| European Mathematical Society |
| :---: | :---: |
| Société Mathématique Européenne |
| http://www.emis.de/ |

EMS Project on Reference Levels in Mathematics - Reference questions April 19, 2001 - A. Bodin \& L. Grugnetti

Estimate the number of heartbeats during a normal human life.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Heartbeats	EMS 001	
Origin of the question	Proposed by Vinicio Villani (ITALY)		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Orders of magnitude, powers of 10, rounding		
Competencies supposed to be implied	C3-C1		
Complexity class	llass 2		
Target group	Target 1 (for all)		
Type of setting	Groupwork		

EMS Reference question $\mathbf{N}^{\circ} 002$

Circle tessellation
Let Q be a square whose sides have a length of 1 m , and let C be the inscribed circle.

If one subdivides Q into smaller squares and considers the respective inscribed circles, one gets the figures below :

Increasing as you can imagine the number of subdivisions, does the area of the shaded part (I.E. THE PART COVERED BY THE CIRCLES) increase, decrease, or remain always the same ?
What about this question in space?

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Circle tessellation	
Origin of the question	Proposed by Vinicio Villani (ITALY)	
Problematic field («Big idea»)	P2 002	
Main contents supposed to be covered	either similarity for a synthetic answer, or simple algebraic calculations	
Competencies supposed to be implied	C1 - C4	
Complexity class	Class 3	
Target group	Target 1 (for all)	
Type of setting	Individual work	

EMS Reference question $\mathbf{N}^{\circ} 003$

The string
A string is wound symmetrically around a circular rod. The string goes exactly 4 times around the rod. The circumference of the rod is 4 cm and its length is 12 cm .
Find the length of the string.
Show all your work.

EMS REFERENCE QUESTION IDENTITY CARD	
NAME and Number of the Question :	The string
Origin of the question	TIMSS - pop 3 - Specialists (released item)
Problematic field («Big idea»)	P2
Main contents supposed to be covered	Cylinder, development, Pythagorean theorem
Competencies supposed to be implied	C4
Complexity class	Class 3
Target group	Target 2
Type of setting	Group work

EMS Reference question $\mathbf{N}^{\circ} 004$

Paving roads

There are seven small towns in Smith County that are connected by dirt roads, as in the diagram (the diagram is not to scale).
The distances are in kilometre. The county, which ha a limited budget, wants to pave some of the roads so that people can get from every town to every other town on paved roads, either directly or indirectly, but so that the total number of kilometres paved is minimised.
Find a network of paved roads that will fulfil the county's requirements.
Eliminate any non-paved road from your drawing.

NCTM

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Paving roads	EMS 004	
Origin of the question	NCTM standards 2000		
Problematic field («Big idea»)	P1 - P2 - P3		
Main contents supposed to be covered	Optimisation		
Competencies supposed to be implied	C1 - C4		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Group work		

Here is a representation of a truncated cube (the cube has been sliced along a plane containing points P, Q and R .

Construct precisely on the figure the intersection of this cube with the plan containing point I that is parallel to the plane PQR.

APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Paving roads	EMS 005	
Origin of the question	EVAPM/APMEP		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Parallelism in space		
Competencies supposed to be implied	C5 - C1		
Complexity class	Class 2		
Target group	Target 2		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	medium
Expected present achievement rate at 16		Total success : 10\% - partial success 50\%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100 000
	Results	Total success : 14\% - partial success 50\%)

EMS Reference question $\mathbf{N}^{\circ} 006$

Drawing straws
Five people are drawing straws.
Among 5 straws, 4 are of the same length while 1 is shorter than the others are.

The straws are presented in such a way the players can't get any cue about their respective lengths.

One after one, each player draws one of the straws.
The winner is the one that would have drawn the shorter straw.
The last person that should take the last straw claims she is disadvantaged.

What do you think?

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Drawing straws	
Origin of the question	Proposed by Michel Henry (IREM Besançon)	
Problematic field («Big idea»)		

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 0 7}$

One throws together 3 indistinguishable dices.
Is-it more likely to get three identical faces or to get a 4-2-1?

Would your answer be the same if the dices were throw separately?

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Throwing dices	
Origin of the question	Proposed by Michel Henry (IREM Besançon)	
Problematic field («Big idea»)	P4 (Uncertainty)	
Main contents supposed to be covered	Probability	
Competencies supposed to be implied	C3 - C1	
Complexity class	Class 2	
Target group	1	
Type of setting	Individual work	

Comments

The question is not precise on purpose.
In the second part of the question, we are expecting a student to be able to considering by himself different possible cases : looking for the set $\{4 ; 1 ; 2\}$, or looking for the sequence $(1 ; 2 ; 3)$.
Out of examinations there is often some advantage to let some uncertainty in the questioning.

