ

We often omit type superscripts and adopt the variable convention. We write M : σ or Mσ

to indicate that M is of type σ. By a subtype of σ, we simply mean a type occurring in σ as
a subexpression (which has nothing to do with subtyping disciplines). We omit parentheses
in the standard way, and write σn → τ for σ → · · ·σ → τ (n times).

Data types for Boolean values, natural numbers and binary words are given by:

B := o→ o→ o tt := λxy.x : B
ff := λxy.y : B

N := (o→ o)→ (o→ o) n := λfx.fnx : N
W := (o→ o)2 → (o→ o) w := λf0f1x.fin(· · · fi2(fi1x) · · ·) : W.

where n ∈ N and w = i1 · · · in ∈ {0, 1}∗.
Suppose that a term M has a subterm of type σ, and τ is a subtype of σ. The set of all

such subtypes τ is denoted by Type(M).

4 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

The order and arity of a type σ are inductively defined by:

Order(o) := 0 Order(σ → τ) := max(Order(σ) + 1, τ)
Arity(o) := 1 Arity(σ → τ) := Arity(τ) + 1.

(We define Arity(o) = 1 rather than 0 just to make calculation easier.)
The order (resp. arity) of a term M is the maximal order (resp. arity) of any type in

Type(M). The size |M | of M is the number of nodes in the term formation tree for M . |σ|
is similarly defined. We denote by Λ(s, a, r) the set of terms of size ≤ s, arity ≤ a and order
≤ r.

Let M : σ. Our definition of |M | does not take into account the size of a type occurring
in it. However, this does not cause any practical problem, since the size of such a type can
be bounded, up to some optimization, in terms of |M |, |σ| and the order of M . In more
detail, let τ1 → τ2 ∈ Type(M). Suppose that τ1 → τ2 is not a subtype of σ, and that M
does not contain any subterm of the form (λx.N)τ1→τ2 nor Nτ1→τ2Kτ1 . In that case, we
may safely replace τ1 → τ2 occurring in M by o preserving the type of M . Repeat this until
such a type τ1 → τ2 does not exist in Type(M). The resulting term is said to be optimally
typed (it has to do with principal typing).

I Lemma 2. Let M : σ be an optimally typed term of arity a and of order r. Then we have
a ≤ |M |+ 3|σ|. As a consequence, for any τ ∈ Type(M) we have |τ | ≤ ar ≤ (|M |+ 3|σ|)r.

Hereafter we assume that terms are optimally typed. In practice, the result type σ and
the order r will be fixed. Hence the actual size ofM taking types into account is polynomial
in |M |. Since we are only interested in complexity classes above P, we may safely ignore
the size of a type occurring in a term.

Given a term M , we denote by 〈〈M〉〉r the term of order r obtained by reducing all the
redexes of order > r in M . The following result is standard.

I Lemma 3. Suppose that M : σ and Order(σ) ≤ r. If M ∈ Λ(s, a, r + 1), then 〈〈M〉〉r ∈
Λ(2s, a, r). 〈〈M〉〉r can be computed in time 2O(s).

See [2] for a precise analysis of β reduction length in simply typed lambda calculus.

3 Semantic evaluation and intersection types

3.1 Category of preorders and order ideals
We now introduce a cartesian closed category ScottL! (the notation is taken from [6]).
While it can be directly presented as the category of prime algebraic complete lattices and
Scott continuous functions, we prefer a more elementary description due to Winskel [23]
(see also [24, 6]), which immediately suggests a correspondence with intersection types. We
first explain, assuming some acquaintance with models of linear logic (see, e.g., [3, 17]), how
it naturally arises from simple building blocks. But this part is not needed for the rest.
We later describe an interpretation of simply typed lambda calculus in ScottL! concretely,
which can be understood without any prerequisite.

Let ScottL be the category in which each object is a preorder A = (A,wA) and each
morphism R : A −7→ B is an order ideal, that is a binary relation R ⊆ A × B such that
a′ wA a R b wB b′ implies a′ R b′. Composition of relations is standard, while the identity
1A : A −7→ A on object A is given by wA. ScottL is a compact closed category with

K. Terui 5

biproducts, where the dual A∗, the tensor product A⊗B, the unit I, the biproduct A&B

and the zero object > for A = (A,wA) and B = (B,wB) are given by:

A∗ := (A,vA) A⊗B := (A×B,wA × wB) I := ({∗},=)
A&B := (A]B,wA] wB) > := (∅, ∅),

where] denotes the disjoint union (see, e.g., [3]).
Up to now, ScottL looks an obvious variant of the category Rel of sets and relations.

A great advantage of ScottL is that it naturally admits a set-based (rather than multiset-
based) interpretation of exponentials, in contrast to Rel (see [17] for discussion; see also [6]
which shows that ScottL is the extensional collapse of Rel). This allows us to evaluate
terms in finite structures.

Specifically, given a set X and a binary relation R ⊆ A × B, PfX denotes the set of
finite subsets of X and PfR ⊆ PfA× PfB is defined by

Y PfR X ⇐⇒ ∀α ∈ X ∃β ∈ Y. β R α.

A comonad (!, ε, δ) in ScottL as well as Seely isomorphisms m2
A,B , m0 (i.e., exponential

isomorphisms) are given as follows (where A = (A,wA) and R : A −7→ B):

!A := (PfA,Pf wA)
!R := PfR : !A −7→!B
εA := {(X,α) : ∃α′. X 3 α′ wA α} : !A −7→ A

δA := {(X, {Y1, . . . , Yn}) : X w!A Y1 ∪ · · · ∪ Yn} : !A −7→!!A
m2
A,B := {((X,Y), Z) : X] Y w!(A&B) Z} : !A⊗!B −7→!(A&B)
m0 := {(∗, ∅)} : I −7→!>.

It is routine to verify that these data indeed define a model of linear logic (a Seely category
[17]). Hence by the Kleisli construction, we obtain a cartesian closed category ScottL!.

