Slant submanifolds with prescribed scalar curvature into cosymplectic space form

Ram Shankar Gupta, S.M.Khrusheed Haider and A.Sharfuddin

Dedicated to the memory of Radu Rosca (1908-2005)

Abstract

In this paper, we have proved that locally there exist infinitely many three dimensional slant submanifolds with prescribed scalar curvature into cosymplectic space form $\bar{M}^{5}(c)$ with $c \in\{-4,4\}$ while there does not exist flat minimal proper slant surface in $\bar{M}^{5}(c)$ with $c \neq 0$. In section 5 , we have established an inequality between mean curvature and sectional curvature of the subamnifold and have given an example which satisfies the equality sign.

Mathematics Subject Classification: 53B25, 53C40, 53C42.
Key words: slant submanifolds, cosymplectic space form, prescribed scalar curvature, mean curvature.

1 Introduction

The notion of a slant submanifold of an almost Hermitian manifold was introduced by Chen [9]. Examples of slant submanifolds of C^{2} and C^{4} were given by Chen and Tazawa [11, 12], while that of slant submanifolds of a Kaehler manifold were given by Maeda, Ohnita and Udagawa [22]. On the other hand, A. Lotta [1] has defined and studied slant submanifolds of an almost contact metric manifold. He has also studied the intrinsic geometry of 3-dimensional non-anti-invariant slant submanifolds of K-Contact manifolds [2]. Later, L. Cabrerizo and others have investigated slant submanifolds of a Sasakian manifold and obtained many interesting results [15, 16]. It was proved in [17] that every surface in a complex space form $\bar{M}^{2}(4 c)$ is proper slant if it has constant curvature and non-zero parallel mean curvature vector. Existence of minimal proper slant surfaces in C^{2} have been proved in [10]. In contrast, It was shown in [6] that there does not exist minimal proper slant surfaces in complex projective and complex hyperbolic planes. There exists a slant surface in C^{2} with prescribed Gaussian curvature [7]and existence of slant submanifolds in almost contact metric manifolds have been proved in $\{[1],[15]\}$.

Also, Chen has established a sharp inequality between mean curvature and Gauss curvature for proper slant surfaces in a complex space form [19]. Similar to this inequality we have established an inequality in section 5 for proper slant submanifolds of cosymplectic manifolds.

[^0]
2 Preliminaries

Let \bar{M} be a $(2 m+1)$-dimensional almost contact metric manifold with structure tensors (φ, ξ, η, g), where φ is a $(1,1)$ tensor field, ξ a vector field, η a 1 -form and g the Riemannian metric on \bar{M}. These tensors satisfy [13]

$$
\begin{cases}\varphi^{2} X=-X+\eta(X) \xi, \varphi \xi=0, \quad \eta(\xi)=1, & \eta(\varphi X)=0 \\ g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), & \eta(X)=g(X, \xi)\end{cases}
$$

for any $X, Y \in T \bar{M}$. A normal almost contact metric manifold is called a cosymplectic manifold [13] if

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \varphi\right)(Y)=0, \quad \bar{\nabla}_{X} \xi=0 \tag{2.2.2}
\end{equation*}
$$

where $\bar{\nabla}$ denotes the levi-civita connection of \bar{M}.
If a cosymplectic manifold \bar{M} has constant ϕ-sectional curvature c, then \bar{M} is called a cosymplectic-space form. The curvature tensor \bar{R} of cosymplectic manifold \bar{M} is given by [13]

$$
\begin{align*}
& \bar{R}(X, Y) Z=\frac{1}{4} c(g(\varphi Y, \varphi Z) X-g(\varphi X, \varphi Z) Y+\eta(Y)(X, Z) \xi \tag{2.2.3}\\
& \quad-\eta(X) g(Y, Z) \xi+g(\varphi Y, Z) \varphi X-g(\varphi X, Z) \varphi Y+2 g(X, \varphi Y) \varphi Z)
\end{align*}
$$

for all $X, Y, Z \in T \bar{M}$.
Now, let M be an m-dimensional immersed submanifold of cosymplectic manifold \bar{M}.
Let ∇ be the Riemannian connection on M. Then the Gauss and Weingarten formulae are

$$
\begin{gather*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \text { and } \tag{2.2.4}\\
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.2.5}
\end{gather*}
$$

for $X, Y \in T M, N \in T^{\perp} M$; where h and A_{N} are the second fundamental forms related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{2.2.6}
\end{equation*}
$$

and ∇^{\perp} is the connection in the normal bundle $T^{\perp} M$ of M.
Denote by R the curvature tensor of M and by R^{\perp} the curvature tensor of the normal connection. The equations of Gauss, Ricci and Codazzi are given, respectively, by

$$
\begin{equation*}
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)-g(h(X, W), h(Y, Z))+g(h(X, Z), h(Y, W)) \tag{2.2.7}
\end{equation*}
$$

$$
\begin{gather*}
\bar{R}(X, Y, U, V)=R^{\perp}(X, Y, U, V)-g\left(\left[A_{U}, A_{V}\right] X, Y\right) \tag{2.2.8}\\
{[\bar{R}(X, Y) Z]^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z)} \tag{2.2.9}
\end{gather*}
$$

for all $X, Y, Z, W \in T \bar{M}$ and $U, V \in T^{\perp} M$ where $[\bar{R}(X, Y) Z]^{\perp}$ denotes the normal component of $\bar{R}(X, Y) Z$ and