How many times must you plan to throw a dice to have 95% of chance to get one six (at least) ?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Throwing dices 2	EMS 008	
Origin of the question	Proposed by Michel Henry (IREM Besançon)		
Problematic field («Big idea»)	P4 (Uncertainty)		
Main contents supposed to be covered	Probability		
Competencies supposed to be implied	C3 - C8		
Complexity class	Class 3		
Target group	2		
Type of setting	Group work		

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 0 9}$

The Inheritance
Two brothers inherit land in a rectangular shape.
To divide it into equal area, a neighbour suggests that they should plant at any point on the terrain and traces of right segments that go from this stake to the four summits of the terrain.

One of the brothers will take parts in grey on the figure, the other the part in white.

Do the two parts really equal ?

Justify your reasoning
Investigate what happens if the figure is a pyramid (for instance a roof of a house) seen
 from above.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	The inheritance	EMS 009	
Origin of the question	Proposed by Lucia Grugnetti and François Jaquet (from RMT 2000)		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Triangle area - Pythagorean theorem.		
Competencies supposed to be implied	C3_C2		
Complexity class	Class 2		
Target group	Target 1 (for all)		
Type of setting	Individual work for the first part - group work for the second part.		

	COUNTRY	ITALY
	Fitness to curriculum	
Expected present achievement rate at 16	60%	
Try out of the question	Context of the trial	RMT at 14 Italy and in Switzerland (only first part)
	Number of students	
	Results	Concerning proof : difficult at 14

The space situation is open for several kinds of simulations : using dynamical geometry software or spreadsheet.

P1 _ C3_C1

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 1 0}$
From a starting point a semicircle of radius 1 is described. It is then continued into a semicircle of radius $1 / 2$, and so on, such that each semicircle has a radius half of the preceding semicircle.

What is the distance from the starting point (D) to the end point? What is the length of the path?

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	A strange spiral	
Origin of the question	Proposed by François Jaquet (Switzerland)	
Problematic field («Big idea»)	P1	
Main contents supposed to be covered	Length of a circle - Infinity Sum	
Competencies supposed to be implied	C3_C1	
Complexity class	Class 3	
Target group	Target 1	
Type of setting	Group work	

EMS Reference question $\mathrm{N}^{\circ} \mathbf{0 1 1}$

The small rectangle on the right is a photograph of the big one on the left. At the moment in which the photograph was taken, a fly (*) placed itself on the big rectangle.

The photographer made sure he erased it while developing the photograph.
$\left(^{*}\right)$ The fly is symbolised by .
Put the fly onto the photograph.

Explain your method.

RMT

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	The fly	
Origin of the question	Proposed by Lucia Grugnetti and François Jaquet (from RMT 2000)	
Problematic field («Big idea»)	P2	
Main contents supposed to be covered	Enlargement (homothety) - Proportionality	
Competencies supposed to be implied	C3	
Complexity class	Class 2	
Target group	Target 1 (for all)	
Type of setting	Individual work	

Comments
It would be better to give the drawing on a sheet big enough to allow geometrical constructions as well as computing procedure.

In a second time the two rectangles might be given non-parallels.

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 1 2}$

It is a period of grape gathering !
Each grape gatherer receives a sum of 60 Euro and a case of grape for an 8 hours working day.

On a particular day, after having worked for 5 hours, Paolo had to go home. For his work he received 30 Euro and a case of grape.

What is the value of a case of grape?

Explain your reasoning.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Grape gathering	EMS 012	
Origin of the question	Proposed by Lucia Grugnetti and François Jaquet (from RMT 1998)		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Proportionality, equations		
Competencies supposed to be implied	C4		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

12 women have a man at their right.
3 men out of 4 have a woman on their right.
How many are they on the whole (men plus women)?
Explain your method.

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Neighbours	
Origin of the question	Proposed by Lucia Grugnetti and François Jaquet (from RMT 2000)	
Problematic field («Big idea»)	P3	
Main contents supposed to be covered	Logical reasoning	
Competencies supposed to be implied	C4 - C3	
Complexity class	Class 2	
Target group	Target 1 (for all)	
Type of setting	Individual work	

EMS Reference question $\mathbf{N}^{\circ} 014$

Mombo Carpet makes squared carpets.
He would like to create an "equality" model that has as much grey squares on the border as white squares into the interior.

His apprentice Amal proposed the model in the figure that is unfortunately not convenient, because of 15 white squares into the interior and 20 grey squares on the border.

Is-it possible to create carpets having as much grey squares on the border as white squares into the interior?

Explain your answer.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Borders	EMS 014	
Origin of the question	Proposed by Lucia (from RMT 1996)	Grugnetti and François Jaquet	
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C3 -C4		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 1 5}$

Numbers and circles
May we put the numbers $1,2, \ldots, 9$ in the places formed by the five circles of the following scheme, in order to obtain the same sum inside each circle ?
Note that symmetrical placements of the numbers are not considered different.

