On a linear family of affine connections

Liviu Nicolescu

Dedicated to the memory of Radu Rosca (1908-2005)

Abstract

The aim of this paper is to study some geometrical objects in the deformation algebra associated to a linear family of affine connections. It is pointed out the parallelism between certain algebraic and geometric properties.

Mathematics Subject Classification: 53B20, 53B21.
Key words: associative deformation algebras, conformal metrics.

1 Preliminaries

Let M be a n-dimensional $(n>3)$ differentiable manifold. One denotes by $\mathcal{F}(M)$ the ring of real valued functions, defined on M and by $\mathcal{T}_{s}^{r}(M)$ the $\mathcal{F}(M)$-module of tensor fields of type (r, s) on M. Particularly, one denotes $\mathcal{T}_{0}^{1}(M)$, respectively $\mathcal{T}_{1}^{0}(M)$, by $\mathcal{X}(\mathcal{M})$, respectively $\Lambda^{1}(M)$.

The differentiable manifolds, the differentiable mappings, the tensor fields and the linear connections are supposed to be of class C^{∞}.

Let $A \in \mathcal{T}_{2}^{1}(M)$. If one defines the product of two vector fields X and Y by

$$
\begin{equation*}
X \circ Y=A(X, Y) \tag{*}
\end{equation*}
$$

the $\mathcal{F}(M)$-module $\mathcal{X}(M)$ becomes an $\mathcal{F}(M)$-algebra. This algebra is called the algebra associated to A and it is denoted by $\mathcal{U}(M, A)$. If $A=\bar{\nabla}-\nabla$, where ∇ and $\bar{\nabla}$ are two affine connections on M, then $\mathcal{U}(M, \bar{\nabla}-\nabla)$ is called the deformation algebra associated to the pair of connections $(\nabla, \bar{\nabla})$.

Definition 1.1 An element $X \in \mathcal{U}(M, A)$ is called an almost principal vector field if there exist $f \in \mathcal{F}(M)$ and a 1-form $\omega \in \Lambda^{1}(M)$ such that

$$
A(Z, X)=f Z+\omega(Z) X, \forall Z \in \mathcal{X}(M)
$$

Remark 1.1 i) If $f=0$, then X becomes a principal vector field;
ii) If $\omega=0$, then X is an almost special vector field;
iii) If $f=0$ and $\omega=0$, then X is a special vector field;
iv) If $A(X, X)=0$, then X is a 2-nilpotent vector field.

[^0]
2 Main result

Let $(M, \stackrel{\circ}{g})$ be a conex, n-dimensional $(n>3)$ Riemannian manifold. One denotes by $\stackrel{\circ}{\nabla}$, respectively $\stackrel{1}{\nabla}$, the Levi-Civita connection associated to $\stackrel{\circ}{g}$, respectively $\stackrel{1}{g}=e^{2 u} \stackrel{\circ}{g}$, where $u \in \mathcal{F}(M)$. One gets the linear family of connections

$$
\begin{equation*}
\{\stackrel{\circ}{\nabla}+\lambda(\stackrel{1}{\nabla}-\stackrel{\circ}{\nabla}) \mid \lambda \in \mathbf{R}\} . \tag{**}
\end{equation*}
$$

Theorem 2.1 Let $\stackrel{\lambda}{\nabla}$ be an affine connection from the linear family (**). We denote by $\stackrel{\lambda}{R}$, respectively $\stackrel{\circ}{R}$, the curvature tensor field of the linear connection $\stackrel{\lambda}{\nabla}$, respectively $\stackrel{\circ}{\nabla}$. Let $T_{p} M$ be the tangent vector space in an arbitrary point $p \in M$. The following assertions are equivalent:
(i) $\stackrel{\lambda}{\nabla}=\stackrel{\circ}{\nabla}$;
(ii) $\stackrel{\lambda}{R}=\stackrel{\circ}{R}$, if $\stackrel{\circ}{R}$ p $: T_{p} M \times T_{p} M \times T_{p} M \mapsto T_{p} M$ is a surjective mapping, $\forall p \in M$;
(iii) $\stackrel{\lambda}{\nabla} \stackrel{\lambda}{R}=\stackrel{\lambda}{\nabla} \stackrel{\circ}{R}$, if $\stackrel{\circ}{{ }_{R}^{R}}: ~ T_{p} M \times T_{p} M \times T_{p} M \mapsto T_{p} M$ is a surjective mapping, $\forall p \in M$;
(iv) The deformation algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ is associative;
(v) $\stackrel{\lambda}{\nabla}$ and $\stackrel{\circ}{\nabla}$ have the same geodesics;
(vi) All the elements of the algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ are almost principal vector fields;
(vii) All the elements of the algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ are almost special vector fields;
(viii) All the elements of the algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ are principal vector fields;
(ix) All the elements of the algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ are special vector fields;
(x) All the elements of the algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ are 2-nilpotent vector fields.