Rather than specifying the exact structure of ScottL!, we will concretely describe how
to interpret lambda terms in it.

Let Q be a finite set. To each type σ, we associate a poset [[σ]]Q = ([[σ]]Q,wσ) as follows
(we omit subscript Q for readability).

[[o]] := (Q,=), [[σ → τ]] := (Pf [[σ]]× [[τ]], (Pf wσ)−1× wτ).

Concretely, we have (X,α) wσ→τ (Y, β) iff ∀γ ∈ X ∃δ ∈ Y. γ vσ δ and α wτ β. In
particular, X ⊆ Y implies (X,α) wσ→τ (Y, α). We occasionally write X → α to denote a
pair (X,α), and (X1, . . . , Xn � α) to denote an n+ 1 tuple (X1, . . . , Xn, α).

To each x�M : τ with x = xσ1
1 . . . , xσnn , we associate a set

[[x�M]] ⊆ Pf [[σ1]]× · · · × Pf [[σn]]× [[τ]]

as follows.

[[x� xi]] := {(X � α) : ∃α′ ∈ [[σi]]. Xi 3 α′ wσi α}
[[x� λyσ.M]] := {(X � Y → α) : (X,Y � α) ∈ [[x, yσ �M]]}

[[x�Mσ→τNσ]] := {(X � α) : ∃Y ∈ Pf [[σ]].(X � Y → α) ∈ [[x�M]] and
∀β ∈ Y.(X � β) ∈ [[x�N]]}

We write [[M]] instead of [[�M]] when M is closed. Since ScottL! is cartesian closed, we
have:

I Theorem 4. If Mσ =βη N
σ, then [[x�M]] = [[x�N]].

6 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

3.2 ScottL! as an intersection type system
As the notation suggests, an element X → α ∈ [[σ → τ]] can be seen as an implication. When
X is a set {β1, . . . , βn}, it is natural to think of it as an intersection type β1 ∧ · · · ∧ βn → α.

More precisely, we rewrite a statement

(X1, . . . , Xn � α) ∈ [[xσ1
1 , . . . , xσnn �Mσ]],

where Xi ∈ Pf [[σi]] and α ∈ [[σ]], as a typing judgement

xσ1
1 : X1, . . . , x

σn
n : Xn `M : α.

The inductive definition of [[x�M]] may be rewritten as the following type inference rules:

∃α′. Xi 3 α′ wσi α
xσ1

1 : X1, . . . , x
σn
n : Xn ` xσii : α

(var) Γ, yσ : Y `M : α
Γ ` λyσ.M : Y → α

(abs)

Γ `M : X → α Γ ` N : β for every β ∈ X
Γ `MN : α (app), in particular Γ `M : ∅ → α

Γ `MN : α (app)

α wo α
∀α ∈ X ∃β ∈ Y. β wσ α

Y w!σ X

Y w!σ X α wτ β
X → α wσ→τ Y → β

Since the type system comes from a cartesian closed category, typing is preserved under
βη equivalence. Also, xσ : X ` Mτ : α, Y w!σ X and α wτ β imply x : Y ` M : β, since
[[x�M]] is a morphism in ScottL!.
I Remark. The above type system is essentially the same as that of [18]. It is also very close
to the essential type assignment of [21], although we only deal with simply typed lambda
terms, and thus our intersection types always conform to the shape of simple types; for
instance, we do not have a type like p ∧ (q → r). It is for this reason that our types are
preserved under η expansion, which does not usually hold for intersection types. It should
be noted that a reversed notation is very often used for subsumption: our a w b corresponds
to a 6 b of [21].

It has been observed by Carvalho [4] that Rel leads to a (useful) intersection type
system. More recently, ScottL! is presented as an intersection type system by Ehrhard,
that is similar to ours but for a different purpose. It could be interesting to explore this
connection between relation-based semantics and intersection type systems from a more
general perspective. Notice that this connection is entirely different from that between
intersection types and filter models (see, e.g., [22]).

3.3 Applications
Let us illustrate the use of ScottL! and the companion intersection type system by three
examples.

1. Suppose that [[o]] = Q = {∗}. Then both True := {∗} → ∅ → ∗ and False := ∅ →
{∗} → ∗ belong to [[B]]. We have True ∈ [[tt]] but not True ∈ [[ff]]. As a consequence:

I Theorem 5. Let M be a closed term of type B. Then M =βη tt iff True ∈ [[M]].

In this way checking βη equivalence boils down to checking membership in ScottL!, or
equivalently to type checking in the intersection type system.

2. Let D = (Q, {0, 1}, δ, q0, qf) be a nondeterministic finite automaton (NFA) where Q
is the set of states, δ ⊆ {0, 1} ×Q×Q is the transition relation, q0, qf ∈ Q are respectively

K. Terui 7

(a)

// ?>=<89:;q0

0

�� 1 // ?>=<89:;q1
0

oo
1 // ?>=<89:;76540123q2

0,1

��

(b)

F1 3 {q1} → q2

Γ ` f1 : {q1} → q2

F1 3 {q0} → q1

Γ ` f1 : {q0} → q1

{q0} 3 q0

Γ ` x : q0

Γ ` f1x : q1

Γ ` f1(f1x) : q2

` 11 : D0

Figure 2 (a) Finite automaton D0 (b) A derivation (where Γ = f0 : F0, f1 : F1, x : {q0})

the initial and final states (we may assume w.l.o.g. that an NFA has exactly one final state).
This can be expressed by an element

D := X0 → X1 → q0 → qf ∈ [[W]]Q,

where X0 = {{qi} → qj : (0, qi, qj) ∈ δ}, and X1 = {{qi} → qj : (1, qi, qj) ∈ δ}.
For instance, to the automaton D0 = ({q0, q1, q2}, {0, 1}, δ, q0, q2) described in Figure 2

(a) corresponds the element D0 := F0 → F1 → {q0} → q2, where F0 = {{q0} → q0, {q1} →
q0, {q2} → q2} and F1 = {{q0} → q1, {q1} → q2, {q2} → q2}.

