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Abstract. Among all the natural almost Kählerian structures on the tan-
gent bundle TM , we select those with the property that any holomorphic
plane making a certain angle with Liouville vector field have the same
curvature. Mainly, we prove that this happens only for those structures
with constant holomorphic sectional curvature.
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1 Introduction

The tangent bundle TM of a Riemannian manifold (M, g) has many nice geometric
properties, and furnishes important examples arising in various geometric classifica-
tions.

It is well known (see [14], [17]) that the splitting of the tangent bundle to TM
into the vertical and horizontal distributions, defined by the Levi Civita connection
of g on M , and the corresponding Sasaki metric lead to an almost Kähler structure
on TM . The results from [7] (see also [6], [11]), giving a general expression of the
natural 1-st order lifts of the Riemannian metric g to TM , allow us to consider some
interesting problems concerning the diagonal natural 1-st order almost Hermitian lifts
of g to TM . The second author has studied some properties of a special natural 1-st
order lift G of g and a natural almost complex structure J on TM (see [9], [10], [12],
and see also [11], [13]).

In section 2 we provide a general construction of a family of natural almost Her-
mitian structures on the tangent bundle TM of a Riemannian manifold (M, g). Among
all these structures (which are of diagonal type) an interesting goal is to select, in
sections 3 and 4, those which are Kählerian. As for a Kähler manifold carrying a unit
vector field ξ, in section 5 we recall from [1] the notion of quasi-constant holomorphic
sectional curvature, meaning that the curvature of any holomorphic plane depends
on both the point and its angle with ξ. We apply this to the set of non-zero tangent
vectors, among which the existence of the Liouville vector field arises the question of
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whether the above Kählerian structures are or are not of quasi-constant holomorphic
sectional curvatures. In section 6 we prove that this happens if and only if TM has
constant holomorphic sectional curvature.

Several computations have been done by using the RICCI package under Mathe-
matica for doing tensor calculations in differential geometry.

All geometric objects are assumed to be smooth. We use the computations in local
coordinates in a fixed local chart though many results admit an invariant form via
the vertical and horizontal lifts. The summation convention is used throughout over
the indices h, i, j, k, l running {1, . . . , n}.

2 Natural almost complex structures of
diagonal type on TM

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tan-
gent bundle by τ : TM −→ M . To fix notation, the manifold structure of TM
is obtained from the manifold structure of M whose local charts (τ−1(U), Φ) =
(τ−1(U), x1, . . . , xn, y1, . . . , yn) are induced from the local charts (U,ϕ) = (U, x1, . . . , xn)
on M , where the local coordinates xi, yi, i = 1, . . . , n, are defined as follows. The first
n local coordinates of a tangent vector y ∈ τ−1(U) are the local coordinates in the
local chart (U,ϕ) of its base point, i.e. xi = xi ◦ τ , by an abuse of notation. The last
n local coordinates yi, i = 1, . . . n, of y ∈ τ−1(U) are the vector space coordinates of
y with respect to the natural basis in the local chart (U,ϕ). A useful concept in the
differential geometry of TM is that of M -tensor field (of type (p, q)) which is defined
by sets of np+q components (functions of x and y) with p upper indices and q lower
indices, assigned to induced local charts (τ−1(U),Φ) on TM , such that the local coor-
dinate change rule is that of the local coordinate components of a (p, q)-tensor field on
the base manifold M (see [8] for further details); e.g., the components yi, i = 1, . . . , n,
corresponding to the last n local coordinates of a tangent vector y, assigned to the
induced local chart (τ−1(U),Φ) define an M -tensor field of type (1, 0). Assume that
u : [0,∞) −→ R is a smooth function and let ‖y‖2 = gτ(y)(y, y) be the square of the
norm of the tangent vector y. If δi

j (the Kronecker symbols) are the local coordinate
components of the identity (1, 1)-tensor field I on M , then the components u(‖y‖2)δi

j

define an M -tensor field of type (1, 1) on TM . The components u(‖y‖2)gij define an
M -tensor field of type (0, 2) on TM , where g is the metric tensor field on M . The
components g0i = ykgki define an M -tensor field of type (0, 1) on TM .