Proof. (i) \Rightarrow (ii) \Rightarrow (iii), (i) \Rightarrow (iv), (i) \Rightarrow (v), (i) \Rightarrow (vi), (i) \Rightarrow (vii), (i) \Rightarrow (viii), (i) \Rightarrow (ix), (i) \Rightarrow (x) are obvious.
(iii) \Rightarrow (i) From (iii) one gets

$$
(\stackrel{\stackrel{\lambda}{\nabla}}{x} \stackrel{\stackrel{\lambda}{R}}{R})(Y, Z, V)=(\stackrel{\stackrel{\lambda}{\nabla}}{ } \times \stackrel{\circ}{R})(Y, Z, V), \forall X, Y, Z, V \in \mathcal{X}(M)
$$

Moreover

$$
\begin{aligned}
& \left(\stackrel{\lambda}{\nabla}{ }_{X} \stackrel{\circ}{R}\right)(Y, Z, V)=(\stackrel{\circ}{\nabla} X \stackrel{\circ}{R})(Y, Z, V)+\lambda\{A(X, \stackrel{\circ}{R}(Y, Z) V)- \\
& -\stackrel{\circ}{R}(A(X, Y), Z) V-\stackrel{\circ}{R}(Y, A(X, Z)) V-\stackrel{\circ}{R}(Y, Z) A(X, V)\},
\end{aligned}
$$

where $A=\stackrel{1}{\nabla}-\stackrel{\circ}{\nabla}$. The last two formulae imply

$$
\begin{align*}
& \left(\stackrel{\lambda}{\nabla}_{X} \stackrel{\lambda}{R}\right)(Y, Z, V)=\left(\stackrel{\circ}{\nabla}_{X} \stackrel{\circ}{R}_{R}\right)(Y, Z, V)+\lambda\left\{A\left(X, \stackrel{\circ}{R}^{R}(Y, Z) V\right)-\right. \tag{2.1}\\
& -\stackrel{\circ}{R}(A(X, Y), Z) V-\stackrel{\circ}{R}(Y, A(X, Z)) V-\stackrel{\circ}{R}(Y, Z) A(X, V)\} \text {. }
\end{align*}
$$

Permuting circular X, Y, Z one gets another two analogous relations

$$
\begin{align*}
& \left(\stackrel{\lambda}{\nabla}_{Y} \stackrel{\wedge}{R}\right)(Z, X, V)=\left(\stackrel{\circ}{\nabla}_{Y} \stackrel{\circ}{R}\right)(Z, X, V)+\lambda\{A(Y, \stackrel{\circ}{R}(Z, X) V)- \\
& -\stackrel{\circ}{R}(A(Y, Z), X) V-\stackrel{\circ}{R}(Z, A(Y, X)) V-\stackrel{\circ}{R}(Z, X) A(Y, V)\} \\
& \quad\left(\stackrel{\lambda}{\nabla^{\circ}} Z \stackrel{\wedge}{R}\right)(X, Y, V)=\left(\stackrel{\circ}{\nabla}^{\circ} Z \stackrel{\circ}{R}\right)(X, Y, V)+\lambda\{A(Z, \stackrel{\circ}{R}(X, Y) V)- \tag{2.1"}\\
& \quad-\stackrel{\circ}{R}(A(Z, X), Y) V-\stackrel{\circ}{R}(X, A(Z, Y)) V-\stackrel{\circ}{R}(X, Y) A(Z, V)\} .
\end{align*}
$$

The second Bianchi identities, the relations (2.1), (2.1') and (2.1") lead to

$$
\begin{align*}
& \lambda\{A(X, \stackrel{\circ}{R}(Y, Z) V)+A(Y, \stackrel{\circ}{R}(Z, X) V)+A(Z, \stackrel{\circ}{R}(X, Y) V)- \tag{2.2}\\
&-\stackrel{\circ}{R}(Y, Z) A(X, V)-\stackrel{\circ}{R}(Z, X) A(Y, V)-\stackrel{\circ}{R}(X, Y) A(Z, V)\}=0 .
\end{align*}
$$