Corresponding to the run accepting the word 11, we have D0 ∈ [[11]], i.e., ` 11 : D0, as
demonstrated by the derivation in Figure 2 (b); recall that 11 = λf0f1x.f1(f1x). Conversely,
given a derivation for ` w : D0, we can read off a successful run on w. Hence we have:

I Theorem 6. Let D be a nondeterministic finite automaton and w ∈ {0, 1}∗. Then D

accepts w iff D ∈ [[w]]. Hence ifM is a closed term of type W, D accepts the word represented
by the normal form of M iff D ∈ [[M]].

I Remark. We can conversely show that every element of [[w]] corresponds to an NFA
accepting w. So the set

⋃
Q:finite[[w]]Q can be thought of as the set of NFA’s accepting w.

The same idea is behind Kobayashi’s use of intersection types for model checking higher
order recursion schemes [11]. Adapted to the current setting, it amounts to the following.
Let M be a closed term of infinite tree type Tω := (o2 → o)2 → o, involving the fixpoint
operator µ. Then M possibly describes an infinite binary tree 〈〈M〉〉 labelled with {0, 1}.
For every tree automaton D with a trivial acceptance condition [1], there is an element
D ∈ [[Tω]] such that 〈〈M〉〉 is accepted by D iff D ∈ [[M]].

The intersection type system of [11] is later expanded by [12] so that the new type system
covers all the properties expressible by modal µ-calculus formulas. It would be interesting
to see whether the latter can also be seen as a model of lambda calculus like ScottL!.

3. Given a closed term N in η-long normal form, let Q = {L1, . . . , Lm} be the set of
symbols, each Li corresponding to a subterm occurrence of base type o in N . We can then
associate an element M ∈ [[σ]]Q to each subterm occurrence Mσ in N by induction on the
structure of M . If M = xK1 · · ·Kj that is a subterm of Loi = xK1 · · ·Kn (0 ≤ j < n),
we define M := {Kj+1} → · · · {Kn} → Li. In particular, x := {K1} → · · · {Kn} → Li.
If M = λx.K and x(1), · · · , x(n) are the occurrences of variable x in K, we define M :=
{x(1), · · · , x(n)} → K.

For instance, consider the Kirstead terms:

K1 := λf.f(λy.f(λz.y)), K2 := λf.f(λy.f(λz.z)) : ((o→ o)→ o)→ o.

Let F1 := f(λz.y), G1 := f(λy.f(λz.y)), F2 := f(λz.z) and G2 := f(λy.f(λz.z)). We have

K1 := {{∅ → y} → F1, {{y} → F1} → G1} → G1,

K2 := {{{z} → z} → F2, {∅ → F2} → G2} → G2.

8 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

We can verify that these elements distinguish K1 from K2, as ` Ki : Kj holds iff i = j. More
generally, we have the following theorem, which is due to Salvati [18].

I Theorem 7. Let N be a closed term of type σ in η-long normal form. For every closed
term K of type σ, K =βη N iff N ∈ [[K]].

As a consequence, interpretation of lambda terms in ScottL! is injective:

I Corollary 8. Let M and N be closed terms of the same type. Then M =βη N iff [[M]]Q =
[[N]]Q holds for all finite sets Q iff [[M]]Q = [[N]]Q holds for an infinite set Q.

Notice that injectivity also holds for Set [7], Rel and Coh (the category of coherent
spaces and stable maps) [5].

4 Optimizations

4.1 Krivine type system
The type inference rules in the previous subsection suggest a natural alternating algorithm
for type checking. For instance, the rule (app) says that Γ ` MN : α holds iff there exists
a set X such that Γ ` M : X → α and for every β ∈ X, Γ ` N : β. Unfortunately, the
algorithm is not efficient enough. The reason is that, when applying the rule (app) bottom-
up, we have to guess a set X, which is sometimes too big. To avoid a too big guess, we
incorporate the mechanism of Krivine’s abstract machine [15] into the type system.

Throughout this subsection, we fix a set Q, r ∈ N, and only consider types and terms of
order ≤ r+ 1. First, for each simple type σ, let CL(σ) be the set {(n,N) : n ∈ N, N : σ} of
closures. Next, notice that each simple type σ of order ≤ r + 1 can be uniquely written as
σ = σ1 → · · ·σk → τ with Order(σk → τ) = r+1 and Order(τ) ≤ r (k = 0 if Order(σ) ≤ r).
We define the set ST (σ) of stacks by:

ST (σ) := {(n1, N1)→ · · · (nk, Nk)→ α : (ni, Ni) ∈ CL(σi) for 1 ≤ i ≤ k and α ∈ [[τ]]}.

An environment Γ is a list of the form xσ1
1 : C1, . . . , x

σn
n : Cn with Order(σi) ≤ r such that

Ci ∈ CL(σi) if Order(σi) = r and Ci ∈ CL(σi)∪Pf [[σi]] if Order(σi) < r for every 1 ≤ i ≤ n.
A judgement is of the form Γ `r M : S with M : σ, Order(σ) ≤ r+ 1 and S ∈ ST (σ). Here
we put subscript r to emphasize that the definition depends on the order r.

The following rules define the Krivine type system:

∃α′. X 3 α′ wσ α
∆, xσ : X,Σ `r xσ : α (var 1) Γ `r N : α

Γ,∆, xσ : (]Γ, N),Σ `r xσ : α
(var 2)

Γ, xσ : X `r M : α
Γ `r λxσ.M : X → α

(abs 1)
Γ, xσ : (n,N) `r M : S

Γ `r λxσ.M : (n,N)→ S
(abs 2)

Γ `r M : X → α Γ `r N : β (∀β ∈ X)
Γ `r MN : α (app 1)

Γ `r M : (]Γ, N)→ S

Γ `r MN : S (app 2)

Note that the system is syntax-directed, in the sense that at most one rule can be applied
bottom-up to each judgement.