The Levi Civita connection ∇̇ of g on M gives the direct sum decomposition

TTM = V TM ⊕HTM(2.1)

of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗ and
the horizontal distribution HTM . The set of vector fields ( ∂

∂y1 , . . . , ∂
∂yn ) on τ−1(U)

defines a local frame field for V TM and for HTM we have the local frame field
( δ

δx1 , . . . , δ
δxn ), where

δ

δxi
=

∂

∂xi
− Γh

0i

∂

∂yh
, Γh

0i = ykΓh
ki

and Γh
ki(x) are the Christoffel symbols of g.
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The set ( ∂
∂y1 , . . . , ∂

∂yn , δ
δx1 , . . . , δ

δxn ) defines a local frame on TM , adapted to the
direct sum decomposition (1). Remark that

∂

∂yi
= (

∂

∂xi
)V ,

δ

δxi
= (

∂

∂xi
)H ,

where XV and XH denote the vertical and horizontal lift of the vector field X on M
which help us to obtain invariant expressions later on. However, in local coordinates,
the formulae are more direct, and more natural, in a certain sense.

We begin by considering the energy density of the tangent vector y

t =
1
2
‖y‖2 =

1
2
gτ(y)(y, y) =

1
2
gik(x)yiyk, y ∈ τ−1(U).(2.2)

Obviously, we have t ∈ [0,∞) for all y ∈ TM . By direct computation we obtain
Lemma 1. If n > 1 and u, v are smooth functions on TM such that either

ugij + vg0ig0j = 0,

or
uδi

j + vg0jy
i = 0,

on the domain of any induced local chart on TM , then u = v = 0.
Denote by C = yi ∂

∂yi the Liouville vector field on TM and by C̃ = yi δ
δxi the

similar horizontal vector field on TM . Let a1, a2, b1, b2 : [0,∞) → R be some smooth
functions. A natural 1-st order almost complex structure J of diagonal type on TM
is given by (see [7]) 




J δ
δxi = a1(t) ∂

∂yi + b1(t)g0iC,

J ∂
∂yi = −a2(t) δ

δxi − b2(t)g0iC̃.

(2.3)

Proposition 2 [10]. The operator J defines an almost complex structure on TM
if and only if

a1a2 = 1, (a1 + 2tb1)(a2 + 2tb2) = 1.(2.4)

Remark (i) As all coefficients a1, a2, a1 + 2tb1, a2 + 2tb2 from (4) are non-zero
and of the same sign, we may assume them positive for any t ≥ 0.

(ii) By (4), two of the coefficients a1, a2, a3, b1, b2 are functions of the other two;
e.g. we have:

a2 =
1
a1

, b2 =
−a2b1

a1 + 2tb1
=

−b1

a1(a1 + 2tb1)
.(2.5)

To express the integrability condition of J we use the vanishing of its Nijenhuis
tensor field NJ , defined by

NJ (X, Y ) = [JX, JY ]− J [JX, Y ]− J [X,JY ]− [X,Y ],

for all vector fields X and Y on TM .
Theorem 3. [10] Let (M, g) be an n(> 2)-dimensional connected Riemannian

manifold. The almost complex structure J defined by (3) on TM is integrable if and
only if (M, g) has constant sectional curvature c and the coefficient b1 is given by:
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b1 =
a1a

′
1 − c

a1 − 2ta′1
(2.6)

(compare with the corresponding expressions from [9] and [15]).

3 Natural diagonal almost Kählerian structures on
TM

Consider a diagonal 1-st order, natural F -metric G on TM (see [7], see also , [6], [11]),
given by

G(
δ

δxi
,

δ

δxj
) = c1gij + d1g0ig0j , G(

∂

∂yi
,

∂

∂yj
) = c2gij + d2g0ig0j ,(3.1)

G(
∂

∂yi
,

δ

δxj
) = G(

δ

δxi
,

∂

∂yj
) = 0,

where c1, c2, d1, d2 are smooth functions depending on the energy density t ∈ [0,∞).
The conditions for G to be positive definite are assured if

c1 > 0, c2 > 0, c1 + 2td1 > 0, c2 + 2td2 > 0.(3.2)

We establish here the conditions under which the metric G is almost Hermitian
with respect to the almost complex structure J , considered in the previous section,
i.e.

