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Abstract. The notion of holomorphic bi-flag curvature for a complex
Finsler space (M, F ) is defined with respect to the Chern complex linear
connection on the pull-back tangent bundle. By means of holomorphic
curvature and holomorphic flag curvature of a complex Finsler space, a
special approach is devoted to obtain the characterizations of the holo-
morphic bi-flag curvature. For the class of generalized Einstein complex
Finsler spaces some results concerning the holomorphic bi-flag curvature
are obtained.
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1 Introduction

In complex Finsler geometry, it is systematically used the notion of holomorphic
curvature in η direction, briefly holomorphic curvature, [1]. In the previous papers,
[3, 4], we initiated the study of holomorphic curvature of a complex Finsler spaces
with respect to the Chern complex linear connection, in brief Chern (c.l.c), as a
connection in the holomorphic pull-back tangent bundle π∗(T ′M). Our goal was to
determine the conditions in which a complex Finsler metric has constant holomorphic
curvature. With this we marked out a special class of complex Finsler spaces which
we called generalized Einstein, (g.E.), for which the question has a favorable answer.
In another paper, [5], we gave a generalization of the holomorphic curvature of the
complex Finsler spaces named by us holomorphic flag curvature.

Our purpose is to obtain a generalization of the holomorphic flag curvature of
a complex Finsler space. The second section of the present paper is devoted to the
notion of the holomorphic bi-flag for such a space. We determine the link between
the holomorphic bi-flag curvature and the holomorphic flag curvature, (Proposition
2.3). We prove a necessary and sufficient condition that a complex Finsler space has
constant holomorphic bi-flag curvature, (Proposition 2.4). In §3 a special approach is
dedicated to the holomorphic bi-flag curvature of the (g.E.) complex Finsler spaces.
First, for the (g.E.) spaces we find the expression of the holomorphic bi-flag curva-
ture by means of holomorphic curvature (Theorem 3.1). The obtained information is
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used to establish some inequalities between the three kinds of curvature (holomor-
phic curvature, holomorphic flag curvature and holomorphic bi-flag curvature) of a
Kähler complex Finsler space (g.E.) with nonzero constant holomorphic curvature,
(Propositions 3.2 - 3.7).

In the present section we setting the basic notions which are needed; for more
information see [1, 10, 3, 4, 5].

Let M be a complex manifold, dimC M = n, and T ′M the holomorphic tangent
bundle in which as a complex manifold the local coordinates will be denoted by
(zk, ηk). The complexified tangent bundle of T ′M is decomposed in TC(T ′M) =
T ′(T ′M)⊕ T ′′(T ′M).

Considering the restriction of the projection to T̃ ′M = T ′M \ {0}, for pulling
the holomorphic tangent bundle T ′M back, we obtain a holomorphic tangent bundle
π′ : π∗(T ′M) −→ T̃ ′M , called the pull-back tangent bundle over the slit T̃ ′M . We
denote by

{
∂

∂zk

∗
, ∂

∂zk

∗}
, and by

{
dz∗k, dz∗k

}
, the local frame and its dual.

Let V (T ′M) = kerπ∗ ⊂ T ′(T ′M) be the vertical bundle, spanned locally by { ∂
∂ηk }.

A complex nonlinear connection, briefly (c.n.c.), determines a supplementary complex
subbundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M)⊕V (T ′M). The adapted
frames of the (c.n.c.) is δ

δzk = ∂
∂zk − N j

k
∂

∂ηj , where N j
k(z, η) are the coefficients of

the (c.n.c.). Further on we shall use the abbreviations δi = δ
δzi , ∂̇i = ∂

∂ηi , δi = δ
δzi ,

∂̇i = ∂
∂ηi , and theirs conjugates ([1], [2], [10]).

On T ′M let gij̄ = ∂2L
∂ηi∂ηj be the fundamental metric tensor of a complex Finsler

space (M, F 2 = L).