The main purpose of the above system is to avoid guessing a set X ∈ Pf [[σ]] when
Order(σ) = r in the case of application. We instead invoke a KAM computation. Judge-
ments correspond to KAM states, and rules (var 2), (abs 2) and (app 2) correspond to KAM
transition rules. Indeed, when read bottom-up, (app 2) forms a closure (Γ, N) and pushes it

K. Terui 9

to the stack, and (abs 2) pops a closure (Γ, N) from the stack and updates the environment
with x : (Γ, N). Finally, (var 2) looks up the value of x in the current environment.

The only difference is that our closure does not record an environment Γ itself, but only
its length]Γ. Due to our restricted use of KAM, the former can be recovered from the latter.
Formally, let us call a judgement Γ `r M : S well-formed when the following holds:
1. If Γ = ∆, x : (n,N),Σ then n ≤]∆.
2. If (n,N) occurrs in S, then n ≤]Γ.
One can immediately see that if a well-formed judgement is derivable, then it always has a
derivation in which all judgements are well-formed.

The two derivations below, the left one in the previous system and the right one in the
new system, illustrate how the KAM machinery works effectively (recall that Γ ` N : β and
β w β′ imply Γ ` N : β′):

X 3 β w β′

Γ, x : X,∆ ` x : β′....
Γ, x : X `M : α

Γ ` λx.M : X → α

....
Γ ` N : β (∀β ∈ X)

Γ ` (λx.M)N : α

=⇒

....
Γ `r N : β′

Γ, x : (]Γ, N),∆ `r x : β′....
Γ, x : (]Γ, N) `r M : α

Γ `r λx.M : (]Γ, N)→ α

Γ `r (λx.M)N : α

I Theorem 9. Let M : σ be a closed term of order r + 1 and α ∈ [[σ]]. Then α ∈ [[M]] iff
`r M : α is derivable in the Krivine type system.

Proof. Recall that α ∈ [[M]] iff ` M : α holds in the intersection type system in Sub-
section 3.2. For the forward direction, we tentatively work in an intermediate system
in which the definition of ST (σ) is relaxed to ST (σ) := {C1 → · · ·Cn → α : Ci ∈
CL(σi) ∪ Pf [[σi]] for 1 ≤ i ≤ n and α ∈ [[o]]} for σ = σ1 → · · ·σn → o. Suppose that
Γ ` N : β holds for every β ∈ X. We then have:
1. If Γ,∆, x : X,Σ ` M : S is derivable in the intermediate system, then so is Γ,∆, x :

(]Γ, N),Σ `M : S.
2. If Γ,∆ ` M : C → X → S is derivable in the intermediate system (where C is a list of

closures/intersection types), then so is Γ,∆ `M : C → (]Γ, N)→ S.
We can now replace each instance of (app 1) in a derivation with that of (app 2). Indeed, if
we have Γ ` M : X → S and Γ ` N : β for every β ∈ X, then Γ ` M : (]Γ, N) → S holds
by 2 above, so Γ `MN : S holds by (app 2).

For the backward direction, we evaluate terms M in environments Γ. Given an environ-
ment Γ and k ≤]Γ, we write Γk to denote its initial segment of length k, and Γ̂ to denote
Γ with all members of the form x : (n,N) removed. We define evaluation M [Γ] by:

M [∅] := M, M [Γ, x : X] := M [Γ], M [Γ, x : (k,N)] := (M [Γ])[N [Γk] /x],

where [N/x] denotes the standard substitution. We then have the following property.
If a well-formed judgement Γ `r M : (n1, N1)→ · · ·M : (nk, Nk)→ α is derivable in the
Krivine type system, then Γ̂ ` M [Γ]N1[Γn1] · · ·Nk[Γnk] : α is derivable in the previous
type system.

The proof employs the fact that typing is preserved by β equivalence. J

4.2 Thin types
To give an efficient algorithm for problems Bool(r) and RegLang(r), it is useful to restrict
the set of elements in [[σ]] (= intersection types) slightly. Let σ = σ1 → · · ·σm → ok → o

10 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

with σm 6= o (or σ = ok → o and m = 0). An intersection type β = X1 → · · ·Xm+k → α in
[[σ]] is said to be thin if

⊎
1≤i≤kXm+i is either empty or a singleton, and X1, . . . , Xm consist

of thin types (whenever m > 0). The set of all thin elements in [[σ]] is denoted by [[σ]]∗.
For instance, both True = {∗} → ∅ → ∗ and False = ∅ → {∗} → ∗ are thin, while

{∗} → {∗} → ∗ is not. The type D ∈ [[W]] for a finite automaton D is also thin.

I Lemma 10. Let σ be either B or W. Then for every closed term M : σ and α ∈ [[σ]]∗,
`r M : α holds if and only if it has a thin derivation (i.e., a derivation which involves only
thin types).

Proof. We prove the lemma for the intersection type system in Subsection 3.2. We can
then transform the derivation into that of the Krivine type system without introducing a
non-thin type (see the proof of Theorem 9). For simplicity, we only consider the case σ = B.

Suppose that `M : B holds but it does not admit a thin derivation. By strong nomaliza-
tion, we may assume thatM has exactly one redex (λx1.K)N1, and its reduct admits a thin
derivation. Observe that λx1.K, which is responsible for non-thinness, is of type ok → o,
and that substituting N1 for the variable x1 of type o does not create a new redex in K. As
a consequence,M actually contains a generalized redex (λxo1 · · ·xok.K0)N1 · · ·Nl (1 ≤ l ≤ k),
and it reduces to a subterm of tt or ff after l steps of β reduction. Hence K0, N1, . . . , Nl
are variables of type o. But then we can directly verify that (λxo1 · · ·xok.K0)N1 · · ·Nl admits
a thin derivation, contradicting the assumption. J

I Lemma 11. Let Q be a finite set such that]Q = q, σ be a simple type of order r ≥ 1 and
of arity a. Then][[σ]]∗Q ≤ hyp(r−1, O(a2q2)). Hence each element in [[σ]]∗Q can be effectively
coded by a string of length hyp(r − 2, O(a2q2)).