G(JX, JY ) = G(X, Y ),

for all vector fields X,Y on TM .
Considering the coefficients of gij in the conditions





G(J δ
δxi , J

δ
δxj ) = G( δ

δxi ,
δ

δxj ),

G(J ∂
∂yi , J

∂
∂yj ) = G( ∂

∂yi ,
∂

∂yj ),
(3.3)

we obtain the following expressions

c1 = λa1, c2 = λa2,(3.4)

where λ = λ(t) is a positive smooth function of t ∈ [0,∞). (Recall the assumptions
a1, a2 > 0).

Next, considering the coefficients of g0ig0j in the relations (9) and using (10), we
obtain the following expressions





c1 + 2td1 = (λ + 2tµ)(a1 + 2tb1),

c2 + 2td2 = (λ + 2tµ)(a2 + 2tb2),
(3.5)

where λ+2tµ = λ(t)+2tµ(t) is a positive smooth function of t ∈ [0,∞). The conditions
(8) are automatically fulfilled, due to the properties (4) of the coefficients a1, a2, b1, b2.
From (14), d1 and d2 have the following explicit expressions
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d1 = λb1 + µ(a1 + 2tb1), d2 = λb2 + µ(a2 + 2tb2).(3.6)

Remark If λ = 1 and µ = 0, we obtain the almost Kählerian structure constructed
in [10].

Consider now the two-form Ω defined by the almost Hermitian structure (G, J)
on TM

Ω(X, Y ) = G(X, JY ),

for all vector fields X, Y on TM .
The expression of the 2-form Ω in a local adapted frame ( ∂

∂y1 , . . . , ∂
∂yn , δ

δx1 , . . . , δ
δxn )

on TM , is given by

Ω(
∂

∂yi
,

∂

∂yj
) = 0, Ω(

δ

δxi
,

δ

δxj
) = 0, Ω(

∂

∂yi
,

δ

δxj
) = λgij + µg0ig0j

or, equivalently
Ω = (λgij + µg0ig0j)∇̇yi ∧ dxj ,(3.7)

where ∇̇yi = dyi + Γi
0hdxh is the absolute differential of yi.

From the following formula

dΩ =
1
2
(λ′ − µ)(gijg0k − g0igjk)∇̇yk ∧ ∇̇yi ∧ dxj ,

obtained by a straightforward computation and following the same idea as in [11], we
obtain

Theorem 4. The almost Hermitian structure (TM,G, J) is almost Kählerian if
and only if

µ = λ′.

Thus the family of almost Kählerian structures of diagonal type on TM depends
on three essential coefficients a1, b1, λ. Combining the results from Theorems 3 and
4, it follows that the coefficient b1 can be expressed as a function of a1 and its first
derivative, so that a natural Kählerian structure (G, J) of diagonal type on TM
is defined by two essential coefficients a1, λ, which have to satisfy some additional
conditions a1 > 0, a1 + 2tb1 > 0, λ > 0. Examples of such structures can be found in
[15] (see also [9], [10], [12]).

4 The Levi Civita connection and its curvature ten-
sor field on TM

Assume that (TM,G, J) is Kählerian, hence the base manifold M has constant sec-
tional curvature and the parameters a2, b1, b2 are given by (5), (6), while the coeffi-
cients c1, c2, d1, d2 are given by (10), (12), where µ = λ′. Denote by δi = δ

δxi , ∂i =
∂

∂yi , i = 1, . . . , n. The local expression of the Levi Civita connection of G is given in
an adapted local frame (∂1, ..., ∂n, δ1, ..., δn) by




∇∂i∂j = Qh

ij∂h, ∇δi∂j = Γh
ij∂h + Ph

jiδh,

∇∂iδj = Ph
ijδh, ∇δiδj = Γh

ijδh + Sh
ij∂h,

(4.1)



