On subprojective transformations

Iulia Elena Hirică

Dedicated to the memory of Radu Rosca (1908-2005)

Abstract

The aim of this paper is to study subgeodesically related spaces. Using some results of Levi-Civita and Vrănceanu an example of projectively equivalent Riemann metrics is given. ξ-subcharacteristic vector fields are studied for some deformation algebras and it is also illustrated the relation with the concept of ξ-subgeodesically related connexions.

Mathematics Subject Classification: 53B05, 53B20, 53B21.
Key words: subprojective transformations, ξ-subcharacteristic vector fields, Weyl structures, deformation algebras.

1 Introduction

Let M be a connected paracompact, smooth manifold of dimension $n \geq 3$. Let $\mathcal{X}(M)$ be the Lie algebra of vector fields on $M, \mathcal{T}^{(p, q)}(M)$ the $\mathcal{C}^{\infty}(M)$-module of tensor fields of type (p, q) on $M, \Lambda^{p}(M)$ the $\mathcal{C}^{\infty}(M)$ - module of p-forms on M and $H^{p}(M)$ the $p-$ th de Rham cohomology group of M.

Let $\Gamma_{j k}^{i}$ be the components of an affine symmetric connection ∇ and ξ^{i} be the components of a vector field ξ. One can associate the differential system of equations

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+\Gamma_{j k}^{i} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=a \frac{d x^{i}}{d t}+b \xi^{i} \tag{1.1}
\end{equation*}
$$

a and b being functions of t, which defines the ξ-subgeodesics.
K. Yano introduced the subprojective transformations of connections, which preserve the ξ-subgeodesics

$$
\begin{equation*}
\bar{\Gamma}_{j k}^{i}=\Gamma_{j k}^{i}+\delta_{j}^{i} \omega_{k}+\delta_{k} \omega_{j}+\theta_{j k} \xi^{i}, \tag{1.2}
\end{equation*}
$$

where ω_{i} and $\theta_{j k}$ are the components of a 1 -form and of a symmetric tensor field of type $(0,2)$, respectively.

Two Riemannian spaces (M, g) and (M, \bar{g}) are ξ-subgeodesically related, the tensor of correspondence $\theta_{j k}$, being $-g_{j k}$, if the Levi-Civita connections associated to g and \bar{g} satisfy the Yano formulae (1.2). Therefore there exists a diffeomorphism f between these two spaces which maps ξ-subgeodesics onto ξ-subgeodesics. f is called the subgeodesic mapping.

If $\xi^{i}=0$, then the Yano formulae become the Weyl formulae and spaces are geodesically related.

In the present paper subgeodesically and geodesically spaces are considered. The Levi-Civita and Vrănceanu canonical forms are given for certain projectively equivalent metrics on some Weyl manifolds.

It is also illustrated the close ties that exist between the ξ-subcharacteristic vector fields and ξ-subgeodesically related connections.

2 On ξ-subcharacteristic vector fields

Let A be a $(1,2)$-tensor field on M. The $\mathcal{C}^{\infty}(M)-$ modul $\mathcal{X}(M)$ becomes a $\mathcal{C}^{\infty}(M)$-algebra if we consider the multiplication rule given by
$X \circ Y=A(X, Y), \forall X, Y \in \mathcal{X}(M)$. This algebra is denoted by $\mathcal{U}(M, A)$ and it is called the algebra associated to A. If ∇ and ∇^{\prime} are two linear connections on M and $A=\nabla^{\prime}-\nabla$, then $\mathcal{U}(M, A)$ is called the deformation algebra defined by the pair $\left(\nabla, \nabla^{\prime}\right)$.