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Numbers and circles	
Origin of the question	Question proposed by Panayiotis Vlamos (Greece)	
Problematic field («Big idea»)		
P3		
Main contents supposed to be covered	Equations	
Competencies supposed to be implied	C6	
Complexity class	Class 2	
Target group	Target 1	
Type of setting	Individual work	

The great old geometer would like to construct the perpendicular bisector of segment $A B$, when his little cat jumps into the table and takes place as in figure.
Can he draw some parts of the desired line without disturbing the cat ? (his compass and ruler is big).

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	The cat	
Origin of the question	Proposed by Sandor Dobos (Hungary)	
Problematic field («Big idea»)	P2	
Main contents supposed to be covered	Bisector of a segment	
Competencies supposed to be implied	C1	
Complexity class	Class 2	
Target group	Target 1	
Type of setting	Individual work	

EMS Reference question $\mathbf{N}^{\circ} 017$
 Transports

This Monday the firm SAVONEX has produced 291 case of soap.
For carrying out all this cases, the lorry of the firm has done several trips, always entirely full.

As it left only 3 cases, the driver decided not to do another trip and just to wait for taking them the following day.

On Tuesday, with the new production, there were on the whole 229 cases to carry out.
The lorry did 2 trips less than the previous day, all full but the last one where it left still room for 11 cases.

How many trips the lorry has done the second day and how many cases does it take when it is full?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Transports	EMS 017	
Origin of the question	Proposed by Lucia (from RMT 1999)		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C4		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

P3_C1

EMS RQ 018

EMS Reference question $\mathbf{N}^{\circ} 018$

The tunnel
Four persons are going to get through of a narrow dark tunnel.
They have a torch that can work for 18 minutes.
They need respectively $1,2,5$, and 10 minutes for getting through the tunnel.

Without the torch, they can't go.
The tunnel is narrow so at most two of them can go together.
Is-it possible to get all of them to the other side ?

EMS REFERENCE QUETION IDENTITY CARD		
NAME and Number of the Question :	The tunnel	
Origin of the question	Proposed by Sandor Dobos (Hungary)	
PMS 018		
Problematic field («Big idea»)	P3	
Main contents supposed to be covered	Logical reasoning	
Competencies supposed to be implied	C1	
Complexity class	Class 2	
Target group	Target 1	
Type of setting	Individual work	

This pyramid of numbers continues under the clouds.
The total sum of the numbers of the first level is 29791
How many levels does this pyramid of numbers have?
Explain your method

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	The pyramid		
Origin of the question	Inspired by PISA 2000 (?) - proposed by François Jaquet		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Numbers		
Competencies supposed to be implied	C4		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Group work		

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 2 0}$

Martha boxes

Martha used to arrange her construction set of equal dimension cubes in a cardboard box with a square basis.
When lining up the cubes, the box was full and it was any space left.
With time the box became torn off, and Martha had to replace it.
She found o box of the same height but with a rectangular basis.
In her new box she can line up exactly a quarter more of her cubes along the length and exactly a quarter of her cubes less along the width.
At the end, when her new box is full, it left 12 cubes off the box.

Could you find the total number of Martha's cubes?
Explain you reasoning.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Martha boxes	EMS 020	
Origin of the question	Proposed by Lucia (from RMT 1999)	Grugnetti and François Jaquet	
Problematic field («Big idea»)	P1 - P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C3		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

EMS Reference question $\mathbf{N}^{\circ} 021$
 Bisectors

Michel wants to draw a triangle of which the bisectors of angles B and C are perpendicular.
Can he succeed?

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Bisectors	
Origin of the question	Proposed by Philippe R. Richard (Spain)	
Problematic field («Big idea»)	P2 - P3	
Main contents supposed to be covered	Sum of the angles of a triangle	
Competencies supposed to be implied	C2	
Complexity class	Class 3	
Target group	Target 1	
Type of setting	Group work	

A container is 8 cm high and 6 cm of diameter.
The liquid in it is 5 cm high.
A stick, AD, 15 cm long, is plunged into a container cylindrical according to the figure.
The stick is plunged for length $A C$ is maximum. It meets the liquid on point B.
Which is length AB ? (submerged part of the stick).

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	The stick	
Origin of the question	Proposed by Christos Chasiostis (Greece)	
Problematic field («Big idea»)	P2	
Main contents supposed to be covered	Proportionality in geometry - Tales theorem	
Competencies supposed to be implied	C3	
Complexity class	Class 2	
Target group	Target 1	
Type of setting	Individual work	

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 2 3}$
 Running 1 km

Could you run 1 km in 1 minute?
What about someone else?
Explain your answer

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Running 1 km	EMS 023	
Origin of the question	Proposed by Tony Gardiner (England)		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Proportionality		
Competencies supposed to be implied	C1		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Group work		

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 2 4}$

Driving school

When in learning for a driver's licence at Roy and Roger's Driving School the theory lessons and the obligatory driving lesson together cost SEK 2300. An extra driving lesson costs SEK 220 each time.
a) Sara has just got her driver's licence. She paid a total of SEK 4060 to the driving school. How many extra driving lessons did she have?
b) Write the law that describes how much you have to pay all together to the driving school if you take a complete course for a driver's licence and have x extra driving lessons.
c) Write comments on the law you wrote.