16 C.L. Bejan and V. Oproiu

where Γh
ij are the Christoffel symbols of the connection ∇̇ and the M−tensor fields

Ph
ij , Qh

ij , Sh
ij are given by

Ph
ij =

c′1
2c1

g0iδ
h
j +

d1 − cc2

2c1
g0jδ

h
i +

d1 + cc2

2(c1 + 2td1)
gijy

h−

−c′1d1 + d2
1 − c1d

′
1 − cc2d1

2c1(c1 + 2td1)
g0ig0jy

h,

Qh
ij =

c′2
2c2

(g0iδ
h
j + g0jδ

h
i ) +

2d2 − c′2
2(c2 + 2td2)

gijy
h +

c2d
′
2 − 2d2c

′
2

2c2(c2 + 2td2)
g0ig0jy

h,

Sh
ij =

cc2 − d1

2c2
g0iδ

h
j −

cc2 + d1

2c2
g0jδ

h
i −

c′1
2(c2 + 2td2)

gijy
h+

+
2d1d2 − c2d

′
1

2c2(c2 + 2td2)
g0ig0jy

h.

Denote by Ṙh
kij = Ṙ( ∂

∂xi ,
∂

∂xj ) ∂
∂xk the components of the curvature tensor field

Ṙ of ∇̇, and by Ṙh
0ij = ykṘh

kij The curvature tensor field of ∇ is denoted by R. Its
components in the local adapted frame (∂1, ..., ∂n, δ1, ..., δn) are given by

R(δi, δj)δk = XXXh
ijkδh, R(δi, δj)∂k = XXY h

ijk∂h,

R(∂i, ∂j)∂k = Y Y Y h
ijk∂h, R(∂i, ∂j)δk = Y Y Xh

ijkδh,

R(∂i, δj)δk = Y XXh
ijk∂h, R(∂i, δj)∂k = Y XY h

ijkδh,

(4.2)

where the components XXXh
ijk, . . . are given by

XXXh
ijk = Ṙh

kij + Ph
lkṘl

0ij + Ph
liS

l
jk − Ph

ljS
l
ik,

XXY h
ijk = Ṙh

kij + Sh
ilP

l
kj − Sh

jlP
l
ki + Qh

lkṘl
0ij ,

Y Y Xh
ijk =

∂

∂yi
Ph

jk −
∂

∂yj
Ph

ik + Ph
ilP

l
jk − Ph

jlP
l
ik,

Y Y Y h
ijk =

∂

∂yi
Qh

jk −
∂

∂yj
Qh

ik + Qh
ilQ

l
jk −Qh

jlQ
l
ik

Y Y Xh
ijk =

∂

∂yi
Sh

jk + Qh
ilS

l
jk − Sh

jlP
l
ik,

Y XY h
ijk =

∂

∂yi
Ph

kj + Ph
ilP

l
kj − Ph

ljQ
l
ik.
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5 Kähler manifolds of quasi constant holomorphic
sectional curvatures

Let (M, g, J) be a Kähler manifold endowed with a unit vector field ξ, where g is the
Riemannian metric and J is the complex structure. The manifold (M, g, J, ξ) is said
to be of quasi-constant holomorphic curvatures (see [1], [5]) if for any holomorphic
section span {X, JX} generated by the unit tangent vector X ∈ TpM, p ∈ M with
ϕ = 6 (span{X, JX}, ξ), the Riemannian sectional curvature R(X, JX, JX, X) may
only depend on the point p ∈ M and the angle ϕ, i.e.

R(X,JX, JX, X) = f(p, ϕ), p ∈ M, ϕ ∈ [0, π/2].

This notion is the Kählerian correspondent to the notion of a Riemannian manifold
of quasi-constant sectional curvatures (see [3], [4]). One shows (see [1], [5]) that a
Kählerian manifold (M, g, J, ξ) is of quasi-constant holomorphic sectional curvature
if and only if the curvature tensor field R of ∇ satisfies the identity

R = κ0R0 + κ1R1 + κ2R2,

where κ0, κ1, κ2 are smooth functions on M and R0, R1, R2 are certain tensor fields of
curvature type on M which will be described below. The first tensor field R0 is given
by the expression which defines the Kählerian manifolds of constant holomorphic
curvature, i.e.