A vector field $X \in \mathcal{X}(M)$ is called ξ-subcharacteristic in the deformation algebra $\mathcal{U}(M, A)$ if there exists two functions $\lambda, \mu \in \mathcal{C}^{\infty}(M)$ such that

$$
\begin{equation*}
A(X, X)=\lambda X+\mu \xi \tag{2.1}
\end{equation*}
$$

Remark 2.1 1) If X is a nonvanishing ξ-subcharacteristic vector field i.e. is a vector field of ξ-subcharacteristic direction, then (2.1) is equivalent to

$$
A(X, X) \otimes X-X \otimes A(X, X)=\mu(\xi \otimes X-X \otimes \xi)
$$

2) The trajectories of vector fields of ξ-subcharacteristic directions, called the ξ subcharacteristic curves, satisfy the following differential system of equations

$$
\begin{equation*}
B_{k s r h}^{i j p q} \frac{d x^{k}}{d t} \frac{d x^{s}}{d t} \frac{d x^{r}}{d t} \frac{d x^{h}}{d t}=0 \tag{2.2}
\end{equation*}
$$

where $B_{k s r h}^{i j p q}=\left(A_{k s}^{i} \delta_{r}^{j}-A_{k s}^{j} \delta_{r}^{i}\right)\left(\delta_{h}^{q} \xi^{p}-\delta_{h}^{q} \xi^{p}\right)-\left(A_{k s}^{p} \delta_{r}^{q}-A_{k s}^{q} \delta_{r}^{p}\right)\left(\delta_{h}^{i} \xi^{j}-\delta_{h}^{j} \xi^{i}\right)$.
The geometric interpretation of vector fields of ξ-subcharacteristic direction is given by the following result

Proposition $\mathbf{A}[8]$ Let ∇ and ∇^{\prime} be two symmetric linear connections on M and $\xi \in \mathcal{X}(M)$. Let $X \in \mathcal{X}(M), X_{p} \neq 0, \forall p \in M$ such that X and ξ are either independent $\forall p \in M$ or dependent $\forall p \in M$. The following assertions are equivalent:

1) X is a vector field of ξ-subcharacteristic direction in the deformation algebra $\mathcal{U}\left(M, \nabla^{\prime}-\nabla\right)$.
2) Let any $p \in M$. If c is a (ξ, ∇)-subgeodesic verifying

$$
c\left(t_{0}\right)=p,\left.\frac{d c}{d t}\right|_{t_{0}}=a X_{p}, a \in \mathbf{R}^{*}
$$

then the point p is $\left(\xi, \nabla^{\prime}\right)$-subgeodesic i.e. ξ_{p} belongs to the osculating plane of the curve c at p.

The following result illustrates the relation between the ξ-subcharacteristic vector fields and the ξ-subgeodesically related connections:

Proposition B [8] Let ∇ and ∇^{\prime} be two symmetric linear connections on M and $\xi \in \mathcal{X}(M)$. The following assertions are equivalent:

1) All the elements of the algebra $\mathcal{U}\left(M, \nabla^{\prime}-\nabla\right)$ are ξ-subcharacteristic vector fields.
2) In every point $p \in M$ there exists a curve ξ-subcharacteristic tangent to a given direction.
3) There exists a symmetric (0,2)-tensor field θ and a 1-form ω on M such that

$$
\nabla_{X}^{\prime} Y-\nabla_{X} Y=\omega(X) Y+\omega(Y) X+\theta(X, Y) \xi, \forall X, Y \in \mathcal{X}(M)
$$

4) ∇^{\prime} and ∇ have the same ξ-subgeodesics.

3 On geodesically and subgeodesically related Riemann spaces

Let g be a Riemannian metric on M. A Weyl manifold is a triple (M, \widehat{g}, W), where $\widehat{g}=\left\{e^{u} g \mid u \in \mathcal{C}^{\infty}(M)\right\}$ is the conformal class defined by g and $W: \widehat{g} \longrightarrow \Lambda^{1}(M)$ is a Weyl structure on the conformal manifold (M, \widehat{g}), hence

$$
\begin{equation*}
W\left(e^{u} g\right)=W(g)-d u, \forall u \in \mathcal{C}^{\infty}(M) \tag{3.1}
\end{equation*}
$$

A linear connection ∇ on M is compatible with the Weyl structure W if

$$
\begin{equation*}
\stackrel{W}{\nabla} g+W(g) \otimes g=0 \tag{3.2}
\end{equation*}
$$