Proof. If r = 1, then σ is of the form ok → o. Since we only count thin types,][[σ]]∗ =
kq2 + q ≤ aq2. If r = 2 and σ = σ1 → · · ·σk → o, then

][[σ]]∗ ≤ 2][[σ1]]∗+···+][[σk]]∗ · q ≤ 2(a−1)(aq2)+log q ≤ 2a
2q2
.

The rest can be calculated by induction. J

I Remark. If we naively interpret types in Set, the upper bound on the number of elements
in [[σ]] would be something like: qqa for Order(σ) = 1, and qqq

a log a

for Order(σ) = 2, that is
too much sensitive to the arity a. This is the main reason why we work with ScottL! rather
than Set.

Restriction to thin elements only works for “unary” data types such as B, N and W;
typically, it does not work for tree type T := (o2 → o)2 → o2 → o, since tree automata
cannot be expressed by thin types.

5 Complexity of evaluation

5.1 Order 2r + 3
We are now ready to estimate the complexity of semantic evaluation in ScottL!.

I Theorem 12. Let M : σ be a closed term in Λ(s, a, r+ 3), where σ is either B or W and
r ≥ 0. Let α ∈ [[σ]]∗Q and q =]Q. Then it can be decided by an alternating algorithm in time
s3 · hyp(r,O(a2q2)) whether `r+2 M : α holds or not.

K. Terui 11

(a)
λx
��

@

��

""EE

@
}} ��?

?

λy
��

x

@

��

""EE

@
||zz

λz
��

y

z

(b)
1
##H

HH
H 2
��

3
{{ww
w

@
}}||
|

 A
AA

4
��

5

����
�

λx
��

?>=<89:;N

M
}}{{ �� !!D

D

x x x

=⇒

1
 A

AA
2
��

3

{{ww
ww

M

&& ''

4

��

5

����
��

?>=<89:;N

Figure 3 (a) A dag-representation of λx.(λy.(λz.z)((λz.z)y))((λy.(λz.z)((λz.z)y))x)
(b) A graph rewriting rule corresponding to (λx.M)N −→M [N/x]

Proof. We apply the natural alternating algorithm inherent to the definition of the Krivine
type system, where stacks are built upon thin types.

It is clear that the height of any derivation is at most s+ar, where ar takes into account
the height of subderivations for subsumption. Each step of applying a rule (bottom up)
costs linear time in the size of a judgement. Hence it suffices to give an upper bound to the
size of any judgement occurring in an (attempted) derivation of `r+2 M : α. Let

xσ1
1 : C1, · · · , xσmm : Cm `r+2 N

σ : Cm+1 → · · ·Cn → α

be such a judgement, where σ = σm+1 → · · ·σn → o and Order(σ) ≤ r + 3. We have
either Ci ∈ Pf [[σi]]∗ with Order(σi) ≤ r + 1, or Ci = (k,K) ∈ CL(σi). In the former
case, Ci can be coded by a string of length hyp(r,O(a2q2)), while in the latter case the
size is at most 2s. Since n is bounded by s + a, the total size of the judgement is (s + a) ·
max(hyp(r,O(a2q2)), 2s) + s = s2 · hyp(r,O(a2q2)) (note that a = O(s) by Lemma 2).

Therefore, the algorithm runs in time s3 · hyp(r,O(a2q2)). J

I Corollary 13. Both Bool(2r + 3) and RegLang(2r + 3) belong to r-EXPSPACE.

Proof. Let us consider Bool(2r + 3). Given an (optimally typed) closed term M : B of
size s and of order 2r + 3, we compute M ′ = 〈〈M〉〉r+3, and check if `r+2 M

′ : True with
Q = {∗}. The algorithm is correct since we have M =βη tt iff M ′ =βη tt iff True ∈ [[M ′]] iff
`r+2 M

′ : True by Theorems 5 and 9.
The cost of computing M ′ is hyp(r,O(s)) and M ′ ∈ Λ(hyp(r, s), a, r + 3) by Lemma

3. Type checking of `r+2 M ′ : True costs alternating time hyp(r, s)3 · hyp(r,O(a2)) =
hyp(r, poly(s)) by Theorem 12. Hence the whole algorithm works in alternating time
hyp(r, poly(s)), so in deterministic space hyp(r, poly(s)).

The problem RegLang(2r + 3) can be decided similarly; this time the polynomial also
depends on q, the number of states of the input automaton D (see Theorem 6). J

5.2 Order 2r + 2
Let us now address the problems Bool(2r + 2) and RegLang(2r + 2). Here a more del-
icate space management is required. In particular, type checking has to be done with
dag-representations of terms (see Figure 3(a)).

A term M is of dag-size s, if M can be represented as a directed acyclic graph which
has s vertices. Let us denote by Λdag(s, a, r) the set of terms of dag-size ≤ s, arity ≤ a and
order ≤ r. Lemma 3 can be refined as follows:

12 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

I Lemma 14. Suppose that M : σ and Order(σ) ≤ r. If M ∈ Λ(s, a, r + 1), then 〈〈M〉〉r ∈
Λdag(s, a, r). Given an ordinary representation of M , a dag-representation of 〈〈M〉〉r can be
computed in time O(s2).

Proof. RepresentM as a tree, and successively apply the graph rewriting rule of Figure 3(b)
(that corresponds to β reduction) to each “redex” of order r+1. The rule is sound, provided
that (*) the indicated vertex λx (of order r + 1) does not have any incoming edge other
than the indicated one from @. This property (*) is indeed maintained during the whole
process of reduction, since the reduction rule applied to a redex of order r+ 1 never creates
a vertex of order r + 1 with multiple incoming edges. Since the reduction strictly decreases
the number of vertices, the computation terminates in s steps, so in time O(s2). J

Below, we suppose that the Krivine type system operates on terms represented as dags.