R0(X, Y )Z = 1
4{g(Y,Z)X − g(X, Z)Y +

+g(JY, Z)JX − g(JX, Z)JY + 2g(X, JY )JZ}.
(5.1)

The next tensor field R1 depends on the unitary vector field ξ and on the corre-
sponding 1-form η defined by η(X) = g(X, ξ). In order to define R1 we introduce the
following auxiliary (1, 3)-tensor field

P (X, Y, Z) = 1
8{η(Y )η(Z)X + η(X)η(JZ)JY +

+η(X)η(JY )JZ + g(Y,Z)η(X)ξ + g(X, JZ)η(Y )Jξ+

+ 1
2g(X,JY )η(JZ)ξ + 1

2g(X, JY )η(Z)Jξ}.

(5.2)

Then the tensor field R1 is defined by

R1(X, Y )Z = P (X, Y, Z)− P (Y, X, Z)+

+P (JX, JY, Z)− P (JY, JX, Z).
(5.3)

The last tensor field R2 is given by

R2(X, Y )Z = {η(X)η(JY )− η(JX)η(Y )}

{η(JZ)ξ + η(X)Jξ}.
(5.4)

One can check easily that the tensor fields R0, R1, R2 have the symmetry and skew-
symmetry properties as well as the invariance properties with respect to J , specific
to the curvature tensor field on a Kählerian manifold. Moreover, they verify the first
Bianchi identity.
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6 Tangent bundle as a Kähler manifold of quasi con-
stant holomorphic sectional curvatures

In the case of the tangent bundle TM of a Riemannian manifold of constant sectional
curvature we have the Kählerian structure (G, J) considered above and the Liouville
vector field C = yi∂i. This vector field is non-zero on the subset T0M ⊂ TM of all
non-zero tangent vectors. Then we could consider the unitary vector field 1

‖C‖C and
study the property of T0M to be of quasi-constant holomorphic curvatures. However,
we should prefer to work with the vector field C as ξ, since the scalar factors can be
incorporated in κ1, κ2.