There exists a unique torsion free linear connection $\stackrel{W}{\nabla}$, verifying (3.2), given by the formula:

$$
\begin{align*}
& 2 g\left(\stackrel{W}{\nabla}_{X} Y, Z\right)=X(g(Y, Z))+Y(g(X, Z))-Z(g(X, Y))+ \\
& +W(g)(X) g(Y, Z)+W(g)(Y) g(X, Z)-W(g)(Z) g(X, Y)+ \tag{3.3}\\
& +g([X, Y], Z)+g([Z, X], Y)-g([Y, Z], X), \forall X, Y, Z \in \mathcal{X}(M)
\end{align*}
$$

$\stackrel{W}{\nabla}$ is called the Weyl conformal connection. This connection is invariant under a "gauge transformation" $g \longrightarrow e^{u} g$. So, the 1 -form $W(g)$ is required to change by (1.1).

Weyl introduced a $2-$ form $\psi(W)$ on M by setting $\psi(W)=d W(g)$,
$g \in \widehat{g}$, and called it the distance curvature. This is a gauge invariant. If $\psi(W)=0$, then by (1.1), the cohomology class $[W(g)] \in H^{1}(M)$ of the closed form $W(g)$ does not depend on the choice of a metric in \widehat{g}. For simplicity, we write $\operatorname{ch}(W)=[W(g)]$. The 2 -form $\psi(W)$ and the class $c h(W)$ are the obstructions for a Weyl structure to be a Riemannian structure. Indeed:

Proposition C [2] Let (M, \widehat{g}, W) be a Weyl manifold and $\stackrel{W}{\nabla}$ be the Weyl conformal connection. Then the following two conditions are equivalent:

1) $\psi(W)=0$ and $\operatorname{ch}(W)=0$;
2) There is a Riemann metric in \widehat{g} such that $\stackrel{W}{\nabla} g=0$.

Let π be a 1 -form on M. We denote by $\stackrel{L}{\nabla}$ the connection compatible with the Weyl structure W, which is π-semi-symmetric i.e. the torsion tensor is required to be $\stackrel{L}{T}(X, Y)=\pi(Y) X-\pi(X) Y, \forall X, Y \in \mathcal{X}(M)$ and

$$
\begin{gather*}
2 g(\stackrel{L}{\nabla} X Y, Z)=X(g(Y, Z))+Y(g(X, Z))-Z(g(X, Y))+ \\
\quad+W(g)(X) g(Y, Z)+W(g)(Y) g(X, Z)- \tag{3.4}\\
\quad-W(g)(Z) g(X, Y)+2 \pi(Y) g(X, Z)- \\
-2 \pi(Z) g(X, Y)+g([X, Y], Z)+g([Z, X], Y)-g([Y, Z], X)
\end{gather*}
$$

holds. The relation between these two connections is given by

$$
\begin{equation*}
\stackrel{L}{\nabla}_{X} Y=\stackrel{W}{\nabla}_{X} Y+\pi(Y) X-g(X, Y) \pi^{\sharp} \tag{3.5}
\end{equation*}
$$

where $g\left(Z, \pi^{\sharp}\right)=\pi(Z), \forall Z \in \mathcal{X}(M)$.
We denote by $\frac{L}{\nabla}$ the transposed connection of $\stackrel{L}{\nabla}$ i.e.

$$
\begin{equation*}
\stackrel{L}{\nabla}_{X} Y=\stackrel{L}{\nabla}_{Y} X+[X, Y] \tag{3.6}
\end{equation*}
$$

The relations (3.5) and (3.6) lead to

$$
\begin{equation*}
\stackrel{L}{\nabla}_{X} Y=\stackrel{W}{\nabla}_{X} Y+\pi(X) Y-g(X, Y) \pi^{\sharp} \tag{3.7}
\end{equation*}
$$