I Theorem 15. Let M : σ be a closed term in Λdag(s, a, r + 3), where σ is either B or W,
and r ≥ 0. Let α ∈ [[σ]] and q =]Q. Then it can be decided by an alternating algorithm in
space s2 · hyp(r,O(a2q2)) whether `r+2 M : α holds or not.

Proof. It suffices to show that each judgement Γ ` N : S occurring in the derivation has
size s2 · hyp(r,O(a2q2)). The only delicate point is to show that the length of Γ is bounded
by s, the dag-size of M . To see this, notice that we can identify a subterm of M with a
vertex in the dag-representation of M . Then a thread of a derivation in the type system of
Subsection 3.2 corresponds to a path in the dag. Now the length of an environment increases
only when a vertex with label λx is visited, but the same vertex cannot be visited twice due
to acyclicity. Hence it is bounded by s. The derivation can be then translated into one in
the Krivine type system keeping the length bound (see the proof of Theorem 9). J

I Corollary 16. Both Bool(2r + 2) and RegLang(2r + 2) belong to r-EXPTIME.

Proof. Let us consider Bool(2r + 2). Since the case r = 0 can be easily decided by simple
graph rewriting [19], we assume r = r′ + 1, so that 2r + 2 = 2r′ + 4.

Given a closed termM : B of size s and of order 2r′+4, we first computeM ′ := 〈〈M〉〉r′+4,
then a dag representation of M ′′ := 〈〈M ′〉〉r′+3, and check if `r′+2 M

′′ : True with Q = {∗}.
The cost of computing M ′ is as before, while M ′′ can be computed in space hyp(r′, O(s2)),
and M ′′ ∈ Λdag(hyp(r′, s), a, r′ + 3) by Lemma 14. Type checking of `r′+2 M ′′ : True
costs alternating space hyp(r′, s)2 · hyp(r′, O(a2)) = hyp(r′, poly(s)) by Theorem 15. Hence
the whole algorithm works in alternating space hyp(r′, poly(s)), so in deterministic time
hyp(r, poly(s)). J

I Remark. Theorem 15 nearly (though not exactly) conforms to the puzzle at the beginning
of the introduction. The trick there is indeed that the arity is constant for all Mn when M
is fixed, so that the number hyp(r,O(a2q2)) in Theorem 15 becomes a constant. Hence the
computation can be done in alternating space O(s2), that is in deterministic time 2O(s).

Finally, let us discuss the problem Term(r). Since we cannot assume that types are thin
in general, the upper bounds on the number and size of intersection types get worse than
estimated by Lemma 11. Namely, if σ is of order r ≥ 1 and arity a, then][[σ]] ≤ hyp(r,O(aq)),
and the size of each α ∈ [[σ]] is hyp(r − 1, O(aq)).

In addition, the Krivine type system `r does not work when the order of the type of
input terms M,N is greater than r + 1. Hence natural complexity bounds are as follows.

I Theorem 17. Under the assumption that the type of input terms M,N is of order ≤ r+1:
1. Term(2r + 1) belongs to r-EXPTIME.

K. Terui 13

2. Term(2r + 2) belongs to r-EXPSPACE.

It can be proved by employing Theorem 7; just notice that q is bounded by the size of
the η-long normal form of N .
I Remark. Schubert [19] proved that Term(2) is complete for P and Term(3) is complete
for PSPACE, which are sharper than our results. We leave it open whether we may extend
the sharper bounds of [19] to higher order.

6 Hardness

6.1 Encoding of Turing machines
Let us outline a proof of the hardness part of Theorem 1. For orders 2 and 3, it can be easily
proved by encoding Boolean circuits into order 2 terms, and quantified Boolean circuits into
order 3 terms, respectively.

¬ := λbxy.byx : B→ B
∧ := λb1b2xy.b1(b2xy)y : B2 → B
∀ := λF.F tt ∧ Fff : (B→ B)→ B

Beyond order 3, we encode Turing machines with bounded time and space. In contrast
to [8, 9, 14], which represent each TM by a single program, we just need to encode a TM
by a family of lambda terms, one for each input length. A similar encoding was given by
[16], but ours is more efficient with respect to the order (though less uniform). Encoding is
even easier if we have product types. So we first outline an encoding with product types,
and then explain how to eliminate them in the next subsection.

In the following, we write σ × τ for a product type, 〈Mσ, Nτ 〉σ×τ for a pair, and
πi(Mσ1×σ2)σi for a projection (i = 1, 2). The definition of order is extended by Order(σ ×
τ) := max(Order(σ),Order(τ)).

Define N0 := N and Nr+1 := Nr → Nr, and let Nr(σ) be Nr with the base type o
replaced by σ. Observe that Order(Nr(σ)) = r + 2 + Order(σ). A natural number k = 2n
can be succinctly represented by n2 : Nr with n : Nr+1 and 2 : Nr, or by 2 ◦ · · · ◦ 2 : Nr (n
times) with 2 : Nr (where N ◦M := λz.N(Mz) with z fresh). Hence the number hyp(r, n)
can be represented by

hyp(r, n) := (2 ◦ · · · ◦ 2︸ ︷︷ ︸
n times

) 2 · · ·2︸ ︷︷ ︸
r−1 times

: N0(σ)

for every type σ, where the highest order subterms are 2 ◦ · · · ◦ 2 (k ≤ n times) of type
Nr−1(σ), whose order is r + 1 + Order(σ).

Let Bn := on → o and i := λx1 · · ·xn.xi : Bn. We have B = B2.
For every r, n ≥ 1, define a type Addrr,n (for addresses) of order r by:

Addr1,n := B× · · · ×B (n times), Addrr+1,n := Addrr,n → B.