The following notations will simplify our calculus

R0(δi, δj)δk = (XXX0)h
ijkδh, R0(δi, δj)∂k = (XXY0)h

ijk∂h,

R0(∂i, ∂j)δk = (Y Y X0)h
ijkδh, R0(∂i, ∂j)∂k = (Y Y Y0)h

ijk∂h,

R0(∂i, δj)δk = (Y XX0)h
ijk∂h, R0(∂i, δj)∂k = (Y XY0)h

ijkδh,

where
(XXX0)h

ijk =
1
4
(δh

i (c1gjk + d1g0jg0k)− δh
j (c1gik + d1g0ig0k)),

(XXY0)h
ijk =

1
4
(c2gkl + d2g0kg0l){(a1δ

h
i + b1g0iy

h)(a1δ
l
j + b1g0jy

l)−

−(a1δ
h
j + b1g0jy

h)(a1δ
l
i + b1g0iy

l)}

(Y Y X0)h
ijk =

1
4
(c1gkl + d1g0kg0l){(a2δ

h
i + b2g0iy

h)(a2δ
l
j + b2g0jy

l)−

−(a2δ
h
j + b2g0jy

h)(a2δ
l
i + b2g0iy

l)},
(Y Y Y0)h

ijk = 1/4{(δh
i (c2gjk + d2g0jg0k)− δh

j (c2gik + d2g0ig0k)},
(Y XX0)h

ijk = 1/4{δh
i (c1gjk + d1g0jg0k)+

+(a1δ
h
j + b1g0jy

h)(c1gkl + d1g0kg0l)(a2δ
l
i + b2g0iy

l)+

+2(a1δ
l
j + b1g0jy

l)(c2gil + d2g0ig0l)(a1δ
h
k + b1g0kyh)},

(Y XY0)h
ijk =

1
4
{−δh

j (c2gik + d2g0ig0k)−

−(a2δ
h
i + b2g0iy

h)(c2gkl + d2g0kg0l)(a1δ
l
j + b1g0jy

l)−
−2(a2δ

h
k + b2g0kyh)(c2gil + d2g0ig0l)(a1δ

l
j + b1g0jy

l)}.
The components of the tensor field R1 are obtained in a similar way

(XXX1)h
ijk =

1
8
(λ + 2λ′t)2(δh

i g0jg0k − δh
j g0ig0k)+

+
a1λ(a1 − 2a′1t)(λ + 2λ′t)

8(a2
1 − 2ct)

(g0igjkyh − g0jgikyh)
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(XXY1)h
ijk =

a1(a1 − 2a′1t)(λ + 2λ′t)2

8(a2
1 − 2ct)

(δh
i g0jg0k − δh

j g0ig0k)+

+
1
8
λ(λ + 2λ′t)(g0igjkyh − g0jgikyh),

(Y Y X1)h
ijk =

(a1 − 2a′1t)(λ + 2λ′t)2

8a1(a2
1 − 2ct)

(δh
i g0jg0k − δh

j g0ig0k)+

+
λ(a1 − 2a′1t)

2(λ + 2λ′t)
8(a2

1 − 2ct)2
(g0igjkyh − g0jgikyh),

(Y Y Y1)h
ijk =

(a1 − 2a′1t)
2(λ + 2λ′t)2

8(a2
1 − 2ct)2

(δh
i g0jg0k − δh

j g0ig0k)+

+
λ(a1 − 2a′1t)(λ + 2λ′t)

8a1(a2
1 − 2ct)

(g0igjkyh − g0jgikyh),

(Y XX1)h
ijk =

a1(a1 − 2a′1t)(λ + 2tλ′)2

8(a2
1 − 2ct)

(2δh
kg0ig0j + δh

j g0ig0k + gjkg0iy
h)+

+
(λ + 2tλ′)2

8
δh
i g0jg0k +

λ(λ + 2λ′t)
8

(gikg0jy
h + 2gijg0kyh)+

+
(λ + 2λ′t)(2a1a

′
1λ− 2cλ + 2a2

1λ
′ + 3a1a

′
1λ
′t− 7cλ′t)

4(a2
1 − 2ct)

g0ig0jg0kyh,

(Y XY1)h
ijk = − (a1 − 2a′1t)(λ + 2λ′t)2

8a1(a2
1 − 2ct)

(2δh
kg0ig0j +

1
(a2

1 − 2ct)
δh
i g0jg0k + δh

i g0jg0k)−

−λ(a1 − 2a′1t)
2(λ + 2λ′t)

8a1(a2
1 − 2ct)2

(gjkg0iy
h + (a2

1 − 2ct)gikg0jy
h)−

+
λ(a1 − 2a′1t)

2(λ + 2λ′t)
4(a2

1 − 2ct)2
gijg0kyh−

− (a1 − 2a′1t)(λ + 2λ′t)(−2a1a
′
1λ + 2cλ + 2a2

1λ
′ − 7a1a

′
1λ
′t + 3cλ′t)

4a1(a2
1 − 2ct)2

g0ig0jg0kyh.

Finally, the components of the tensor field R2 are obtained as follows

(XXX2)h
ijk = 0, (XXY2)h

ijk = 0, (Y Y X2)h
ijk = 0, (Y Y Y2)h

ijk = 0,

(Y XX2)h
ijk =

(a1 − 2a′1t)(λ
3 + 6λ2λ′t + 12λλ′2t2 + 8λ′3t3)

a2
1 − 2ct

g0ig0jg0kyh,

(Y XY2)h
ijk = − (a1 − 2a′1t)