Let us denote by $\stackrel{s}{\nabla}$ the symmetric connection associated to $\stackrel{L}{\nabla}$ i.e.
$\stackrel{s}{\nabla}=\frac{1}{2}(\stackrel{L}{\nabla}+\stackrel{L}{\nabla})$. Hence

$$
\begin{equation*}
\stackrel{s}{\nabla} X Y=\stackrel{W}{\nabla} x Y+\frac{1}{2} \pi(X) Y+\frac{1}{2} \pi(Y) X-g(X, Y) \pi^{\sharp} \tag{3.8}
\end{equation*}
$$

Let (M, g) be a Riemanian manifold. Let (M, \widehat{g}, W) be a Weyl manifold and $\pi \in$ $\wedge^{1}(M)$. Let $\stackrel{\circ}{\nabla}$ be the Levi-Civita connection associated to g. From (3.3) one gets

$$
\begin{equation*}
\stackrel{W}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\varphi(X) Y+\varphi(Y) X-g(X, Y) \varphi^{\sharp} \tag{3.9}
\end{equation*}
$$

where $2 \varphi=W(g)$ and $g\left(\varphi^{\sharp}, X\right)=\varphi(X), \forall X \in \mathcal{X}(M)$. The relation (3.8) leads to

$$
\begin{equation*}
\stackrel{s}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\left(\varphi+\frac{1}{2} \pi\right)(X) Y+\left(\varphi+\frac{1}{2} \pi\right)(Y) X-g(X, Y)(\pi+\varphi)^{\sharp} . \tag{3.10}
\end{equation*}
$$

Let us suppose that $\stackrel{s}{\nabla}$ is the Levi-Civita connection associated to another Riemannian metric \tilde{g} on M. Let $g_{i j}, \tilde{g}_{i j}, \varphi_{i}, \pi_{i}$ be the local components of g, \tilde{g}, φ and π respectively, in a local system of coordinates $\left(x^{1}, \ldots, x^{n}\right)$. We denote with $\left|\begin{array}{l}i \\ j k\end{array}\right|,\left|\begin{array}{l}i \\ j k\end{array}\right|$ the Christoffel symbols of the metrics

$$
\begin{equation*}
d s^{2}=g_{i j} d x^{i} d x^{j}, d \tilde{s}^{2}=\tilde{g}_{i j} d x^{i} d x^{j} \tag{3.11}
\end{equation*}
$$

The relation (3.10) becomes

$$
\left|\widetilde{i} \begin{array}{l}
\bar{i} k
\end{array}\right|=\left|\begin{array}{l}
i \tag{3.10}\\
j k
\end{array}\right|+\delta_{j}^{i}\left(\varphi_{k}+\frac{1}{2} \pi_{k}\right)+\delta_{k}^{i}\left(\varphi_{j}+\frac{1}{2} \pi_{j}\right)-g_{j k}\left(\pi^{i}+\varphi^{i}\right),
$$

where $\pi^{i}=g^{i j} \pi_{j}, \varphi^{i}=g^{i j} \varphi_{j}$. Considering $i=j$ in (3.10) ${ }^{\prime}$ and summing, one gets

$$
n \varphi_{k}+\frac{n-1}{2} \pi_{k}=\left|\begin{array}{l}
\bar{i} \tag{3.10}\\
i k
\end{array}\right|-\left|\begin{array}{l}
i \\
i k
\end{array}\right|=\frac{\partial}{\partial x^{k}}\left(\ln \sqrt{\frac{\operatorname{det}\left(\tilde{g}_{i j}\right)}{\operatorname{det}\left(g_{i j}\right)}}\right) .
$$

Let us denote with $\xi=(\pi+\varphi)^{\sharp}$. The formula (3.10 $)^{\prime}$ implies

$$
|\widetilde{i}|=\left|\begin{array}{l}
i \tag{3.12}\\
j k
\end{array}\right|+\delta_{j}^{i} \omega_{k}+\delta_{k}^{i} \omega_{j}-g_{j k} \xi^{i},
$$

where $\omega_{i}=\varphi_{i}+\frac{1}{2} \pi_{i}, \xi^{i}=\varphi^{i}+\pi^{i}$. Therefore the metrics (3.11) are ξ^{i}-subgeodesically related. There exist differentiable mappings u and h, with variables $\left(x^{1}, \ldots, x^{n}\right)$, such that $\xi_{i}=\frac{\partial u}{\partial x^{i}}$ and $\omega_{i}=\frac{\partial h}{\partial x^{i}}$ [9].