The isomorphism between π∗(T ′M) and T ′M induces an isomorphism of π∗(TCM)
and TCM . Thus, gij̄ defines an Hermitian metric structure G(z, η) := gjkdz∗j⊗dz∗kon
π∗(TCM), with respect to the natural complex structure. Further, the Hermitian met-
ric structure G on π∗(T ′M) induces a Hermitian inner product h(χ, γ) := ReG(χ, γ)
and the angle cos(χγ) = ReG(χ,γ)

||χ||||γ|| , for any χ, γ the sections on π∗(T ′M), where
||χ||2 = ||χ||2 = G(χ, χ), see [3].

On the other hand, H(T ′M) and π∗(T ′M) are isomorphic. Therefore the structures
on π∗(TCM) can be pulled-back to H(T ′M) ⊕ H(T ′M). By this isomorphism the
natural cobasis dz∗j is identified with dzj . In view of this construction the pull-back
tangent bundle π∗(T ′M) admits a unique complex linear connection ∇, called the
Chern (c.l.c.), which is metric with respect to G and of (1, 0)− type, [3]:

ωi
j(z, η) = Li

jk(z, η)dzk + Ci
jk(z, η)δηk;(1.1)

Li
jk = gmi δgjm

δzk
; Ci

jk = gmi ∂gjm

∂ηk
.

The Chern (c.l.c.) on π∗(T ′M) determines the Chern-Finsler (c.n.c.) on T ′M, with

the coefficients
CF

N i
k= gmi ∂gjm

∂zk ηj , and its local coefficients of torsion and curvature are
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T i
jk : = Li

jk − Li
kj ;(1.2)

Ri
jhk

: = −δhLi
jk − δh(

CF

N l
k)Ci

jl ; Ξi
jhk

:= −δhCi
jk = Ξi

khj
;

P i
jhk

: = −∂̇hLi
jk − ∂̇h(

CF

N l
k)Ci

jl ; Si
jhk

:= −∂̇hCi
jk = Si

khj
.

The Riemann type tensor

R(W,Z, X, Y ) := G(R(X, Y )W,Z)

has the properties:

R(W,Z, X, Y ) = W iZ
j
XkY

h
Rijkh; Rjihk := Rl

ihk
glj ;(1.3)

Rijkh = −Rijhk = Rjihk = Rjihk;

If Ri
jhk

= Ri
khj

then Rijkh = Rkjih = Rkhij̄ .

We denoting by Rjk := Rijkhηiηh = −gljδh(
CF

N l
k)ηh the Ricci tensor, which is 1−

homogeneous with respect to η.
According to [1] the complex Finsler space (M, F ) is strongly Kähler iff T i

jk = 0,

Kähler iff T i
jkηj = 0 and weakly Kähler iff gilT

i
jkηjηl = 0. Note that a complex

Finsler metric which comes from a Hermitian metric on M is called purely Hermitian
metric in [10], i.e. gij = gij(z), and then the three nuances of Kähler spaces coincide,
[13].

The holomorphic flag curvature of F along of the flag (η, χ), with respect to the
Chern (c.l.c.), is ([5])

KF (z, η, χ) :=
R(η, χ, η, χ) + R(χ, η, χ, η)

G(η, η)G(χ, χ)
,(1.4)

where η and χ are local section of π∗(T ′M). In particular, if η is colinear with χ then
we obtain the holomorphic flag curvature from [1]

KF (z, η) :=
2R(η, η, η, η)
G2(η, η)

=
2ηjηkRjk

L2(z, η)
.(1.5)

From [4], we have

Definition 1.1. The complex Finsler space (M, F ) is called generalized Einstein if
Rjk is proportional to tkj , i.e. if there exists a real valuated function K(z, η), such
that

Rjk = K(z, η)tkj ,(1.6)

where tkj := L(z, η)gkj + ηkηj , ηk := ∂L
∂ηk , η̄j := ∂L

∂η̄j .