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.2.10}
\end{equation*}
$$

For any $X \in T M$ and $N \in T^{\perp} M$, we write

$$
\begin{equation*}
\varphi X=P X+F X \text { and } \varphi N=t N+f N \tag{2.2.11}
\end{equation*}
$$

where $P X$ (resp. $F X$) denotes the tangential (resp. normal) component of φX, and $t N$ (resp. $f N$) denotes the tangential (resp. normal) component of φN.

In what follows, we suppose that the structure vector field ξ is tangent to M. Hence, if we denote by D the orthogonal distribution to ξ in $T M$, we can consider the orthogonal direct decomposition $T M=D \oplus\{\xi\}$.

For each non zero X tangent to M at x such that X is not proportional to ξ_{x}, we denote by $\theta(X)$ the Wirtinger angle of X, that is, the angle between φX and $T_{x} M$.

The submanifold M is called slant if the Wirtinger angle $\theta(X)$ is a constant, which is independent of the choice of $x \in M$ and $X \in T_{x} M-\left\{\xi_{x}\right\}$ [1]. The Wirtinger angle θ of a slant immersion is called the slant angle of the immersion. Invariant and anti-invariant immersions are slant immersions with slant angle θ equal to 0 and $\frac{\pi}{2}$, respectively. A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion.

Now, suppose that M is θ-slant in a cosymplectic manifold \bar{M}. Then, for any $X, Y \in T M$, we have [20]

$$
\begin{equation*}
P^{2}=-\cos ^{2} \theta(X-\eta(X) \xi) \tag{2.2.12}
\end{equation*}
$$

If P is the endomorphism defined by (2.2.11), then

$$
\begin{equation*}
g(P X, Y)+g(X, P Y)=0 \tag{2.2.13}
\end{equation*}
$$

On the other hand, the Gauss and Weingarten formulae together with (2.2.6) and (2.2.7) imply

$$
\begin{gather*}
\left(\nabla_{X} P\right) Y=A_{F Y} X+\operatorname{th}(X, Y) \tag{2.2.14}\\
\nabla_{X}^{\perp}(F Y)-F\left(\nabla_{X} Y\right)=f h(X, Y)-h(X, P Y) \tag{2.2.15}
\end{gather*}
$$

for any $X, Y \in T M$
We denote,for each $X \in T M$,

$$
\begin{equation*}
X^{*}=\frac{F X}{\sin \theta} \tag{2.2.16}
\end{equation*}
$$

We define the symmetric bilinear $T M$-valued form ρ on M by

$$
\begin{equation*}
\rho(X, Y)=\operatorname{th}(X, Y) \tag{2.2.17}
\end{equation*}
$$

Moreover, from (2.2.2), we can obtain

$$
\begin{equation*}
\rho(X, \xi)=0 \tag{2.2.18}
\end{equation*}
$$

We have proved in [21] that

$$
\begin{align*}
& R(X, Y, Z, W)=\cos ^{2} \theta(g(\rho(X, W), \rho(Y, Z))-g(\rho(X, Z), \rho(Y, W))) \tag{2.2.20}\\
& \quad+\frac{c}{4}\{g(Y, Z) g(X, W)-g(X, W) \eta(Y) \eta(Z)-g(X, Z) g(Y, W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)+g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W) \\
& \quad+g(P Y, Z) g(P X, W)-g(P X, Z) g(P Y, W)+2 g(X, P Y) g(P Z, W)\}
\end{align*}
$$

$\left(2.2 . \not \subset \nabla_{X} \rho\right)(Y, Z)+\csc ^{2} \theta\{P \rho(X, \rho(Y, Z))+\rho(X, P \rho(Y, Z))\}$

$$
\begin{aligned}
& +\frac{c}{4} \sin ^{2} \theta\{g(X, P Z)(Y-\eta(Y) \xi)+g(X, P Y)(Z-\eta(Z) \xi)\} \\
& =\left(\nabla_{Y} \rho\right)(X, Z)+\csc ^{2} \theta\{P \rho(Y, \rho(X, Z))+\rho(Y, P \rho(X, Z))\} \\
& +\frac{c}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)+g(Y, P X)(Z-\eta(Z) \xi)\}
\end{aligned}
$$