Therefore $\varphi_{i}=\frac{1}{2} \frac{\partial(u+h)}{\partial x^{i}}, \pi_{i}=\frac{1}{2} \frac{\partial(u-h)}{\partial x^{i}}, \forall i=\overline{1, n}$.
We consider $\tilde{\tilde{g}}=e^{2 u} g$. One has

$$
\left|\begin{array}{l}
\widetilde{i} \tag{3.13}\\
j k
\end{array}\right|=\left|\begin{array}{l}
i \\
j k
\end{array}\right|+\delta_{j}^{i} \xi_{k}+\delta_{k}^{i} \xi_{j}-g_{j k} \xi^{i}
$$

where $\left|\begin{array}{l}\widetilde{i} \\ j k\end{array}\right|$ are the Christoffel symbols associated to $\tilde{\tilde{g}}$. Therefore one gets

$$
\left|\widetilde{\bar{i}} \begin{array}{l}
j k
\end{array}\right|=\left|\begin{array}{l}
\widetilde{i} \tag{3.14}\\
j k
\end{array}\right|+\delta_{j}^{i} \sigma_{k}+\delta_{k}^{i} \sigma_{j},
$$

where $\sigma_{i}=\omega_{i}-\xi_{i}$. Hence the metrics

$$
\begin{equation*}
d \tilde{\tilde{s}}^{2}=\tilde{\tilde{g}}_{i j} d x^{i} d x^{j}, d \tilde{s}^{2}=\tilde{g}_{i j} d x^{i} d x^{j} \tag{3.15}
\end{equation*}
$$

are geodesically related. So, the metrics (3.15) can be reduced to the canonical forms of Levi-Civita and Vrănceanu (according to the fact that the Riemann space $(M, \tilde{\tilde{g}})$ is of cathegory n or cathegory $m<n$).

$$
\begin{gather*}
d V^{2}=a_{1}\left(x^{1}\right) f^{\prime}\left(x^{1}\right)\left(d x^{1}\right)^{2}+\ldots+a_{n}\left(x^{n}\right) f^{\prime}\left(x^{n}\right)\left(d x^{n}\right)^{2} \\
d L^{2}=\frac{1}{x^{1} \ldots x^{n}}\left\{\frac{a_{1}\left(x^{1}\right) f^{\prime}\left(x^{1}\right)}{x^{1}}\left(d x^{1}\right)^{2}+\ldots+\frac{a_{n}\left(x^{n}\right) f^{\prime}\left(x^{n}\right)}{x^{n}}\left(d x^{n}\right)^{2}\right\}, \tag{3.16}
\end{gather*}
$$

where $f(x)=\left(x-x^{1}\right) \cdot \ldots \cdot\left(x-x^{n}\right)$ or

$$
\begin{gather*}
d V^{2}=a_{i}\left(x^{i}\right) F^{\prime}\left(x^{i}\right)\left(d x^{i}\right)^{2}+F\left(c^{2}\right) c_{\lambda \mu}\left(x^{m+1}, \ldots, x^{p}\right) d x^{\lambda} d x^{\mu}+ \\
+F\left(k^{2}\right) c_{\alpha^{\prime} \beta^{\prime}}\left(x^{p+1}, \ldots, x^{n}\right) d x^{\alpha^{\prime}} d x^{\beta^{\prime}} \\
d L^{2}=\frac{1}{x^{1} \ldots x^{m}}\left\{\frac{a_{i}\left(x^{i}\right) F^{\prime}\left(x^{2}\right)}{x^{i}}\left(d x^{i}\right)^{2}+\frac{F\left(c^{2}\right)}{c^{2}} c_{\lambda \mu}\left(x^{m+1}, \ldots, x^{p}\right) d x^{\lambda} d x^{\mu}+\right. \tag{3.17}\\
\left.+\frac{F\left(k^{2}\right)}{k^{2}} c_{\alpha \prime \beta \prime}\left(x^{p+1}, \ldots x^{n}\right) d x^{\alpha \prime} d x^{\beta \prime}\right\},
\end{gather*}
$$