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Driving school	
Origin of the question	Sweden National Examination	
Problematic field («Big idea»)	P3	
Main contents supposed to be covered	Equations	
Competencies supposed to be implied	C2 - C3	
Complexity class	Class 2	
Target group	Target 1	
Type of setting	Individual work	

A teacher said to his students:
Think of a number and add 15 to it. Multiply the sum by 4 and then subtract 8 from your result. Divide the difference by 4 and finally subtract 12 from your quotient. If you tell me what answer you came up with, I will tell you what number you were thinking of.
a) Monica comes up with 5 as her answer. What number was she thinking of?
b) Show that the teacher's method is correct for all numbers.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Magic computation	EMS 025	
Origin of the question	Sweden National Examination		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C6		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 2 6}$

Cars statistics

ASA has been given an assignment by the newspaper to write an article on how prices of used cars vary. She has chosen the Volvo 245 and BMW 300series for her investigation. In an advertisement magazine, she found the prices for different cars of different year models. The prices are listed in the tables below. She now needs your help.
a) For the purpose of ASA's assignment, show the prices for the different year models of Volvo 245 in an appropriate diagram.
b) ASA has heard that "on the average the price of Volvos decreased with 8000 kr each year." Does this "rule of thumb" agree with the values which are included in the

VOLVO 245	
Year of model	Price(kr)
1992	79900
	96000
1991	93000
	94000
	77000
59	500
1990	89000
	66900
	67000
1989	66000
1988	42000
	60000
	65000
	35000
1987	49000
	45000
	37000
1986	35500
	29500
	36000
	40000
	40000
	37000
1985	38000
	34000
	25000
	32500
	20000
	32500

c) Can you find a similar or another "rule of thumb"

BMW 300	
Year of model	Price(kr)
1992	156000
	179000
	198000
167000	
1991	149000
	105000
	112000
	136000
1990	78000
	94000
	80000
1989	63000
	75000
	74000
	77500
	89000
1988	59500
	52500
	65000
	60000
	65000
1987	49000
	48000
	45000
	59000
	55000
	50000
1985	45000
	44000
	42000
	40000
39000	
	42000

d) If you were going to buy one of the car models, how could this investigation be of help to you?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Cars statistics	EMS 026	
Origin of the question	Sweden National Examination		
Problematic field («Big idea»)	P4_P3		
Main contents supposed to be covered	Statistics - Mean		
Competencies supposed to be implied	C2-C3		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Group work		

A round American pizza for one person has a diameter of 21 cm . How large should the diameter be if the pizza is for two people?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	American Pizza	EMS 027	
Origin of the question	Sweden National Examination		
Problematic field («Big idea»)	P2_P1		
Main contents supposed to be covered	Disc area		
Competencies supposed to be implied	C4		
Complexity class	Class 1		
Target group	Target 1		
Type of setting	Individual work		

EMS Reference question $\mathbf{N}^{\circ} 028$
PI Value
Throughout history, mathematicians have tried to find a standard approximation for π.

Here are some of the values that have been used :

Indians	Egyptians	Romans	Greeks
$\sqrt{10}$	$\frac{256}{81}$	$3 \frac{1}{8}$	$\frac{22}{7}$

a) Which value is closest to π and which is farthest from π ?
b) If we use the Egyptian value of π to computing the circumference of a circle with a diameter of 125 m , what is the error ?

Give a value of the error rounded to 1 cm .

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	PI Value	
Origin of the question	Adapted from Sweden National Examination	
Problematic field («Big idea»)	P1	
Main contents supposed to be covered	Numbers - circle length	
Competencies supposed to be implied	C1 - C6	
Complexity class	Class 1	
Target group	Target 1	
Type of setting	Individual or group work	

Choose a two-digit number. 84
Let the two digits exchange places. 48Compute the difference between the largerand the smaller of the two numbers.$84-48=36$
Let the digits exchange places. 63Compute the difference between the largerand the smaller of the two numbers.$63-36=27$
Let the digits exchange places.

Continue as long as you can.
What do you notice from the numbers you get?
What happens if you start with another two-digit number ?

INVESTIGATE!