From (2.2) we obtain $\lambda=0$, so (i) or

$$
\begin{align*}
& A(X, \stackrel{\circ}{R}(Y, Z) V)+A(Y, \stackrel{\circ}{R}(Z, X) V)+A(Z, \stackrel{\circ}{R}(X, Y) V)= \\
& =\stackrel{\circ}{R}(Y, Z) A(X, V)-\stackrel{\circ}{R}(Z, X) A(Y, V)-\stackrel{\circ}{R}(X, Y) A(Z, V) .
\end{align*}
$$

Let $\stackrel{\circ}{g}_{i j}, A_{i j}^{k}$, respectively $\stackrel{\circ}{R}_{j k l}$ be the components of $\stackrel{\circ}{g}, A$, respectively $\stackrel{\circ}{R}$, in a local system of coordinates $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$. In local coordinates (2.2') becomes

$$
\begin{align*}
& A_{i l}^{s} \stackrel{\circ}{R}_{R_{s j k}}^{r}+A_{j l}^{s} \stackrel{\circ}{R_{s k i}}+A_{k l}^{s} \stackrel{\circ}{\circ_{s i j}}= \tag{2.2"}\\
& A_{j s}^{r} \stackrel{\circ}{R}_{l k i}+A_{k s}^{r} \stackrel{\circ}{R}_{R_{l i j}}+A_{i s}^{r} \stackrel{\circ}{R}_{R_{l j k}} .
\end{align*}
$$

From $\stackrel{1}{g}=e^{2 u} \stackrel{\circ}{g}$ and $A=\stackrel{1}{\nabla}-\stackrel{\circ}{\nabla}$ one has

$$
\begin{equation*}
A_{j k}^{i}=\delta_{j}^{i} u_{k}+\delta_{k}^{i} u_{j}-\stackrel{\circ}{g}_{j k} u^{i} \tag{2.3}
\end{equation*}
$$

where $u_{i}=\frac{\partial u}{\partial x^{i}}, u^{i}=\stackrel{\circ}{g}^{i k} u_{k}, \stackrel{\circ}{g}^{i k} \stackrel{\circ}{g}_{i j}=\delta_{j}^{k}$. Relations (2.2') and (2.3) imply

$$
\left(\delta_{i}^{r} \stackrel{\circ}{R}_{l j k}^{s}+\delta_{j}^{r} \stackrel{\circ}{R}_{l k i}^{s}+\delta_{k}^{r} \stackrel{\circ}{R}_{l i j}^{s}\right) u_{s}+\left(\stackrel{\circ}{g}_{i l} \stackrel{\circ}{R}_{s j k}^{r}+\stackrel{\circ}{g}_{j l} \stackrel{\circ}{R}_{s k i}^{r}+\stackrel{\circ}{g}_{k l} \stackrel{\circ}{R}_{s i j}^{r}\right) u^{s}=0 .
$$

Considering $r=j$ and summing, one gets

$$
\begin{equation*}
(n-2) \stackrel{\circ}{R}_{l k i} u_{s}+\left(\stackrel{\circ}{R}_{l s k i}+\stackrel{\circ}{g}_{i l} \stackrel{\circ}{R}_{s k}-\stackrel{\circ}{g}_{k l} \stackrel{\circ}{R}_{i s}\right) u^{s}=0 \tag{2.4}
\end{equation*}
$$

where $\stackrel{\circ}{R}_{i j k l}=\stackrel{\circ}{g}_{i s} \stackrel{\circ}{R}_{j k l}, \stackrel{\circ}{R}_{i j}=\stackrel{\circ}{R}_{i k j}$. Multiplying (2.4) by $\stackrel{\circ}{g}^{\circ l}$ and summing, we obtain

$$
(n-2) R_{s k} u^{s}=0
$$

From (2.4') and (2.4) one has

$$
\begin{equation*}
(n-3) \stackrel{\circ}{R}_{l k i}^{s} u_{s}=0 \tag{2.4"}
\end{equation*}
$$