where $F(x)=\left(x-x^{1}\right) \cdot \ldots \cdot\left(x-x^{m}\right), 1 \leq i \leq m, m+1 \leq \lambda, \mu \leq p, p+1 \leq \alpha^{\prime}, \beta^{\prime} \leq n$ and c^{2} and k^{2} are nonvanishing constants. Therefore the metrics (3.11) can be reduced to

$$
d s^{2}=e^{-2 u\left(x^{1}, \ldots, x^{n}\right)} d V^{2}, d \tilde{s}^{2}=d L^{2}
$$

Hence we obtain:
Theorem 3.1 Let (M, g) be a Riemannian space and W a Weyl structure on the conformal manifold (M, \widehat{g}). Let π be a 1 -form on $M, \stackrel{L}{\nabla}$ be the π-semi-symmetric conformal connection, $\stackrel{s}{\nabla}$ be the symmetric connection associated to $\stackrel{L}{\nabla}$. We suppose that $\stackrel{s}{\nabla}$ is the Levi-Civita connection associated to another Riemannian metric \tilde{g} on M. Then
i) The 1-forms $W(g)$ and π are exact.
ii) The metrics (3.11) can be reduced to $d s^{2}=e^{-2 u\left(x^{1}, \ldots, x^{n}\right)} d V^{2}, d \tilde{s}=d L^{2}$, where $d V^{2}$ and $d L^{2}$ are the canonical forms of Levi-Civita and Vrănceanu, given by (3.16) or (3.17), according to the case when the equation $\operatorname{det}\left(\tilde{g}_{i j}-r^{2} g_{i j}\right)=0$ has distinct roots or has $m<n$ equal roots.

Remark 3.1. Let us consider the first formula (3.17) for $c=k$. Multiplying all the variables x^{1}, \ldots, x^{n} with the same constant, we can suppose that c is the unit. Therefore the metric $d V^{2}$ can be written

$$
\begin{equation*}
d V^{2}=a_{i}\left(x^{i}\right) F^{\prime}\left(x^{i}\right)\left(d x^{i}\right)^{2}+F(1) c_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{3.18}
\end{equation*}
$$

One gets the next result, under the same hypothesis of the previous theorem:
Theorem 3.2. The metric $d s^{2}=g_{i j} d x^{i} d x^{j}$ can be written
$d s^{2}=e^{-2 u\left(x^{1}, \ldots, x^{n}\right)} d V^{2}$, where $d V^{2}$ is given by the first formula of (3.16) or by the expression (3.18), if the equation $\operatorname{det}\left(\tilde{g}_{i j}-r^{2} g_{i j}\right)=0$ has distinct roots or has $m<n$ equal roots, respectively.

The last result underlines the connection between the concept of ξ - subcharacteristic vector fields and of those of deformation algebra on Weyl manifolds:

Theorem 3.3. Let (M, g) be a Riemannian space and W a Weyl structure on the conformal manifold (M, \widehat{g}). Let π be a 1 -form on $M, \stackrel{L}{\nabla}$ be the π-semi-symmetric conformal connection, $\stackrel{s}{\nabla}$ be the symmetric connection associated to $\stackrel{L}{\nabla}$. We suppose that $\stackrel{s}{\nabla}$ is the Levi-Civita connection associated to another Riemannian metric \tilde{g} on M. Let $\tilde{\tilde{\nabla}}$ be a connection conformally related to the Levi-Civita connection $\stackrel{\circ}{\nabla}$.