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Changing places	EMS 00	
Origin of the question	Sweden National Examination		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Numbers		
Competencies supposed to be implied	C4		
Complexity class	Class 2		
Target group	Target 1 (group work) - Target 2 (individual work)		
Type of setting	Individual or group work		

P3_C3_C1

EMS RQ 030
EMS Reference question $\mathbf{N}^{\circ} \mathbf{0 3 0}$
World population

At present the world population P is estimated in 6000000000 individuals. According to recent data, the yearly increase of the world population amounts to $1,7 \%$.

Under the assumption that this increase rate remains the same also in the future, write down a formula expressing the world population P1, P2, ..., Pn, expected after 1, 2, ..., n years.
When the population will get the double?

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	World population	
Origin of the question	Question proposed by Vinicio Villani (ITALY)	
Problematic field («Big idea»)	P3	
Main contents supposed to be covered	Percentages - Equations	
Competencies supposed to be implied	C3_C1	
Complexity class	Class 2	
Target group	Target 1	
Type of setting	Individual work	
rent		

A polygon is called "regular" if all its sides are equal and also all its angles are equal.

Hence a polygon is "irregular" (= not regular) if and only if :
All its sides and all its angles are different All its sides or all its angles are different At least two sides are different and at least two angles are different At least two sides are different or at least two angles are different

Which is or (which are) the good answer(s) ?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	A polygon	EMS 031	
Origin of the question	Question proposed by Vinicio Villani (ITALY)		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Logical reasoning		
Competencies supposed to be implied	C1		
Complexity class	Class 2		
Target group	Target 2		
Type of setting	Individual work		

A child has bought 10 lollipops, all at the same unit price.
If each lollipop had cost 5 cent less, he would have got 2 lollipops more for the same total cost.

What is the price of 1 Iollipop?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Lollipops	EMS 032	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	l3		
Complexity class	Class1		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		55%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	54%

On any full hour, a train leaves DETROIT to CHICAGO (i.e. on Oh, 1 h , $2 h, \ldots$ etc...).
The trip lasts 6 hours.
Under the same conditions, on any full hour, a train leaves CHICAGO to DETROIT.

If you took the train in DETROIT to get to CHICAGO, how many trains coming from Chicago.

One doesn't take into account the trains meet in Detroit or in Chicago stations.

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Meeting trains	
Origin of the question	EVAPM/APMEP - France (Take over a classic)	
Problematic field («Big idea»)	P3	
Main contents supposed to be covered	Graphical representations - Logical reasoning	
Competencies supposed to be implied	C3_C1	
Complexity class	Class2	
Target group	Population 3	
Type of setting	Group work	

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		10%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	10%

Some balls, coloured WHITE, BLACK or RED, have been distributed onto three boxes labelled A, B and C.
Using the information given below, you are ask to find the number of balls of each colour in each of the boxes.

- In box B, there are 5 red balls and there are the same number of black balls than in box A.
- There is no white ball in box C.
- The number of black balls in box C is the same as the number of white balls in box A.
- In box C, there are the same numbers of red balls than in box B.
- In box A, the number of red balls is the same than the number of black balls.
- In box C , there are 12 balls on the whole.
- On the whole there are 7 red balls in boxes A and B.
- In box B, there are as much white balls as in box C .

Try to shape your answer as clearly as possible and don't forget to explain and justify your solution.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Balls	EMS 034	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Logical reasoning		
Competencies supposed to be implied	C1		
Complexity class	Class2		
Target group	Population 2		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Low
Expected present achievement rate at 16		Results: 75\% - Justifications : 50\%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100 000
	Results	results : 75\% - Justifications : 50\%

Three people of three different nationalities live the three first houses in a given street.
Each house has a different colour and each person has a different job.

A - The French lives in the red house.
B - The German is a musician.
C - The English lives in the house in the middle.
D - The red house is next to the green house.
E - The writer lives in the first house on the left.

Which is the writer's nationality and who lives in the yellow house?
Don't forget to explain your reasoning.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Logic	EMS 035	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Logical reasoning		
Competencies supposed to be implied	C1		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Low
Expected present achievement rate at 16		Results : 70\% - Justifications : 40\%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100 000
	Results	Results : 70\% - Justifications : 40\%

ABCDEFGH is a cube.
Segments [FC] and [GB] cut each other point I.
Segments [HF] and [EG] cut each other point J.

Circle the good answers

- Triangle EGB is rectangle in G
- Triangle IAJ is isosceles
- Triangle AEJ is rectangle in E
- Triangle AEJ is isosceles

RIGHT WRONG RIGHT WRONG RIGHT WRONG RIGHT WRONG
Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Cube et triangles	EMS 036	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Space geometry		
Competencies supposed to be implied	C5		
Complexity class	llass2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		60%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	60%

A same test has been given to two group-classes.

The first class with 20 students has obtained 12.30 as a mean score. The second class with 30 students has obtained 14.80 as a mean score.