Since $n>3$, from (2.4") we get

$$
\begin{equation*}
\omega(\stackrel{\circ}{R}(X, Y) Z)=0, \forall X, Y, Z \in \mathcal{X}(M) \tag{2.5}
\end{equation*}
$$

where ω is the 1 -form having the components $u_{1}, u_{2}, \ldots, u_{n} . \forall p \in M$, the relation (2.5) implies

$$
\omega_{p}\left(\stackrel{\circ}{R}_{p}\left(X_{p}, Y_{p}\right) Z_{p}\right)=0, \forall X_{p}, Y_{p}, Z_{p} \in T_{p} M
$$

Since $\stackrel{\circ}{R}_{p}: T_{p} M \times T_{p} M \times T_{p} M \mapsto T_{p} M$ is a surjective mapping, $\forall p \in M$, from (2.5') one has $\omega_{p}\left(T_{p} M\right)=0, \forall p \in M$, i.e. $\omega_{p}=0, \forall p \in M$, so $\omega=0$. Therefore $u_{1}=u_{2}=$ $\ldots=u_{n}=0$ and $u=$ constant. Hence $\stackrel{1}{\nabla}=\stackrel{\circ}{\nabla}$.
(iv) \Rightarrow (i) Since the algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ is abelian, then this algebra is associative if and only if

$$
\begin{equation*}
\lambda[A(X, A(Y, Z))-A(Y, A(X, Z))]=0, \forall X, Y, Z \in \mathcal{X}(M) \tag{2.6}
\end{equation*}
$$

From (2.6) we get $\lambda=0$, so (i) or

$$
A(X, A(Y, Z))=A(Y, A(X, Z)), \forall X, Y, Z \in \mathcal{X}(M)
$$

In local coordinates (2.6^{\prime}) becomes

$$
\begin{equation*}
A_{s k}^{i} A_{j l}^{s}=A_{s l}^{i} A_{j k}^{s} . \tag{2.6"}
\end{equation*}
$$

Taking into account (2.6") and (2.3) one has

$$
\delta_{k}^{i} u_{l} u_{j}-\delta_{l}^{i} u_{k} u_{j}-g_{i l} u^{i} u_{k}+g_{j k} u^{i} u_{l}+\left(\delta_{k}^{i} g_{j l}-\delta_{l}^{i} g_{j k}\right) u_{s} u^{s}=0
$$

Considering $i=k$ and summing, one gets

$$
\begin{equation*}
n u_{j} u_{l}+(n-2) g_{j l} u_{s} u^{s}=0 \tag{iv}
\end{equation*}
$$

Multiplying the previous relation by $g^{j l}$, we have $u_{s} u^{s}=0$ and also $u_{j} u_{l}=0$. Therefore $u_{1}=u_{2}=\ldots=u_{n}=0$ and hence $\stackrel{\lambda}{\nabla}=\stackrel{\circ}{\nabla}$.
$(\mathrm{v}) \Rightarrow$ (i) The symmetric linear connections $\stackrel{\lambda}{\nabla}$ and $\stackrel{\circ}{\nabla}$ have the same geodesics if and only if there exists a 1 -form $\stackrel{\lambda}{\omega} \in \Lambda^{1}(M)$ such that

$$
\begin{equation*}
\stackrel{\lambda}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\stackrel{\lambda}{\omega}(X) Y+\stackrel{\lambda}{\omega}(Y) X, \forall X, Y \in \mathcal{X}(M) \tag{2.7}
\end{equation*}
$$

Since $\stackrel{1}{g}=e^{2 u} \stackrel{\circ}{g}$, the deformation tensor $\stackrel{\lambda}{A}=\stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla}$ is given by

$$
\begin{equation*}
\stackrel{\circ}{g}\left({ }_{A}^{A}(X, Y), Z\right)=\lambda\{X(u) \stackrel{\circ}{g}(Y, Z)+Y(u) \stackrel{\circ}{g}(X, Z)-Z(u) \stackrel{\circ}{g}(Y, X)\} \tag{2.8}
\end{equation*}
$$

The relations (2.7) and (2.8) lead to

$$
\begin{equation*}
\stackrel{\circ}{g}(Y, Z)[\stackrel{\lambda}{\omega}(X)-\lambda X(u)] \stackrel{\circ}{g}(X, Z)[\stackrel{\lambda}{\omega}(Y)-\lambda Y(u)]-\stackrel{\circ}{g}(Y, X) Z(u)=0 . \tag{2.9}
\end{equation*}
$$