Then the deformation algebras $\mathcal{U}(M, \stackrel{s}{\nabla}-\stackrel{\circ}{\nabla})$ and $\mathcal{U}(M, \tilde{\tilde{\nabla}}-\stackrel{\circ}{\nabla})$ have the same ξ-subcharacteristic vector fields, where $\xi=\left(\pi+\frac{1}{2} W(g)\right)^{\sharp}$.

Proof. One considers $\tilde{A}=\stackrel{s}{\nabla}-\stackrel{\circ}{\nabla}$ and $\tilde{\tilde{A}}=\tilde{\tilde{\nabla}}-\stackrel{\circ}{\nabla}$.
$\tilde{\tilde{\nabla}}$ and $\stackrel{s}{\nabla}$ being geodesically related, one has
$\tilde{\tilde{A}}(X, Y)-\tilde{A}(X, Y)=\frac{1}{2} \pi(X) Y+\frac{1}{2} \pi(Y) X$.
Let $X \in \mathcal{U}(M, \tilde{A})$ be a ξ-subcharacteristic vector field. So, there exist $\lambda, \mu \in$ $\mathcal{C}^{\infty}(M)$ such that $\tilde{A}(X, X)=\lambda X+\mu \xi$, where $\lambda=(W(g)+\pi)(X)$ and $\mu=-g(X, X)$.

Therefore $\tilde{\tilde{A}}(X, X)=\nu X+\mu \xi$, where $\nu=\left(W(g)+\frac{3}{2} \pi\right)(X)$ and X is a ξ subcharacteristic vector field of the algebra $\mathcal{U}(M, \tilde{\tilde{A}})$.

The converse inclusion is analogous.

References

[1] B. Alexandrov and S. Ivanov, Weyl structures with positive Ricci tensor, Diff. Geom. Appl., 18, 3 (2003), 343-350.
[2] T. Higa, Weyl manifolds and Einstein Weyl manifolds, Comm. Math. Univ. Sancti Pauli, 42, 2 (1993), 143-160.
[3] I.E. Hirică, On geodesically and subgeodesically related pseudo-Riemannian spaces, Rendiconti del Sem. Mat. Messina, 5, II (1999), 99-107.
[4] I.E. Hirică, Notes on subgeodesic and geodesic mappings of Riemannian manifolds, Proc. Workshop " Diff. Geometry, Global Analysis and Lie Algebras", 1996 (Gr. Tsagas, Ed.), Geom. Balkan Press (1999), 205-212.
[5] I.E. Hirică and L. Nicolescu, On Weyl structures, Rendiconti Circ. Mat. Palermo Serie II, Tomo LIII (2004), 390-400.
[6] S. Kim, Volume and projective equvalence between Riemann manifolds, Ann. Global Anal. Geom., 27, 1 (2005), 47-52.
[7] V.S. Matveev, Projectively equivalent metrics on the torus, Diff. Geom. Appl., 20, 3 (2004), 251-265.
[8] L. Nicolescu, Sur les transformations subprojectives d'une connexion lineaire, Bull. Math. Soc. Sci. Math. Roumanie, Tome 21 (99), nr. 1-2 (1977), 83-91.
[9] L. Nicolescu, Les espaces de Riemann en representation subgeodesiques, Tensor N.S., 32 (1978), 183-187.
[10] C. Udrişte, Geometric Dynamics, Mathematics and its Appl. (Dordrecht) 513. Dordrecht: Kluwer Academic Publishers XVI, 2000.
[11] G. Vrănceanu, Lecons de Geometrie Diff., Vol. 1, 2, Bucharest, 1957.
[12] M.P. Wojtkowski, Rigidity of some Weyl manifolds with nonpositive sectional curvature, Proc. Amer. Math. Soc., 133, nr. 1 (2005), 3395-3402.

Author's address:
Iulia Elena Hirică
University of Bucharest, Faculty of Mathematics, Department of Geometry, 14 Academiei Street, RO-010014, Bucharest 1, Romania.
email: ihirica@fmi.unibuc.ro