Each Addrr,n represents the set of natural numbers below hyp(r, n) in binary. For r =
1, k < 2n is represented by k1,n := 〈i1, · · · , in〉 : Addr1,n, where i1 · · · in is the binary
representation of k. For r = r′ + 1, k < hyp(r, n) is represented by the closed normal term
kr,n : Addrr,n such that kr,nir′,n gives the ith bit of k for every i < hyp(r′, n).

I Lemma 18. For every r, n ≥ 1, there are closed terms

sucr,n, predr,n : Addrr,n → Addrr,n, <r,n: Addrr,n ×Addrr,n → B

of size O(n2) and order 2r, representing successor and predecessor modulo hyp(r, n) and <.

14 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

Proof. It is easy for r = 1. For r = r′+ 1, we first build a term Gf,a0 : B with free variables
f : Addrr,n and a0 : Addrr′,n, which computes the carry to the a0th bit when computing
f + 1. The idea is to iterate the step function Ff,a0 : B × Addrr′,n → B × Addrr′,n
defined by Ff,a0 := λca. if a <r′,n a0 then 〈c ∧ f(a), sucr′,n(a)〉 else 〈c, a〉. We thus
define Gf,a0 := π1(hyp(r′, n) Ff,a0 〈1,0r′,n〉), and finally sucr,n := λfa0.f(a0) ⊕ Gf,a0 :
Addrr,n → Addrr,n. The highest order subterm is hyp(r′, n) : N0(Addrr′,n ×B), which
is of order r′ + 1 + r′ ≤ 2r. predr,n and <r,n are defined similarly. J

I Theorem 19. Let TM be a deterministic Turing machine with 1 tape and q states which
works in space hyp(r, n) and in time hyp(r′, n) with 1 ≤ r ≤ r′. Then there exists a term
tmr,r′,n : Bn → B of order r+ r′+ 2 such that for every w ∈ {0, 1}n, tmr,r′,n(w1,n) =βη tt
iff TM accepts w. The term tmr,r′,n(w1,n) can be constructed in time polynomial in n.

Proof. Define types Tape := Addrr,n → B3 and Config := Tape×Addrr,n ×Bq. Each
〈t,k, i〉 : Config represents the configuration with tape content t, head position k and state
i. Note that Order(Config) = r + 1.

With the help of sucr,n, predr,n and <r,n, it is easy to represent the one-step transition
of TM by a term tran : Config→ Config of size O(n2) and order 2r.

Now the result of the computation after hyp(r′, n) steps can be computed by the term
tmr,r′,n := λx.output(hyp(r′, n) tran init(x)) : Bn → B where init : Bn → Config and
output : Config→ B are suitable terms for initialization and output extraction. hyp(r′, n)
is considered to be of type N0(Config), thus of order r′ + 1 + Order(Config) = r + r′ + 2.
Since r′ ≥ r, this dominates the order 2r of tran.

It remains to show that product types can be eliminated from the encoding with at most
polynomial size overhead, that will be discussed in the next subsection. J

I Corollary 20.
1. Both Bool(2r + 2) and RegLang(2r + 2) are hard for r-EXPTIME.
2. Both Bool(2r + 3) and RegLang(2r + 3) are hard for r-EXPSPACE.

Proof. Let r′ = r for Bool(2r + 2) and r′ = r + 1 for Bool(2r + 3). It is straightforward
to reduce Bool(r) to RegLang(r). J

6.2 Elimination of product types
The elimination is based on two isomorphisms:

σ1 × σ2 → τ ∼= σ1 → σ2 → τ, τ → σ1 × σ2 ∼= (τ → σ1)× (τ → σ2).

For each type σ, we define a number b(σ) (the breadth) and a list σ of length b(σ) below.
The ith member of the list σ will be denoted by (σ)i.

b(o) := 1 o := o

b(σ → τ) := b(τ) σ → τ := σ → (τ)1, . . . , σ → (τ)m
b(σ × τ) := b(σ) + b(τ) σ × τ := σ, τ ,

where m = b(τ), and σ → (τ)i is a shorthand for (σ)1 → · · · (σ)k → (τ)i (with k = b(σ)).
For each term M : σ, we define a list M of length b(σ) such that (M)i (the ith member)

is of type (σ)i. In the following, we assume that b(σ) = m and b(τ) = k.

xσ := x
(σ)1
1 , . . . , x

(σ)m
m 〈M,N〉 := M,N

λxσ.Mτ := λxσ.(M)1, . . . , λxσ.(M)k π1(Mσ×τ) := (M)1, . . . , (M)m
Mσ→τNσ := (M)1N, . . . , (M)kN π2(Mσ×τ) := (M)m+1, . . . , (M)m+k,

K. Terui 15

where x1, . . . , xm are new variables associated to x, λxσ.(M)i and (Mi)N are respectively
shorthands for λx1 · · ·xm.(M)i and (Mi)(N)1 · · · (N)m.

The translation preserves βη-equality:

I Theorem 21. If M : σ and M =βη N , then (M)i =βη (N)i for every 1 ≤ i ≤ b(σ).

Therefore, when applied to tmr,r′,n(u1,n) : B, the translated term returns the correct
output. However, we have to be careful for size. Indeed, if n : N(σ), we have |(n)i| =
O(b(σ)n). To avoid such an unexpected explosion, we define the depth d(M) of each term
M as follows:

d(x) := 1 d(λx.M) := d(M) d(〈M,N〉) := max(d(M), d(N))
d(MN) := max(d(M), d(N) + 1) d(πiM) := d(M).

We can now estimate the size after translation.

I Lemma 22. Let M : σ, m = max{b(τ) : τ ∈ Type(M)} and d = d(M). Then |(M)i| ≤
md · |M | for every 1 ≤ i ≤ b(σ).