A (g.E.) complex Finsler space enjoys of some interesting properties which we
collect in:
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Theorem 1.1. Let (M,F ) be a (g.E.) complex Finsler space. Then
i) K(z, η) = 1

4KF (z, η); ii) K depends on z alone.
iii) If (M, F ) is connected and weakly Kähler, of complex dimension ≥ 2, then it

is a space with constant holomorphic curvature.
iv) If the space of nonzero constant holomorphic curvature, then F is weakly

Kähler.
v) If the space is Kähler of nonzero constant holomorphic curvature, then F is

purely Hermitian. Conversely, a purely Hermitian complex Finsler space, which is
Kähler of constant holomorphic curvature, is (g.E.).

Note that for the particular case of the complex Finsler spaces which are Kähler of
nonzero constant holomorphic curvature, the notions of (g.E.) and purely Hermitian
spaces coincide.

Finally, we recall here that in [5] it is proved

Proposition 1.1. Let (M, F ) be a (g.E.) complex Finsler space. Then

KF (z, η, χ) =
KF (z)
L(z, χ)



Re

(
Cj̄h̄χjχh

)
+

Re
[(

η̄jχ
j
)2

]

L(z, η)



 ,(1.7)

where KF (z) is the holomorphic curvature of (M,F ), L(z, χ) := gij̄χ
iχj and Cj̄h̄ :=

Cij̄h̄ηi.

Also, if (M,F ) is a (g.E.) complex Finsler space, Kähler with KF (z) = c, c ∈ R∗,
then

Im(η̄jχ
j) = ±F (z, η)F (z, χ)

√
cos2 ϕ− KF (z, η, χ)

c
,(1.8)

where F (z, χ) =
√

L(z, χ) and ϕ is the angle of η and χ directions.

2 Holomorphic bi-flag curvature

In this section, we introduce a natural generalization of the holomorphic flag cur-
vature, namely the curvature along of two flags, which we call holomorphic bi-flag
curvature.

We consider z ∈ M and η ∈ T ′zM, η 6= 0. A flag is given by the tangent vector field
η, called flagpole, and another transversal vector field χ, [5]. Let (η, χ) and (η, γ) be
two flags of same flagpole (the tangent vector η), but of different transversal vector
χ(z, η) and γ (z, η) as sections of π∗(T ′M).

Definition 2.1. The holomorphic bi-flag curvature of the complex Finsler metric F ,
along of the flags (η, χ) and (η, γ), is given by

ℵF (z, η, χ, γ) :=
R(η, χ, η, γ) + R(χ, η, γ, η) + R(η, γ, η, χ) + R(γ, η, χ, η)

2G(η, η) [G(χ, χ)G(γ, γ)]
1
2

,(2.1)

where G(χ, χ) 6= 0 and G(γ, γ) 6= 0 .
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The holomorphic bi-flag curvature depends both on the position z ∈ M and on
the flags (η, χ) and (η, γ).

In particular, if R is symmetric, i.e. R(η, η, χ, χ) = R(η, χ, χ, η) = R(χ, χ̄, η, η̄)
then

ℵF (z, η, χ, γ) =
R(η, χ, η, γ) + R(χ, η, γ, η)

G(η, η) [G(χ, χ)G(γ, γ)]
1
2

.(2.2)

Moreover, if R is symmetric, by Proposition 2.5.2 from [1], p.107, the holomorphic
bi-flag curvature completely determines the curvature tensor Ri

jhk
.

Proposition 2.1. i) ℵF (z, η, χ, γ) = ℵF (z, η, γ, χ);
ii) ℵF (z, η, χ, χ) = KF (z, η, χ);
iii) ℵF (z, η, χ, γ) is real valued;
iv) ℵF (z, η

F , χ, γ) = ℵF (z, η, χ, γ);
v) ℵF (z, αη, βχ, δγ) = ℵF (z, η, χ, γ), for any α, β, δ ∈ R+.