Which is the mean score of the group formed with the 50 students from these two classes? (Tick on the correct answer)

12,55
13,30
13,55
13,80

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	A test	EMS 037	
Origin of the question	SIMS . Adapted by EVAPM/APMEP - France		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Statistics - mean		
Competencies supposed to be implied	C1		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		33%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	33%

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 3 8}$

Triangle coordinates

The rectangular co-ordinates of three points are :

$$
\mathrm{A}(2 ; 4) ; \mathrm{B}(8 ; 3) ; \mathrm{C}(10 ; 12)
$$

Is triangle ABC a right triangle ?

> Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Triangle coordinate s	EMS 038	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P2_P3		
Main contents supposed to be covered	Coordinate geometry - Pythagore		
Competencies supposed to be implied	C3_C2		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16) (et troisième 1990)

P2_C5_C1

EMS RQ 039

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 3 9}$

Cube section

Here is a cube draw in perspective.

As a fact, the edge of this cube is 4 cm long.

This cube is cut into two right prisms along plan DBFH.

DRAW in its real dimensions the common face DBFH of these two prisms.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Cube section	EMS 039	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Space geometry		
Competencies supposed to be implied	C5_C1		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		60%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	58%

$$
(3 x+5)(x-2)-(x+4)(x-2)=0
$$

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	An equation	EMS 040	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Algèbre		
Competencies supposed to be implied	C6		
Complexity class	llass1		
Target group	Population 2		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		40%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	41%

EMS - Reference question $\mathrm{N}^{\circ} \mathbf{0 4 1}$
ABCD is a pyramid.
P is a point on edge $[\mathrm{AB}]$,
Q is a point on edge $[\mathrm{AC}]$.
Lines (PQ) and (BC)
are not parallel.
(see figure)
Draw the intersection
between line (PQ)
and plan (BCD)
Justify your answer.
Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	A pyramid	EMS 041	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Space geometry		
Competencies supposed to be implied	C2		
Complexity class	Class1		
Target group	Population 3		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		Drawing: 30\% - justification : 15\%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100 000
	Results	Drawing : 30\% - justification : 15\%

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 4 2}$

Volumes

The figure represents four solids : a cone, a cylinder, a pyramid and a prism.

The cone is $24 \mathrm{~cm}^{3}$ of volume.

The cylinder and the cone have same base area.
The pyramid and the prism have a base area double of that of the cylinder. The height of the cylinder is double of that of the cone.
The heights of the pyramid and of the prism are triple of that of the cone.

What is the volume of the pyramid?
What is the volume of the prism?
What is the volume of the cylinder?

From EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Volumes		
Origin of the question	From de EVAPM/APMEP - France		
Problematic field («Big idea»)	P1_P2_P3		
Main contents supposed to be covered	Volumes of usual solids		
Competencies supposed to be implied	C1_C5		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Group work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Low
Expected present achievement rate at 16		Less than 10\% if individual work
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16) : the 4 solids having then same height and same base area.
	Number of students	100000
	Results	10% (20\% for the pyramid)

ABCD is a pyramid.
Point B^{\prime}, C^{\prime} and D^{\prime} are respectively the middles of segments $[A B],[A C]$ and [AD].
Prove that plans (BCD) and ($\left.B^{\prime} C^{\prime} D^{\prime}\right)$ are parallels.

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Plans and pyramid	EMS 043	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Space geometrie		
Competencies supposed to be implied	C2		
Complexity class	llass3		
Target group	Population 3		
Type of setting	Group work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		25%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	25%

Equationsystems A et B are given :
A $\left\{\begin{array}{c}2 x+3 y=1 \\ 4 x-3 y=2\end{array}\right.$
B $\left\{\begin{array}{l}x-y=-2 \\ 2 x-2 y=1\end{array}\right.$

For each of the following cases cross out what doesn't apply

System A	System B
has - has not	has - has not
a unique solution	a unique solution

Justify your answer

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Equation system	EMS 044	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C6		
Complexity class	Class2		
Target group	Population 2		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
Fitness to curriculum		
Haute		
Expected present achievement rate at 16		25%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	22%

In a department store there are some shirts and some pair of trousers on sale.

All shirts are sold the same unit price.
All pair of trousers are sold the same unit price.

John has paid 570 F for 7 shirts and 3 pair of trousers.
Sophy has paid 730 F for 3 shirts and 7 pair of trousers.

Work out the price of one shirt and of one pair of trousers.

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Shirts and trousers	EMS 045	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3_P1		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C3		
Complexity class	llass2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		60%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	63%

Points B, C, D, are on a same straight line ; A is a point out of straight line (BC).

Points $\mathrm{O}, \mathrm{O}^{\prime}$ and $\mathrm{O}^{\prime \prime}$ are the centres of circles of respective diameters [AB], [AC] and [AD].

Prove the points $\mathrm{O}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime \prime}$ are on a same straight line.