3(λ3 + 6λ2λ′t + 12λλ′2t2 + 8λ′3t3)
(a2

1 − 2ct)3
g0ig0jg0kyh

Remark. We could consider a more general vector field ξ = αC +βC̃, where α, β
are smooth functions on TM and the vector field C̃ = yiδi is the horizontal vector
field corresponding to the Liouville vector field C. A simple computation shows that
the tensor fields R1 and R2 have not local expressions similar to that obtained in (15)
for the tensor field R unless if β = 0. So our choice of Liouville vector field C for ξ is
the only one possible.
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To obtain the conditions under which the Kählerian manifold (T0M, G, J,C) is
of quasi-constant holomorphic sectional curvatures, we have to consider the following
equations

XXXh
ijk − κ0(XXX0)h

ijk − κ1(XXX1)h
ijk − κ2(XXX2)h

ijk = 0,

XXY h
ijk − κ0(XXY0)h

ijk − κ1(XXY1)h
ijk − κ2(XXY2)h

ijk = 0,

Y Y Xh
ijk − κ0(Y Y X0)h

ijk − κ1(Y Y X1)h
ijk − κ2(Y Y X2)h

ijk = 0,

Y Y Y h
ijk − κ0(Y Y Y0)h

ijk − κ1(Y Y Y1)h
ijk − κ2(Y Y Y2)h

ijk = 0,

Y XXh
ijk − κ0(Y XX0)h

ijk − κ1(Y XX1)h
ijk − κ2(Y XX2)h

ijk = 0,

Y XY h
ijk − κ0(Y XY0)h

ijk − κ1(Y XY1)h
ijk − κ2(Y XY2)h

ijk = 0.

From the first four equations we obtain the same value for the coefficient κ0

κ0 = −{4a2
1cλ

2 − 2a2
1a
′2
1 λ2t− 8a1a

′
1cλ

2t− 4a3
1a
′
1λλ′t + 8a2

1cλλ′t−

−2a4
1λ
′2t + 4a′21 cλ2t2 − 8a1a

′
1cλλ′t2 + 4a2

1cλ
′2t2}/{−a3

1λ
3 + 2a2

1a
′
1λ

3t−
−2a3

1λ
2λ′t + 4a2

1a
′
1λ

2λ′t2}.
From the last two equations we obtain another value of the coefficient κ0

κ0 = −{−2a3
1a
′
1λ

2 − 2a4
1λλ′ + 2a2

1a
′2
1 λ2t + 4a1a

′
1cλ

2t + 4a2
1cλλ′t−

−2a4
1λ
′2t− 4a′21 cλ2t2 + 4a2

1cλ
′2t2}/{−a3

1λ
3 + 2a2

1a
′
1λ

3t−
−2a3

1λ
2λ′t + 4a2

1a
′
1λ

2λ′t2}.
Asking for the equality of the two values of κ0, we find the following relation which

must be fulfilled by a1 and λ

λ′

λ
=

2a′1ct− a2
1a
′
1 − 2a1c

a3
1 + 2a1ct

,(6.1)

which can be written, by an integration, as

λ = A
a1

a2
1 + 2ct

,(6.2)

for a certain positive constant A.
Next we get

κ0 =
4c

A
,

and
κ1 = 0, κ2 = 0.

Hence, in our case, we have
R = κ0R0,

and we may state our main result
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Theorem 5. Let (T0M,G, J) be the manifold of all non-zero tangent vectors to
M , carrying the above Kählerian structure and the Liouville vector field C, where the
Riemannian manifold (M, g) has constant sectional curvature. If (T0M,G, J,C) is
a manifold of quasi-constant holomorphic sectional curvature then TM has constant
holomorphic sectional curvature.

Remark. By theorem 5, the manifold T0M satisfies a generalization of Schur type
lemma, namely if we suppose that the sectional curvature of any holomorphic plane
depends on the angle φ with the Liouville vector field and the point p ∈ M only, then
TM is of constant holomorphic sectional curvature.
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References

[1] C.L. Bejan, M. Benyounes, Kähler η-Einstein manifolds, accepted for publication
in Journal of Geometry.

[2] C.L. Bejan, Some structures induced on the tangent bundle of an almost contact
manifold, An. St. Univ. ”Al.I.Cuza” Iaşi, Mat. 30 (3) (1984), 69-78.
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