Further, we propose to determine the relationships between the holomorphic bi-
sectional curvature and the holomorphic bi-flag curvature. For this, we consider the
unitary flags (l,m1) and (l,m2), where l = η

F (z,η) , m1 = χ
F (z,χ) , m2 = γ

F (z,γ) ,

F (z, χ) =
√

L(z, χ) and F (z, γ) =
√

L(z, γ). By means of these, we construct the
flags (l, Sm1m2) and (l,Dm1m2) of certain flagpole l and of diagonal transversal vec-
tors Sm1m2 = m1+ m2 and Dm1m2 = m1 −m2. The conjugates are Sm̄1m̄2 = m̄1+
m̄2 and Dm̄1m̄2 = m̄1− m̄2.

We denote by ϕ the angle between the directions of the unitary sections m1 and
m2. It result that cos ϕ = ReG(m1,m̄2)

||m1||||m̄2|| = ReG(m1, m̄2) and then

Proposition 2.2. i) G(Sm1m2 , Sm̄1m̄2) = 4 cos2 ϕ
2 ;

ii) G(Dm1m2 , Dm̄1m̄2) = 4 sin2 ϕ
2 .

Using the above considerations, we shall prove the following

Proposition 2.3. Let (M, F ) be a complex Finsler space. Then

ℵF (z, η, χ, γ) = KF (z, η, Sm1m2) cos2
ϕ

2
−KF (z, η, Dm1m2) sin2 ϕ

2
,(2.3)

where KF (z, η, Sm1m2) and KF (z, η, Dm1m2) are the holomorphic flag curvature along
of the flags (η, Sm1m2) and (η, Dm1m2), respectively.

Proof. Taking into account Proposition 2.1, iii) and (2.1) relation, we obtain

ℵF (z, η, χ, γ) = ℵF (z, l, m1, m2)(2.4)

=
1
2
[R(l, m̄1, l, m̄2) + R(m1, l, m̄2, l̄)

+R(l, m̄2, l, m̄1) + R(m2, l̄, m1, l̄)].

On other hand, decomposing R(l, Sm̄1m̄2 , l, Sm̄1m̄2), R(Sm1m2 , l̄, Sm1m2 , l̄), R(l,Dm̄1m̄2 , l, Dm̄1m̄2)
and R(Dm1m2 , l̄, Dm1m2 , l̄), a direct computation give:

R(l, Sm̄1m̄2 , l, Sm̄1m̄2) + R(Sm1m2 , l̄, Sm1m2 , l̄)−R(l, Dm̄1m̄2 , l,Dm̄1m̄2)
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−R(Dm1m2 , l̄, Dm1m2 , l̄) = 2[R(l, m̄1, l, m̄2) + R(m1, l, m̄2, l̄)
+R(l, m̄2, l, m̄1) + R(m2, l̄, m1, l̄)] = 4ℵF (z, η, χ, γ).
In view of Definition 2.1 and Proposition 2.1, the last relation becomesKF (z, l, Sm1m2) =

KF (z, η, Sm1m2) and KF (z, l, Dm1m2) = KF (z, η, Dm1m2), that is (2.3). ¤
Colorallary 2.1. Let (M, F ) be a complex Finsler space. Then

ℵF (z, η, χ, γ) = 2KF (z, η, Sm1m2) cos2
ϕ

2
(2.5)

−1
2

[KF (z, η, χ) +KF (z, η, γ)] ;

ℵF (z, η, χ, γ) = −2KF (z, η,Dm1m2) sin2 ϕ

2

+
1
2

[KF (z, η, χ) +KF (z, η, γ)] .

It is natural to determine the conditions in which the holomorphic bi-flag curvature
of a complex Finsler space along of any two flags (η, χ) and (η, γ) is a constant.