We recall the following existence and uniqueness theorem for slant immersion into cosymplectic-space-form.
Theorem A (Existence) Let c and θ be two constants with $0<\theta \leq \frac{\pi}{2}$ and M be a simply connected $(m+1)$-dimensional Riemannian manifold with metric tensor g . Suppose that there exist a unit global vector field ξ on M , an endomorphism P of the tangent bundle $T M$ and a symmetric bilinear $T M$-valued form ρ on M such that for all $\mathrm{X}, \mathrm{Y}, \mathrm{Z} \in T M$, we have

$$
\begin{align*}
& P(\xi)=0, \quad g(\rho(X, Y), \xi))=0, \quad \nabla_{X} \xi=0 \tag{i}\\
& P^{2}=-\cos ^{2} \theta(X-\eta(X) \xi) \tag{ii}
\end{align*}
$$

$$
g(P X, Y)+g(X, P Y)=0
$$

(iv)

$$
\rho(X, \xi)=0
$$

(v)
(vi)

$$
\begin{aligned}
& g\left(\left(\nabla_{X} P\right) Y, Z\right)=g(\rho(X, Y), Z)-g(\rho(X, Z), Y) \\
& R(X, Y, Z, W)=\cos ^{2} \theta(g(\rho(X, W), \rho(Y, Z))-g(\rho(X, Z), \rho(Y, W))) \\
& \quad+\frac{c}{4}\{g(Y, Z) g(X, W)-g(X, W) \eta(Y) \eta(Z)-g(X, Z) g(Y, W) \\
& \quad+g(Y, W) \eta(X) \eta(Z)+g(X, Z) \eta(Y) \eta(W)-g(Y, Z) \eta(X) \eta(W) \\
& \quad+g(P Y, Z) g(P X, W)-g(P X, Z) g(P Y, W)+2 g(X, P Y) g(P Z, W)\}
\end{aligned}
$$

and
(vii)

$$
\begin{aligned}
& \left(\nabla_{X} \rho\right)(Y, Z)+\csc ^{2} \theta\{P \rho(X, \rho(Y, Z))+\rho(X, P \rho(Y, Z))\} \\
& \quad+\frac{c}{4} \sin ^{2} \theta\{g(X, P Z)(Y-\eta(Y) \xi)+g(X, P Y)(Z-\eta(Z) \xi)\} \\
& \quad=\left(\nabla_{Y} \rho\right)(X, Z)+\csc ^{2} \theta\{P \rho(Y, \rho(X, Z))+\rho(Y, P \rho(X, Z))\} \\
& \quad+\frac{c}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)+g(Y, P X)(Z-\eta(Z) \xi)\}
\end{aligned}
$$

where η is a dual 1 -form of ξ. Then, there exists a θ-slant immersion from M into $\bar{M}^{2 m+1}(c)$ whose second fundamental form h is given by

$$
h(X, Y)=\csc ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y))
$$

Theorem B (Uniqueness) Let $x^{1}, x^{2}: M \rightarrow \bar{M}(c)$ be two slant immersions with slant angle $\theta\left(0<\theta \leq \frac{\pi}{2}\right)$, of a connected Riemannian manifold M^{m+1} into the cosymplectic space-form $\bar{M}^{2 m+1}(c)$. Let h^{1}, h^{2} denote the second fundamental forms of x^{1} and x^{2}
respectively. Let there be a vector field $\bar{\xi}$ on M such that $x_{* p}^{1}\left(\overline{\xi_{p}}\right)=\xi_{x^{i}(p)}$, for $\mathrm{i}=1,2$ and $p \in M$, and

$$
g\left(h^{1}(X, Y), \varphi x_{*}^{1} Z\right)=g\left(h^{2}(X, Y), \varphi x_{*}^{2} Z\right)
$$

for all vector fields $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ tangent to M . Suppose also that we have one of the following conditions:
(i) $\theta=\frac{\pi}{2}$
(ii) there exists a point p of M such that $P_{1}=P_{2}$
(iii) $c \neq 0$

Then there exists an isometry Ψ of $\bar{M}^{2 m+1}(c)$ such that $x^{1}=\Psi o x^{2}$.

3 Some Results

Let $r=r(x)$ be a differentiable function defined on an open interval containing 0 . Let c and θ be two constants with $0<\theta \leq \frac{\pi}{2}$ and M be simply-connected domain R^{3} containing origin. Consider the following Ricatti differential equation

$$
\begin{equation*}
\psi^{\prime}(x)+\psi^{2}(x)+\frac{r(x)}{2}=0 \tag{3.3.1}
\end{equation*}
$$

Suppose

$$
\begin{gather*}
f(x)=\exp \int \psi(x) d x \tag{3.3.2}\\
\eta=d z \tag{3.3.3}\\
g=\eta \otimes \eta+d x \otimes d x+f^{2}(x) d y \otimes d y \tag{3.3.4}
\end{gather*}
$$

and

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{f(x)} \frac{\partial}{\partial y}, \quad e_{3}=\xi=\frac{\partial}{\partial z} \tag{3.3.5}
\end{equation*}
$$

Now, it is easy to verify that $\left\{e_{1}, e_{2}, \xi\right\}$ is a local orthonormal frame field of $T M$ and η is the dual 1-form of structure vector field ξ. Also, we can obtain

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=0, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{3}=0 \\
& \nabla_{e_{2}} e_{1}=\psi e_{2}, \quad \nabla_{e_{2}} e_{2}=-\psi e_{1}, \quad \nabla_{e_{2}} e_{3}=0 \\
& \nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{3}=0
\end{aligned}
$$