For instance, d(n) = O(n) and this is the reason of the exponential explosion. It is
important for our purpose that the order of association matters for iterated multiplications
2 ◦ · · · ◦ 2 (n times). Depending on whether we associate them to the right or to the left,
the depth changes significantly:

d(2 ◦ (· · · (2 ◦ (2 ◦ 2)))) = O(n), d((((2 ◦ 2) ◦ 2) · · ·) ◦ 2) = O(1).

Hence if we choose the second one for the definition of hyp(r, n) that appears in tmr,r′,n,
then the depth stays constant (as far as r, r′ are fixed), so that we obtain a term of polynomial
size by translation. Therefore, Theorem 19 holds without product types.

7 Conclusion

We have studied the computational complexity of evaluating simply typed lambda terms of
bounded order. As observed by [8, 9, 14], efficiency is achieved by mixing β reduction and
semantic evaluation. In comparison with these previous works, the crux of our work lies
in the use of ScottL! rather than Set. Indeed, the former has led to an intersection type
system, and thus provided a natural alternating algorithm. Moreover, it is flexible enough to
incorporate Krivine’s machinery and restriction to thin types. All these ideas combine into
an optimal algorithm that comforms to the completeness results for the problems Bool(r)
and RegLang(r), although there still remains a gap for Term(r).

It should be mentioned that semantic evaluation is also quite effective in the setting of
infinitary lambda calculus [1]. Incidentally, [11] refines [1] by replacing semantic evaluation
in Set by intersection typing. This is strictly parallel to our shift from Set to ScottL!.

We believe that this way of using semantics for computation should be further developed,
so let us conclude with a slogan: better semantics, faster computation.

Acknowledgements We would like to thank Masahito Hasegawa, Naohiko Hoshino and
Shin’ya Katsumata for pointers to the literature, and anonymous referees for a lot of useful
comments. This work is supported by JSPS KAKENHI 21700041.

16 Semantic evaluation, intersection types and complexity of simply typed lambda calculus

References
1 Klaus Aehlig. A finite semantics of simply-typed lambda terms for infinite runs of automata.

Logical Methods in Computer Science, 3(3), 2007.
2 Arnold Beckmann. Exact bounds for lengths of reductions in typed lambda-calculus. J.

Symb. Log., 66(3):1277–1285, 2001.
3 Richard Blute and Philip Scott. Category theory for linear logicians. In Linear Logic in

Computer Science, LMS 316. Cambridge University Press, 2004.
4 Daniel de Carvalho. Execution time of lambda-terms via denotational semantics and in-

tersection types. Mathematical Structures in Computer Science, to appear.
5 Lorenzo Tortora de Falco. Obsessional experiments for linear logic proof-nets. Mathematical

Structures in Computer Science, 13(6):799–855, 2003.
6 Thomas Ehrhard. The scott model of linear logic is the extensional collapse of its relational

model. Theor. Comput. Sci., to appear.
7 Harvey Friedman. Equality between functionals. In Proceedings of Logic Colloquium’73,

LNM 453, pages 22–37, 1975.
8 Andreas Goerdt and Helmut Seidl. Characterizing complexity classes by higher type prim-

itive recursive definitions, Part II. In Proc. 6th IMYCS, LNCS 464, pages 148–158, 1990.
9 Gerd G. Hillebrand and Paris C. Kanellakis. On the expressive power of simply typed and

let-polymorphic lambda calculi. In Proceedings of 11th LICS, pages 253–263, 1996.
10 Michael Huth. Linear domains and linear maps. In Proceedings of 9th MFPS, LNCS 802,

pages 438–453, 1993.
11 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In Proceedings of 36th POPL, pages 416–428, 2009.
12 Naoki Kobayashi and C.-H. Luke Ong. A type system equivalent to the modal mu-calculus

model checking of higher-order recursion schemes. In Proceedings of 24th LICS, pages
179–188, 2009.

13 Lars Kristiansen. Complexity-theoretic hierarchies induced by fragments of Gödel’s T.
Theory Comput. Syst., 43(3-4):516–541, 2008.

14 Lars Kristiansen and Paul J. Voda. Programming languages capturing complexity classes.
Nord. J. Comput., 12(2):89–115, 2005.

15 Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and Symbolic
Computation, 20(3):199–207, 2007.

16 Harry G. Mairson. A simple proof of a theorem of Statman. Theor. Comput. Sci.,
103(2):387–394, 1992.

17 Paul-Andre Mellies. Categorical semantics of linear logic. In Interactive models of compu-
tation and program behaviour, Panoramas et Syntheses 27. Soc. Math. de France, 2009.

18 Sylvain Salvati. On the membership problem for non-linear abstract categorial grammars.
Journal of Logic, Language and Information, 19(2):163–183, 2010.

19 Aleksy Schubert. The complexity of β-reduction in low orders. In Proceedings of 5th TLCA,
LNCS 2044, pages 400–414, 2001.

20 Richard Statman. The typed lambda-calculus is not elementary recursive. Theor. Comput.
Sci., 9:73–81, 1979.

21 Steffen van Bakel. Intersection type assignment systems. Theor. Comput. Sci., 151(2):385–
435, 1995.

22 Steffen van Bakel. Strict intersection types for the lambda calculus. ACM Comput. Surv.,
43(3):20, 2011.

23 Glynn Winskel. A linear metalanguage for concurrency. In Proceedings of 7th AMAST,
LNCS 1548, pages 42–58, 1998.

24 Glynn Winskel. Linearity and non linearity in distributed computation. In Linear Logic in
Computer Science, LMS 316. Cambridge University Press, 2004.

	Introduction
	Preliminary
	Semantic evaluation and intersection types
	Category of preorders and order ideals
	ScottL! as an intersection type system
	Applications

	Optimizations
	Krivine type system
	Thin types

	Complexity of evaluation
	Order 2r+3
	Order 2r +2

	Hardness
	Encoding of Turing machines
	Elimination of product types

	Conclusion