Proposition 2.4. Let (M, F ) be a complex Finsler space of constant holomorphic
flag curvature along of any flag (η, χ), i.e. KF (z, η, χ) = c, c ∈ R. Then

i)

ℵF (z, η, χ, γ) = c · cos ϕ.(2.6)

ii) (M, F ) has the constant holomorphic bi-flag curvature along of any two flags
if and only if ϕ is a constant.

Proof. i) Because for any flag (η, χ) we have KF (z, η, χ) = c, c ∈ R, the (2.3)
relation became

ℵF (z, η, χ, γ) = c
(
cos2 ϕ

2 − sin2 ϕ
2

)
= c cosϕ.

ii) results immediately in view of (2.6). ¤
Colorallary 2.2. Let (M, F ) be a complex Finsler space. If

|KF (z, η, χ)| ≤ c, c ∈ R, c > 0,

along of any flag (η, χ), then

|ℵF (z, η, χ, γ)| ≤ c.

Proof. Indeed,
|ℵF (z, η, χ, γ)| = ∣∣KF (z, η, Sm1m2) cos2 ϕ

2 −KF (z, η, Dm1m2) sin2 ϕ
2

∣∣
≤ |KF (z, η, Sm1m2)| cos2 ϕ

2 + |KF (z, η,Dm1m2)| sin2 ϕ
2

≤ c
(
cos2 ϕ

2 + sin2 ϕ
2

)
= c. ¤

Colorallary 2.3. Let (M,F ) be a complex Finsler space of zero holomorphic bi-flag
curvature. Then

KF (z, η, Sm1m2) =
1
4
(1 + tg2 ϕ

2
) [KF (z, η, χ) +KF (z, η, γ)] ;(2.7)

KF (z, η, Dm1m2) =
1
4
(1 + ctg2 ϕ

2
) [KF (z, η, χ) +KF (z, η, γ)] ,

The proof follows from (2.5).
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3 The holomorphic bi-flag curvature of (g.E.) com-
plex Finsler spaces

For the beginning, let us express the holomorphic bi-flag curvature of a (g.E.) complex
Finsler space by means of the holomorphic curvature of the same space.

In locally coordinates, the holomorphic bi-flag curvature of the complex Finsler
metric F along of the flags (η, χ) and (η, γ) is given by

ℵF (z, η, χ, γ) =
1

2L(z, η)F (z, χ)F (z, γ)
(ηiχjηkγh + χiηjγkηh(3.1)

+ηiγjηkχh + γiηjχkηh)Rijkh,

with F (z, χ) =
√

gij̄χ
iχj 6= 0 , F (z, γ) =

√
gij̄γ

iγj 6= 0, and the angle ϕ between the

directions of η and χ is cos ϕ =
ηiχ

i + η̄jχ̄
j

2
√

L(z, η)L(z, χ)
.

Theorem 3.1. Let (M,F ) be a (g.E.) complex Finsler space. Then

ℵF (z, η, χ, γ) =
KF (z)

F (z, χ)F (z, γ)

[
Re

(
Cj̄h̄χjγh

)
+

Re
(
η̄jχ

j η̄hγh
)

L(z, η)

]
.(3.2)

Proof. Because (M, F ) is a (g.E.) complex Finsler space, by relation (3.8) from
Proposition 2.3, iii) and Proposition 2.4 from [4], we obtain:

Rjlhkηlηk = 2K(z)
(
η̄hη̄j + L(z, η)Cj̄h̄

)
;

Rjlhkη̄j η̄h = 2K(z) (ηlηk + L(z, η)Clk) . Plugging into (3.1) it results:

ℵF (z, η, χ, γ) = 2K(z)
L(z,η)F (z,χ)F (z,γ)

(
η̄jχ

j η̄hγh + ηlχ
lηkγk

)
+

+ 2K(z)
F (z,χ)F (z,γ)

(
Cj̄h̄χjγh + Cklχ

lχk
)

= 4K(z)
L(z,η)F (z,χ)F (z,γ)Re

(
η̄jχ

j η̄hγh
)

+ 4K(z)
F (z,χ)F (z,γ)Re

(
Cj̄h̄χjγh

)
.