We define the tensor φ and endomorphism P by

$$
\varphi e_{1}=e_{2}, \varphi e_{2}=-e_{1} \text { and } \varphi e_{3}=\varphi \xi=0, P=(\cos \theta) \varphi
$$

and also define a symmetric bilinear TM-valued form ρ on M as follows:

$$
\begin{gather*}
\rho\left(e_{1}, e_{1}\right)=\lambda e_{1}+\mu e_{2}, \quad \rho\left(e_{1}, e_{2}\right)=\mu e_{1}+\phi e_{2}, \quad \rho\left(e_{2}, e_{2}\right)=\phi e_{1}+\delta e_{2} \tag{3.3.6}\\
\rho\left(e_{1}, \xi\right)=0, \quad \rho\left(e_{2}, \xi\right)=0, \quad \rho(\xi, \xi)=0 \tag{3.3.7}
\end{gather*}
$$

Then,

$$
g(\rho(X, Y), Z)=g(\rho(X, Z), Y)
$$

for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ tangent to M .
It is easy to verify that (M, P, ρ) satisfies conditions (i) $\sim(v)$ of Theorem A. On the other hand, after a lengthy calculation, we obtain that (M, P, ρ) satisfies the remaining two conditions of the existence theorem if

$$
\begin{align*}
& \lambda=\frac{1}{\phi}\left\{\mu^{2}+\phi^{2}-\mu \delta+\left[\frac{r(x)}{2}-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)\right] \sin ^{2} \theta\right\} \tag{3.3.8}\\
& y_{1}^{\prime}(x)=\left\{2 y_{3}^{2}-2 y_{1} y_{2}+\left[\frac{r(x)}{2}-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)\right] \sin ^{2} \theta\right\} \csc \theta \cot \theta \tag{3.3.9}\\
&-3 y_{1} \psi+\frac{3 c}{4} \sin ^{2} \theta \cos \theta \\
& y_{2}^{\prime}(x)=\left\{2 y_{1} y_{2}-2 y_{3}^{2}-\left[\frac{r(x)}{2}-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)\right] \sin ^{2} \theta\right\} \csc \theta \cot \theta \tag{3.3.10}\\
&-\left(2 y_{1}-y_{2}\right) \psi+\frac{3 c}{4} \sin ^{2} \theta \cos \theta \\
& y_{3}^{\prime}(x)= \frac{\psi}{y_{3}}\left\{y_{1}^{2}+y_{3}^{2}-y_{1} y_{2}+\left[\frac{r(x)}{2}-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)\right] \sin ^{2} \theta\right\}-2 y_{3} \psi \tag{3.3.11}\\
&+\left\{\frac{y_{2}}{y_{3}}\left[y_{1}^{2}+y_{3}^{2}-y_{1} y_{2}+\left\{\frac{r(x)}{2}-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right)\right\} \sin ^{2} \theta-y_{1} y_{3}\right\} \csc \theta \cot \theta\right.
\end{align*}
$$

where $\mu=y_{1}, \phi=y_{2}, \delta=y_{3}$, with initial conditions $y_{1}(0)=c_{1}, y_{2}(0)=c_{2}$ and $y_{3}(0)=c_{3} \neq 0$. Thus by applying the Existence Theorem, we know that there exists a θ slant isometric immersion from M into cosymplectic space form $\bar{M}^{5}(c)$, whose second fundamental form is given by

$$
\begin{equation*}
h(X, Y)=\csc ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y)) \tag{3.3.12}
\end{equation*}
$$

From (3.3.1) and (3.3.8)~ (3.3.11), we know that the scalar curvature of the slant submanifold is given by $r(x)$.

Now, we have the following:
Theorem 3.1. Locally, for any given $\theta\left(0<\theta \leq \frac{\pi}{2}\right)$ and for any given function $r=r(x)$ there exist infinitely many θ-slant submanifolds in complex projective space and in the complex hyperbolic space $\bar{M}^{5}(c)$ with r as prescribed scalar curvature.

Since for any prescribed scalar curvature $r=r(x)$, the function ψ can be chosen to be any of the solutions of the Riccati equation (3.3.1) and with c_{1}, c_{2}, c_{3}, as any of the three real numbers with $c_{3} \neq 0$, we have the above theorem.

Now, we give a theorem which shows that the above theorem is not true in general.

Theorem 3.2. For any $\theta \in\left(0, \frac{\pi}{2}\right)$, there does not exist θ-slant submanifold in the cosymplectic space form $\bar{M}^{5}(c)$ with zero prescribed mean curvature.
Or, we can also restate it as:
There does not exist flat minimal proper slant surface in $\bar{M}^{5}(c)$ with $c \neq 0$.