For $Y=X$, from (2.9) one has

$$
\begin{equation*}
2 \stackrel{\circ}{g}(X, Z)[\stackrel{\lambda}{\omega}(X)-\lambda X(u)]=Z(u) \stackrel{\circ}{g}(X, X), \forall X, Z \in \mathcal{X}(M) \tag{2.10}
\end{equation*}
$$

From (2.10) we get

$$
\begin{align*}
& \quad 2 \stackrel{\circ}{g}_{p}\left(X_{p}, Z_{p}\right)\left[\stackrel{\lambda}{\omega}_{p}\left(X_{p}\right)-\lambda X_{p}(u)\right]= \\
& =Z_{p}(u) \stackrel{\circ}{g}_{p}\left(X_{p}, X_{p}\right), \forall X_{p}, Z_{p} \in T_{p} M \backslash\{0\} .
\end{align*}
$$

Since $n>3, \forall p \in M$ and $Z_{p} \in T_{p} M \backslash\{0\}$ there exists a vector $X_{p} \in T_{p} M \backslash\{0\}$ such that $\stackrel{\circ}{g}_{p}\left(X_{p}, Z_{p}\right)=0$. From (2.10') one has $Z_{p}(u)=0$, $\forall p \in M, \forall Z_{p} \in T_{p} M \backslash\{0\}$. Therefore $u=$ constant and from (2.8) we get $\stackrel{\circ}{g}(\stackrel{\lambda}{A}(X, Y), Z)=0, \forall X, Y, Z \in \mathcal{X}(M)$. Hence $\stackrel{\lambda}{\nabla}=\stackrel{\circ}{\nabla}$.
vi) \Rightarrow v) All the elements of the deformation algebra $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ are almost special vector fields if and only if there exist two 1-forms ω and η on M such that

$$
\begin{equation*}
\stackrel{\lambda}{\nabla}_{X} Y=\stackrel{\circ}{\nabla}_{X} Y+\omega(X) Y+\eta(Y) X, \forall X, Y \in \mathcal{X}(M) \tag{2.11}
\end{equation*}
$$

The linear connections $\stackrel{\lambda}{\nabla}$ and $\stackrel{\circ}{\nabla}$ are symmetric, so from (2.11) one has $\omega=\eta$, i.e. (v).
vii) $\Rightarrow \mathrm{i})$, viii) $\Rightarrow \mathrm{i}), \mathrm{ix}) \Rightarrow \mathrm{i}), \mathrm{x}) \Rightarrow \mathrm{i}$) (it is used the fact that $\mathcal{U}(M, \stackrel{\lambda}{\nabla}-\stackrel{\circ}{\nabla})$ is an abelian algebra).

References

[1] I.E. Hirică, Asupra spaţiilor Riemann în corespondenţă geodezică, Math. Report 1-2, 49 (1997), 73-76.
[2] I.E. Hirică, On geodesically and subgeodesically related pseudo-Riemannian spaces, Rend. Sem. Mat. Messina, Serie II, 5 (1998), 99-107.
[3] I.E. Hirică, On some special vector fields, Balkan J. Geom. Appl. 10, 1 (2005), 121-126.
[4] I.E. Hirică, On some Golab connections, Dem. Math. 36 (2006).
[5] L. Nicolescu, Deux obsevations sur les métriques conformes, An. Univ. "Al. Cuza"Iaşi, Sect. Matematică, Tom XXIV, f. 2, s I a (1978), 351-355.
[6] L. Nicolescu, Une extension d'un théoreme concernant les métriques pseudoriemanniennes conformes, Balkan J. Geom. Appl. 10, 1 (2005), 127-130.
[7] G. Pripoae, Some remarks concerning a class of linear connections in a space with almost product or almost complex structure, An. Univ. Timişoara, Ştiinte Mat. 28, 1 (1990), 53-57.
[8] C. Udrişte, Geometric Dynamics, Kluwer Academic Publishers, 2000.
[9] G. Vrănceanu, Leçons de Géométrie Différentielle, vol. I-II, Ed. Academiei Române, Bucureşti, 1957.

Author's address:
Liviu Nicolescu
University of Bucharest, Faculty of Mathematics and Informatics,
Department of Geometry, 14 Academiei Str., 010014-RO, Bucharest, Romania. email: lnicol@geometry.math.unibuc.ro

[^0]: Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 99-103.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2006.