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Circles	EMS 046	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P2		
Main contents supposed to be covered	Plane geometry		
Competencies supposed to be implied	C2		
Complexity class	Class3		
Target group	Population 3		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		20%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	17%

One person has borrowed 1000 F as interest-free loan.
She has already paid off a sum S
She still has to pay off a sum equal to $\frac{2}{3}$ of the sum S already paid off.

Work out sum S.

Show your work

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	The loan	EMS 047	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C3		
Complexity class	Class1		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTR	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		70%
Try out of the question	Context of the trial	EVAPM fin de seconde 1991 (age 16)
	Number of students	100000
	Results	68%

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 4 8}$

After a 40% increase, an object is sold 84 F .

What was its price before this increase?

Show your work

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	An increase	EMS 048	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Percentages - Equations		
Competencies supposed to be implied	C3		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		60%
Try out of the question	Context of the trial	EVAPM fin de première 1993
	Number of students	100000
	Results	66% (22\% en fin de troisième 1990)

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 4 9}$

Plane section

Here is a parallelepiped $A B C D D^{\prime} C^{\prime} B^{\prime} A^{\prime}$ drew in perspective.
A point I have been marked on edge [DC].

Draw on the figure the plane section of the parallelepiped by the plan which pass through points A, A' and I.

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :	Plane section	
Origin of the question	EVAPM/APMEP - France	
Problematic field («Big idea»)	P2	
Ma49 contents supposed to be covered	Space geometry	
Competencies supposed to be implied	C5	
Complexity class	Class2	
Target group	Population 1	
Type of setting	Individual work	

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		40%
Try out of the question	Context of the trial	EVAPM fin de première 1991
	Number of students	100000
	Results	45% (28\% en fin de troisième 1992)

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 5 0}$

Comparisons

Here are 4 squares ABCD of edge a.
Points R, S, T and U are the middle of the edges.
Let us consider the three broken lines drawn in bold of which the respective lengths are noted I1, I2, I3, I4 while the areas of the coloured surfaces are marked S1, S2, S3, S4

Indexes 1, 2, 3, and 4, go with figures bearing the same numbers.
Is it true that : (Tick out any good answers)

$$
\begin{aligned}
& 11<12<13 \\
& 11<13<14
\end{aligned}
$$

Two out of the four lengths are equals
Three out of the three areas are equals

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Comparisons	EMS 050	
Origin of the question	ESIEE - adapted by EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Areas and length		
Competencies supposed to be implied	C1_C6		
Complexity class	llass2		
Target group	Population 3		
Type of setting	Group work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Low
Expected present achievement rate at 16		Less than 5\% if individual work
Try out of the question	Context of the trial	EVAPM fin de première 1993
	Number of students	100000
	Results	07%

An oil tank has a storage capacity of 2500 litres. It is shaped as a rectangle parallelepiped, 2 m high and 1 m wide.

What is the height of this oil tank?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Oil tank	EMS 051	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P1_P2		
Main contents supposed to be covered	Space geometry		
Competencies supposed to be implied	C3		
Complexity class	Class1		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		40%
Try out of the question	Context of the trial	EVAPM fin de première 1993
	Number of students	100000
	Results	49% (33\% en fin de troisième 1992)

Work out the x value for the square and the equilateral triangle had the same perimeter.

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	C Square and triangle	EMS 052	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations		
Competencies supposed to be implied	C3		
Complexity class	Class2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Haute
Expected present achievement rate at 16		60%
Try out of the question	Context of the trial	EVAPM fin de première 1993
	Number of students	100000
	Results	65%

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 5 3}$

A museum

In its first year of public opening a museum was visited by 250000 people.
Along the following years an increase of 8% of visitors a year has been observed.
a) Under these conditions, what was the number of visitors during the second year?

What was the total number of visitors during the two first years.
b) Under these conditions, what was the number of visitors during the 5th year?

What was the total number of visitors during the five first years ?
c) Under these conditions, what will be the number of visitors during the \mathbf{n} th year?

What would be the total number of visitors during the \mathbf{n} first years?
d) 2000000 entrance tickets have been printed out.

Under the announced conditions, would this number of tickets sufficient for the 10 first years?

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	A museum	EMS 053	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3_P1		
Main contents supposed to be covered	Percentages - Equations		
Competencies supposed to be implied	C3_C1		
Complexity class	Class2		
Target group	Population 2		
Type of setting	Group work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		De 60\% (a) à 10\% (d)
Try out of the question	Context of the trial	EVAPM fin de première 1993
	Number of students	100 000
	Results	De 80% (a) à 15\% (d)

ABCD is a parallelogram of centre O .
K is a point variable on segment [BD].
Point M is symmetrical to point K about point O .

Quadrilaterals AEKG and MH'CF' are parallelograms (see figure).
The area of the
 parallelogram AEKG is noted S.