Proof. Assume that M is a three dimensional flat minimal proper slant submanifold in a non-flat cosymplectic-space form $\bar{M}^{5}(c)$. Since M is flat, the metric tensor g of M is given by

$$
g=d x \otimes d x+d y \otimes d y+d z \otimes d z
$$

and

$$
e_{1}=\frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{f(x)} \frac{\partial}{\partial y}, \quad e_{3}=\xi=\frac{\partial}{\partial z}
$$

Thus $\nabla_{e_{i}} e_{j}=0$. Let θ be the slant angle of M in $\bar{M}^{5}(c)$. Then

$$
\begin{equation*}
P e_{1}=\cos \theta e_{2}, \quad P e_{2}=-\cos \theta e_{1} \quad \text { and } \quad P \xi=0 \tag{3.3.13}
\end{equation*}
$$

Since M is minimal, the second fundamental form h of M in $\bar{M}^{5}(c)$ takes the following form

$$
\begin{align*}
& \quad h\left(e_{1}, e_{1}\right)=a e_{1}^{*}+b e_{2}^{*}, \quad h\left(e_{1}, e_{2}\right)=b e_{1}^{*}-a e_{2}^{*}, \quad h\left(e_{2}, e_{2}\right)=-a e_{1}^{*}-b e_{2}^{*} \tag{3.3.14}\\
& h\left(e_{1}, e_{3}\right)=0, \quad h\left(e_{2}, e_{3}\right)=0, \quad h\left(e_{3}, e_{3}\right)=0
\end{align*}
$$

for some functions a and b .
Thus, from (3.3.14) and (2.2.17), we have

$$
\begin{equation*}
\rho\left(e_{1}, e_{1}\right)=-\sin \theta\left(a e_{1}+b e_{2}\right), \quad \rho\left(e_{1}, e_{2}\right)=-\sin \theta\left(b e_{1}-a e_{2}\right) \tag{3.3.15}
\end{equation*}
$$

$$
\rho\left(e_{2}, e_{2}\right)=\sin \theta\left(a e_{1}+b e_{2}\right), \quad \rho\left(e_{1}, e_{3}\right)=0, \quad \rho\left(e_{2}, e_{3}\right)=0, \rho\left(e_{3}, e_{3}\right)=0
$$

Putting $X=Y=e_{1}$, and $Z=e_{2}$ in (2.2.21) and using (3.3.13) and (3.3.14), we obtain

$$
\begin{equation*}
e_{1} b-a e_{2}=-\frac{3 c}{4} \sin \theta \cos \theta \tag{3.3.16}
\end{equation*}
$$

Similarly, by putting $X=Z=e_{2}$, and $Y=e_{1}$ in (2.2.21), we find

$$
\begin{equation*}
e_{1} b-a e_{2}=-\frac{3 c}{4} \sin \theta \cos \theta \tag{3.3.17}
\end{equation*}
$$

Combining (3.3.16) and (3.3.17), we get $c \sin \theta \cos \theta=0$, which is a contradiction, since $c \neq 0$ and $\theta \neq 0$ or $\frac{\pi}{2}$, by hypothesis.
Therefore, theorem 3.1 is not true in general. For example, if we replace the scalar curvature by mean curvature, then from theorem 3.2, there does not exist θ-slant submanifold in the cosymplectic space form $\bar{M}^{5}(c)$ with zero prescribed mean curvature.

4 Some Explicit solution of Differential system:

Consider the differential system (3.3.1), (3.3.9) $\sim(3.3 .11)$ with $c= \pm 4$. Then $\Psi=0$ is the trivial solution of Ricatti equation (3.3.1) when $r=0$ and from (3.3.9)~(3.3.11) , we have

$$
\begin{equation*}
y_{1}^{\prime}(x)=\left\{2 y_{3}^{2}-2 y_{1} y_{2}\right\} \csc \theta \cot \theta-\frac{c}{4}(1+3 \cos 2 \theta) \cos \theta \tag{4.4.1}
\end{equation*}
$$

$$
\begin{gather*}
y_{2}^{\prime}(x)=\left\{2 y_{1} y_{2}-2 y_{3}^{2}\right\} \csc \theta \cot \theta+c \cos \theta \tag{4.4.2}\\
y_{3} y_{3}^{\prime}(x)=\left[y_{2}\left\{y_{1}^{2}-y_{1} y_{2}-\frac{c}{4}\left(1+3 \cos ^{2} \theta\right) \sin ^{2} \theta\right\}\right. \tag{4.4.3}\\
\left.+\left(y_{2}-y_{1}\right) y_{3}^{2}\right] \csc \theta \cot \theta
\end{gather*}
$$

Combining (4.4.1) and (4.4.2), we get

$$
\begin{equation*}
y_{1}^{\prime}(x)+y_{2}^{\prime}(x)=\frac{3 c}{2} \cos \theta \sin ^{2} \theta \tag{4.4.4}
\end{equation*}
$$

On integrating (4.4.4), we have

$$
\begin{equation*}
y_{1}(x)+y_{2}(x)=\frac{3 c}{2} \cos \theta \sin ^{2} \theta x-b_{1}, \text { for some constant } b_{1} \tag{4.4.5}
\end{equation*}
$$