But, K(z) = 1
4KF (z), so the last relation is (3.2). ¤

In the following we establish some inequalities between the holomorphic bi-flag
curvature and holomorphic curvature of a (g.E.) complex Finsler space. The ap-
proach are related to the Kähler case. In order to reduce the clutter, let us make the
abbreviations KF (X) := KF (z, η, X), ℵF (χ, γ) := ℵF (z, η, χ, γ),where X ∈ {χ, γ},
Ω1 := cos2 θ1 − KF (χ)

c and Ω2 := cos2 θ2 − KF (γ)
c .

Proposition 3.1. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗. If Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≥ 0 then

ℵF (χ, γ)
c

= −
√

Ω1Ω2 + cos θ1 cos θ2,(3.3)

where θ1 ( θ2) is the angle of η and χ (η and γ) directions.
If Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≤ 0 then the sign in front of the brackets is positive.

Proof. Because (M, F ) is a (g.E.) complex Finsler space, Kähler with KF (z) = c,

c ∈ R∗, by (3.2) we obtain ℵF (χ,γ)
c =

Re(η̄jχj η̄hγh)
L(z,η)F (z,χ)F (z,γ) .
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But,
Re

(
η̄jχ

j η̄hγh
)

= Re
(
η̄jχ

j
)
Re

(
η̄hγh

)− Im
(
η̄jχ

j
)
Im

(
η̄hγh

)
.

If Im
(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≥ 0 then taking into account (2.2) and (1.8) we have

Re(η̄jχj η̄hγh)
L(z,η)F (z,χ)F (z,γ) = cos θ1 cos θ2 −

√
Ω1Ω2. ¤

Lemma 3.1. Let (M, F ) be a (g.E.) complex Finsler space, Kähler with KF (z) = c,
c ∈ R∗.

i) If KF (X)
c ≥ 0, then

√
Ω1Ω2 ≤ 1;

ii) If KF (X)
c ≤ 0,then

√
Ω1Ω2 ≥

√
KF (χ)KF (γ)

|c| .

iii) If KF (χ)
c ≤ 0 and KF (γ)

c ≥ 0 (or KF (χ)
c ≥ 0 and KF (γ)

c ≤ 0) then

√
Ω1Ω2 ≤

√
1− KF (χ)

c
or

√
Ω1Ω2 ≤

√
1− KF (γ)

c
.(3.4)

Proof. i) and iii) immediately result from the inequality
√

Ω1Ω2 ≤
(
1− KF (χ)

c

) 1
2

(
1− KF (γ)

c

) 1
2

.

The inequality −KF (X)
c ≤ cos2 θ1 − KF (X)

c leads to ii). ¤
Taking into account Proposition 3.1 and Lemma 3.1 we can prove:

Proposition 3.2. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗, and Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≥ 0.

i) If c > 0 then ℵF (χ, γ) ≤ c;
ii) If c < 0 then ℵF (χ, γ) ≥ c.
iii) If c > 0 and KF (X) ≤ 0, then ℵF (χ, γ) ≤ c−

√
KF (χ)KF (γ);

iv) If c < 0 and KF (X) ≥ 0, then ℵF (χ, γ) ≥ c +
√
KF (χ)KF (γ).

Proposition 3.3. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗, Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≥ 0 and Re

(
η̄jχ

j
)
Re

(
η̄jγ

j
) ≥ 0.

i) If c > 0 and KF (X) ≥ 0 (or c < 0 and KF (X) ≤ 0), where X ∈ {χ, γ}, then
|ℵF (χ, γ)| ≤ |c|;

ii) If c > 0, KF (χ) ≤ 0 and KF (γ) ≥ 0 (or KF (χ) ≥ 0 and KF (γ) ≤ 0) then
c ≥ ℵF (χ, γ) ≥ −c + KF (χ)

2 (or −c + KF (γ)
2 );

iii) If c < 0, KF (χ) ≥ 0 and KF (γ) ≤ 0 (or KF (χ) ≤ 0 and KF (γ) ≥ 0) then
c ≤ ℵF (χ, γ) ≤ −c + KF (χ)

2 (or −c + KF (γ)
2 ).