The aim of this problem is to lead you to prove, by any mean, that the area of parallelogram AEKG is maximum for a particular position of point K.
a) Prove that 7 other parallelograms in the figure have an area equal to S .
b) Is it true that : \quad Area $(A B C D)-\operatorname{area}(K L M N)=4 S \quad$?
b) How K should be chosen for S is maximum ?

Question EVAPM/APMEP

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Parallelograms	EMS 054	
Origin of the question	EVAPM/APMEP - France		
Problematic field («Big idea»)	P3_P2		
Main contents supposed to be covered	Parallelogram - Area		
Competencies supposed to be implied	C1_C2		
Complexity class	Class2		
Target group	Population 2		
Type of setting	Group work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		De 30% (a) à 10\% (c) - If work individual
Try out of the question	Context of the trial	EVAPM fin de première 1993
	Number of students	100000
	Results	De 43% (a) à 19% (c)

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 6 0}$

CDs sales
The graphs give information about sales of CDs and other sound recording media in Zedland.

Zeds are monetary units used in Zedland.
Value of various sound recording media sold in Zedland (million of Zeds)

CD sales according to age in 1992

With the aid of both graphs calculate how much money was spent by 12-19 year olds on CDs in 1992.

Show your work
TIMSS

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	CDs sales	EMS 060	
Origin of the question	TIMSS Pop 3		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Statistics		
Competencies supposed to be implied	C5		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Good
Expected present achievement rate at 16		60%
Try out of the question	Context of the trial	EVAPM fin de terminale 1993
	Number of students	100000
	Results	57%

TIMSS international score : 44\%
TIMSS (International Difficulty Index : 573-61\%

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 6 1}$

Each of the small squares in the figure 1 is 1 square unit.
Which is the best estimate of the area of the shaded region?

A. 10 square units ?
B. 12 square units ?
C. 14 square units?
D. 16 square units ?
E. 18 square units ?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Area	EMS 061	
Origin of the question	TIMSS pop 3		
Problematic field («Big idea»)	P1		
Main contents supposed to be covered	Area		
Competencies supposed to be implied	C3		
Complexity class	Class 2		
Target group	Target 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Low
Expected present achievement rate at 16		70%
Try out of the question	Context of the trial	EVAPM fin de terminale 1993
	Number of students	100000
	Results	77%

TIMSS international score : 61%
TIMSS (International Difficulty Index : 507

EMS - Reference question $\mathbf{N}^{\circ} \mathbf{0 6 2}$

Brakes
Kelly went for a drive in her car. During the drive, a cat ran in front of the car. Kelly slammed on the brakes and missed the cat.

Slightly shaken, Kelly decided to return home by a shorter route. The graph below is a record of the car's speed during the drive.

a) What was the maximum speed of the car during the drive ?
b) What time was it when Kelly slammed on the brakes to avoid the cat?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Brakes	EMS 062	
Origin of the question	TIMSS		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Functions		
Competencies supposed to be implied	C5		
Complexity class	lass 2		
Target group	Target 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		90%
Try out of the question	Context of the trial	EVAPM fin de terminale 1993
	Number of students	100000
	Results	90%

TIMSS international score : 74\%
TIMSS (International Difficulty Index : 435

A TV reporter showed this graph and said :

Nombre de vols par an	$515-1$

Do you consider the reporter's statement to be a reasonable interpretation of the graph? Briefly explain.

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :			
Origin of the question	TIMSS population 3		
Problematic field («Big idea»)	P4		
Main contents supposed to be covered	Statistics		
Competencies supposed to be implied	C5_C7		
Complexity class	Class 2		
Target group	Population 1		
Type of setting	Individual work		

	TRIAL COUNTRY	FRANCE
	Fitness to curriculum	Mean
Expected present achievement rate at 16		20%
Try out of the question	Context of the trial	EVAPM fin de terminale 1993
	Number of students	100000
	Results	23%

TIMSS international score : 19\%
TIMSS (International Difficulty Index : 681

On one triangular plot of land one wants to built a swimming pool in such a way one of its side opens directly on the street.

Where should the swimming pool be placed for its area is maximum ?

EMS REFERENCE QUESTION IDENTITY CARD			
NAME and Number of the Question :	Swimming pool	EMS 064	
Origin of the question	Proposed by P. Richard (Spain)		
Problematic field («Big idea»)	P3		
Main contents supposed to be covered	Equations - Functions		
Competencies supposed to be implied	C4		
Complexity class	llass 2		
Target group	Population 2		
Type of setting	Individual work		

EMS REFERENCE QUESTION IDENTITY CARD		
NAME and Number of the Question :		
Origin of the question		
Problematic field («Big idea»)		
Main contents supposed to be covered		
Competencies supposed to be implied		
Complexity class		
Target group		
Type of setting		

[^0]
[^0]: For further additions