Combining (4.4.1) and (4.4.5), we obtain

$$
\begin{equation*}
y_{1}^{\prime}(x)=\left\{2 y_{3}^{2}+2 y_{1}^{2}+2 b_{1} y_{1}\right\} \csc \theta \cot \theta-3 x y_{1} c \cos ^{2} \theta-\frac{c}{4}(1+3 \cos 2 \theta) \cos \theta \tag{4.4.6}
\end{equation*}
$$

Differentiating (4.4.6), we find

$$
\begin{equation*}
y_{1}^{\prime \prime}(x)=2\left\{\left(b_{1}+2 y_{1}\right) y_{1}^{\prime}+2 y_{3} y_{3}^{\prime}\right\} \csc \theta \cot \theta-3 y_{1} c \cos ^{2} \theta-3 x y_{1}^{\prime} c \cos ^{2} \theta \tag{4.4.7}
\end{equation*}
$$

Therefore, substituting (4.4.3), (4.4.5) and (4.4.6) into (4.4.8), we get

$$
\begin{equation*}
y_{1}^{\prime \prime}(x)=c\left\{2 b_{1}-3 c x \cos \theta+3 x c \cos 3 \theta\right\} \cot ^{2} \theta \tag{4.4.8}
\end{equation*}
$$

Solving (4.4.8), we obtain

$$
\begin{equation*}
y_{1}(x)=b_{2}+b_{3} x+b_{1} c x^{2} \cot ^{2} \theta-8 x^{3} \cos ^{3} \theta \tag{4.4.9}
\end{equation*}
$$

for some constants.
From (4.4.5) and (4.4.9), we have

$$
\begin{equation*}
y_{2}(x)=\frac{3 c x}{2} \cos \theta \sin ^{2} \theta-b_{1} c x^{2} \cot ^{2} \theta-8 x^{3} \cos ^{3} \theta-b_{1}-b_{2}-b_{3} x \tag{4.4.10}
\end{equation*}
$$

Hence, substituting (4.4.9) and (4.4.10) in (4.4.6), we find
$(4.4 .1 \mathrm{~h})_{3}^{2}(x)=-\left(b_{1} c x^{2} \cot ^{2} \theta-8 x^{3} \cos ^{3} \theta+b_{2}+b_{3} x\right)$

$$
\begin{aligned}
& \times\left(b_{1} c x^{2} \cot ^{2} \theta-8 x^{3} \cos ^{3} \theta+b_{1}+b_{2}+b_{3} x\right) \\
& +\frac{c}{8}\left[1+3 \cos 2 \theta+12 x \cos \theta\left(b_{1} c x^{2} \cot ^{2} \theta-8 x^{3} \cos ^{3} \theta+b_{2}+b_{3} x\right)\right] \sin ^{2} \theta \\
& +\frac{1}{2}\left(2 c b_{1} x \cot ^{2} \theta-24 x^{2} \cos ^{3} \theta+b_{3}\right) \sin \theta \tan \theta
\end{aligned}
$$

If $c=4$, and $b_{1}=b_{2}=b_{3}=0$, then we have

$$
\begin{gather*}
y_{1}=-8 x^{3} \cos ^{3} \theta \tag{4.4.12}\\
y_{2}=6 x \cos \theta \sin ^{2} \theta+8 x^{3} \cos ^{3} \theta \tag{4.4.13}
\end{gather*}
$$

$$
\begin{equation*}
y_{3}^{2}(x)=-64 x^{6} \cos ^{6} \theta+\frac{1}{2}\left[1+3 \cos 2 \theta-96 x^{4} \cos ^{4} \theta\right] \sin ^{2} \theta-12 x^{2} \cos ^{3} \theta \sin \theta \tan \theta \tag{4.4.14}
\end{equation*}
$$

Conversely, it is easy to verify that (4.4.9) ~ (4.4.11) satisfies the differential system (4.4.1)~ (4.4.3).

5 An Inequality between Mean Curvature and Scalar Curvature for Slant Submanifold.

In the following theorem we have established an inequality between mean curvature and scalar curvature of slant submanifold of a cosymplectic manifold.

Theorem 5.1. Let M be a proper slant subamnifold in a cosymplectic space-form $\bar{M}^{5}(c)$ with slant angle θ. Then the squared mean curvature and the scalar curvature of M satisfy

$$
\begin{equation*}
H^{2}(p) \geq \frac{4}{9} r(p)-\left(1+3 \cos ^{2} \theta\right) \frac{2 c}{9} \tag{5.5.1}
\end{equation*}
$$

at each point $p \in M$.
The equality sign of (5.5.1) holds at a point $p \in M$ if and only if, the shape operators of M at p take the following form with respect to a suitable adapted orthonormal frame $\left\{e_{1}, e_{2}, \xi=e_{3}, e_{4}, e_{5}\right\}$:

$$
A_{e_{4}}=\left(\begin{array}{ccc}
3 \lambda & 0 & 0 \tag{5.5.2}\\
0 & \lambda & 0 \\
0 & 0 & 0
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Proof. Suppose that M is proper slant with slant angle θ in the cosymplectic space form $\bar{M}^{5}(c)$. Then, for a unit tangent vector field e_{1} of M perpendicular to ξ, we put

$$
e_{2}=(\sec \theta) P e_{1}, \quad e_{3}=\xi, \quad e_{4}=(\csc \theta) F e_{1}, \quad e_{5}=(\csc \theta) F e_{2}
$$