Proposition 3.4. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗, Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≥ 0 and Re

(
η̄jχ

j
)
Re

(
η̄jγ

j
) ≤ 0.

i) If c > 0 then ℵF (χ, γ) ≤ 0;
ii) If c < 0 then ℵF (χ, γ) ≥ 0;
iii) If c > 0 and KF (X) ≤ 0, then ℵF (χ, γ) ≤ −

√
KF (χ)KF (γ);

iv) If c < 0 and KF (X) ≥ 0, then ℵF (χ, γ) ≥
√
KF (χ)KF (γ).

Proposition 3.5. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗ and Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≤ 0.

i) If c > 0 and KF (X) ≥ 0, where X ∈ {χ, γ}, then ℵF (χ, γ) ≤ 2c;
ii) If c < 0 and KF (X) ≤ 0, where X ∈ {χ, γ}, then ℵF (χ, γ) ≥ 2c.
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iii) If c > 0, KF (χ) ≤ 0 and KF (γ) ≥ 0 (or KF (χ) ≥ 0 and KF (γ) ≤ 0) then
2c ≥ ℵF (χ, γ) ≥ 2c− KF (χ)

2 (or 2c− KF (γ)
2 );

iv) If c < 0, KF (χ) ≥ 0 and KF (γ) ≤ 0 (or KF (χ) ≤ 0 and KF (γ) ≥ 0) then
2c ≤ ℵF (χ, γ) ≤ 2c− KF (χ)

2 (or 2c− KF (γ)
2 ).

Proposition 3.6. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗, Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≤ 0 and Re

(
η̄jχ

j
)
Re

(
η̄jγ

j
) ≥ 0.

i) If c > 0 then ℵF (χ, γ) ≥ 0;
ii) If c < 0 then ℵF (χ, γ) ≤ 0;
iii) If c > 0 and KF (X) ≤ 0, then ℵF (χ, γ) ≥

√
KF (χ)KF (γ);

iv) If c < 0 and KF (X) ≥ 0, then ℵF (χ, γ) ≤ −
√
KF (χ)KF (γ).

Proposition 3.7. Let (M,F ) be a (g.E.) complex Finsler space, Kähler with KF (z) =
c, c ∈ R∗, Im

(
η̄jχ

j
)
Im

(
η̄jγ

j
) ≤ 0 and Re

(
η̄jχ

j
)
Re

(
η̄jγ

j
) ≤ 0.

i) If c > 0 and KF (X) ≥ 0, where X ∈ {χ, γ},then ℵF (χ, γ) ≤ c;
ii) If c < 0 and KF (X) ≤ 0, where X ∈ {χ, γ}, then ℵF (χ, γ) ≥ c;
iii) If c > 0, KF (χ) ≤ 0 and KF (γ) ≥ 0 (or KF (χ) ≥ 0 and KF (γ) ≤ 0) then

ℵF (χ, γ) ≤ c− KF (χ)
2 (or c− KF (γ)

2 );
iv) If c < 0, KF (χ) ≥ 0 and KF (γ) ≤ 0 (or KF (χ) ≤ 0 and KF (γ) ≥ 0) then

ℵF (χ, γ) ≥ c− KF (χ)
2 (or c− KF (γ)

2 ).

It is clear that the holomorphic bi-flag curvature is an important generalization of
the holomorphic flag curvature, however we will prove in a coming paper that it is not
the corespondent of the holomorphic bisectional curvature from Hermitian geometry.
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Transilvania University of Braşov, Faculty of Mathematics and Informatics,
Iuliu Maniu 50, Braşov, Romania.
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