Also, from Corollary 3.1 of [20], we have

$$
\begin{equation*}
g\left(A_{F Y} X, Z\right)=g\left(A_{F X} Y, Z\right) \tag{5.5.3}
\end{equation*}
$$

for any $X, Y, Z \in T M$
Then, with respect to adapted orthonormal frame $\left\{e_{1}, e_{2}, \xi=e_{3}, e_{4}, e_{5}\right\}$ and using (5.5.3), we get

$$
A_{e_{4}}=\left(\begin{array}{ccc}
a & b & 0 \tag{5.5.4}\\
b & c & 0 \\
0 & 0 & 0
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
b & c & 0 \\
c & d & 0 \\
0 & 0 & 0
\end{array}\right)
$$

From (2.2.20) and (5.5.4), we find

$$
9 H^{2}=(a+c)^{2}+(b+d)^{2}, \quad \frac{r}{2}=a c-b^{2}+b d-c^{2}+\left(1+3 \cos ^{2} \theta\right) \frac{c}{4},
$$

Or,

$$
\begin{equation*}
9 H^{2}(p)-4 r(p)+2\left(1+3 \cos ^{2} \theta\right) c=(a-3 c)^{2}+(3 b-d)^{2} \geq 0 \tag{5.5.5}
\end{equation*}
$$

and consequently, we get (5.5.1). From (5.5.5), we know that the equality case of (5.5.1) holds at a point p if and only if $a=3 c, d=3 b$. Hence, if we choose e_{1} in such a way such that $F e_{1}$ is in the direction of the mean curvature vector H , then the shape operators take the form (5.5.2). The converse can be proved by applying (2.2.20).

The following result shows that the inequality (5.5.1) is sharp for $\theta \in\left(0, \frac{\pi}{2}\right)$.
Proposition 5.2. There exists a three dimensional non-totally geodesic proper slant subamnifold M in cosymplectic space-form $\bar{M}^{5}(c)$ with slant angle θ which satisfies the equality sign of (5.5.1) at some points in M.

Proof. Let $\phi=\phi(x)$ and $\phi_{i}=\phi_{i}(x), i=1,2,3$, be four functions defined on an open interval containing 0 . Let $\phi=\phi(x)$ be defined such that $\phi(0)=0, b \neq 0$. Consider the system of first order ordinary differential equations

$$
\begin{gather*}
y_{2}^{\prime}=\phi y_{3}-2 y_{3} y_{2}-\cot \theta \csc \theta\left(y_{1} \phi+y_{2} y_{1}\right) \tag{5.5.6}\\
y_{3}^{\prime}=-y_{3}^{2}-\csc ^{2} \theta\left(\phi y_{2}-2 y_{1}^{2}-y_{2}^{2}\right),
\end{gather*}
$$

with the initial conditions $y_{1}(0)=d_{1}, y_{2}(0)=d_{2}, y_{3}(0)=d_{3}$. Let ϕ_{1}, ϕ_{2} and ϕ_{3} be the components of the unique solution of this differentiable system on some open interval containing 0 . Let M be a simply connected open neighbourhood of the origin $(0,0,0) \in \Re^{3}$ endowed with the metric

$$
\begin{gather*}
f(x)=\exp \int \phi_{3}(x) d x \tag{5.5.7}\\
\eta=d z \tag{5.5.8}\\
g=\eta \otimes \eta+d x \otimes d x+f^{2}(x) d y \otimes d y \tag{5.5.9}
\end{gather*}
$$

and

$$
\begin{equation*}
e_{1}=\frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{f(x)} \frac{\partial}{\partial y}, \quad e_{3}=\xi=\frac{\partial}{\partial z} \tag{5.5.10}
\end{equation*}
$$

Now, it is easy to verify that $\left\{e_{1}, e_{2}, \xi\right\}$ is a local orthonormal frame field of TM such that

$$
\begin{gather*}
\nabla_{e_{1}} e_{1}=0, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{3}=0, \\
\nabla_{e_{2}} e_{1}=\phi_{3} e_{2}, \quad \nabla_{e_{2}} e_{2}=-\phi_{3} e_{1}, \quad \nabla_{e_{2}} e_{3}=0 \tag{5.5.11}\\
\nabla_{e_{3}} e_{1}=0, \quad \nabla_{e_{3}} e_{2}=0, \quad \nabla_{e_{3}} e_{3}=0
\end{gather*}
$$

We define a symmetric bilinear TM-valued form ρ on M as follows:

$$
\begin{gather*}
\rho\left(e_{1}, e_{1}\right)=\phi e_{1}+\phi_{1} e_{2}, \quad \rho\left(e_{1}, e_{2}\right)=\phi_{1} e_{1}+\phi_{2} e_{2}, \quad \rho\left(e_{2}, e_{2}\right)=\phi_{2} e_{1}-\phi_{1} e_{2} \tag{5.5.12}\\
\rho\left(e_{1}, \xi\right)=0, \quad \rho\left(e_{2}, \xi\right)=0, \quad \rho(\xi, \xi)=0 \tag{5.5.13}
\end{gather*}
$$

It is easy to check that $(M, \varphi, \xi, \eta, g)$ is an almost contact metric manifold and $\left(\nabla_{X} \varphi\right) Y=0$, for any $\mathrm{X}, \mathrm{Y} \in \mathrm{TM}$. We put $P=\cos \theta \varphi$, and after a lengthy calculation, we can show that it satisfy the conditions of Existence Theorem for $c=0$.

By applying Theorem A, we obtain that there exists a θ-slant isometric immersion from M in $\bar{M}^{5}(c)$, whose second fundamental form is given by

$$
h(X, Y)=\cos ^{2} \theta(P \rho(X, Y)-\varphi \rho(X, Y))
$$

From the initial conditions it follows that the shape operators of M take the form of (3.3.2) at the point $p=(0,0,0)$ and satisfy the equality sign of (5.5.1). Also it follows from (5.5.11) that the second fundamental form does not vanish identically. Hence, the submanifold is non-totally geodesic.

References

[1] A.Lotta, Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie 39 (1996), 183-198.
[2] A.Lotta, Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl. 3, 1 (1998), 37-51.
[3] B.Y.Chen, and L. Vrancken, Slant surfaces with prescribed Gaussian curvature, Balkan Journal of Geometry and Its Applications 7, 1 (2002), 29-36.
[4] B.Y.Chen, Classification of flat slant surfaces in complex Euclidean plane, J. Math. Soc. Japan 54 (2002), 719-746.
[5] B.Y.Chen, Flat slant surfaces in complex projective and complex hyperbolic planes, Results Math. (to appear).
[6] B.Y.Chen and Y. Tazawa, Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow Math. J. 42 (2000), 439-454.
[7] B.Y.Chen and L.Vrancken, Existence and uniqueness theorem for slant immersions and its applications, Results Math. 31(1997), 28-39; Addendum, ibid 39 (2001), 18-22.
[8] B.Y.Chen, On slant surfaces, Taiwanese J. of Mathematics. Soc. 3, 2 (1999), 163179.
[9] B.Y.Chen, Slant immersions, Bull. Australian Math. Soc. 41 (1990), 135-147.
[10] B.Y.Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, 1990.
[11] B.Y.Chen and Y. Tazawa, Slant surfaces with codimension 2, Ann. Fac. Sci. Toulouse Math. XI 3 (1990), 29-43.
[12] B.Y.Chen and Y. Tazawa, Slant submanifolds in complex Euclidean spaces, Tokyo J. Math. 14, 1 (1991), 101-120.
[13] D.E.Blair, Contact manifolds in Riemannian geometry, Lect. Notes in Math. Springer Verlag, Berlin- New York, 509, 1976.
[14] J.L.Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Existence and uniqueness theorem for slant immersions in Sasakian-space-froms, Publ. Math.Debrecen 58 (2001), 559-574.
[15] J.L.Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez,Slant submanifolds in Sasakian manifolds, Glasgow Math.J. 42 (2000), 125-138.
[16] J.L.Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, Structure on a slant submanifold of a contact manifold, Indian J.pure and appl. Math. 31, 7 (2000), 857-864.
[17] K.Kenmotsu, and D. Zhou, Classification of the surfaces with parallel mean curvature vector in two dimensional complex space forms, Amer. J. Math. 122 (2000), 295-317.
[18] K.Matsumoto, I. Mihai and A.Oiaga, Shape operator for slant submanifolds in complex space forms, Yamagata Univ. Natur. Sci. 14 (2000), 169-177.
[19] A.Oiaga, and I. Mihai, B. Y. Chen inequalities for slant submanifolds in complex space forms, Demonstratio Math. 32 (1999), 835-846.
[20] R.S. Gupta, S. M. Khursheed Haider and M. H. Shahid, Slant submanifolds of cosymplectic manifolds, An. Stint. Univ. Iasi, tom. L, s. I. a , (f.1) (2004), 33-50.
[21] R.S. Gupta, S. M. Khursheed Haider and A. Sharfuddin, Existence and uniqueness theorem for slant immersion and its application into cosymplectic space form, Publ. Math.Debrecen 67 (2005), 169-188.
[22] S.Maeda, Y. Ohnita and S. Udagawa, On Slant immersions into Kaehler manifolds, Kodai Math. J. 16 (1993), 205-219.

Ram Shankar Gupta

Department of Mathematics, Amity School of Engineering, Sector 125, Noida-201301,India. e-mail:guptarsgupta@rediffmail.com

Authors' address:
S.M.Khrusheed Haider and A.Sharfuddin

Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi-110025, India.
email: smkhaider@yahoo.co.in

[^0]: Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 54-65.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2006.

