On the spinorial representations of $S O(4,4)$

Kostake Teleman

Dedicated to the memory of Radu Rosca (1908-2005)

Abstract

We study the spinorial representations of the group $S O(4,4)$.

Mathematics Subject Classification: 53C27.
Key words: spinorial representation, Lie group.

1 Introduction

It is well known that the orthogonal groups $S O(n), n>2$ are connected, but are not simply connected, since $\pi_{1}(S O(n)) \approx \mathbb{Z}_{2}$. Their simply connected covering groups $\operatorname{Spin}(n)$ are obtained by making use of the Clifford algebras C_{n}.

The pseudo-orthogonal groups $S O(m, m)$ are also connected and not simply connected. The groups $\operatorname{Spin}(m, m)$ are also defined by using convenient Clifford algebras. It is worthwhile to note this

Proposition. When $m>2, \pi_{1}(S O(m, m)) \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
Proof. The group $S O(m, m)$ acts transitively on the group space $S O(m)$ through homographic transformations: $A \mapsto(a A+b)(c A+d)^{-1}$; this action induces a transitive action on the space W formed by the pairs $(A, B) \in S O(m) \times S O(m)$ with $\operatorname{det}(A-B) \neq 0$. The isotropy group H at the point $(I,-I)$ is formed by the matrices $\left(\begin{array}{ll}a & c a \\ c a & a\end{array}\right) \in S O(m, m)$, where $\left(I-^{t} c c\right) a^{t} a=I$. The space W is diffeomorphic to the tangent space $T S O(m)$. Thus W and H are homotopically equivalent to $S O(m)$ and therefore $\pi_{1}(W) \approx \pi_{1}(H) \approx \pi_{1}(S O(m)) \approx \mathbb{Z}_{2}$.

The exact sequence of homotopy groups associated with the fibration $H \subset$ $S O(m, m) \rightarrow W$ provides the final step of the proof.

2 The spinorial representations of $S O(4,4)$

We denote by G the group defined as the set of real 8×8-matrices S verifying the relations

$$
\operatorname{det}(S)=1,{ }^{t} S \Sigma S=\Sigma, \Sigma=\left(\begin{array}{cc}
0 & I_{4} \\
I_{4} & 0
\end{array}\right) .
$$

The group G is isomorphic to $S O(4,4)$.

[^0](c) Balkan Society of Geometers, Geometry Balkan Press 2006.

Let g be the Lie algebra of the group G.
We denote by \mathbf{E} the real vector space spanned by the eight symbols

$$
b_{\alpha}, b^{\alpha}, \quad(\alpha=0,1,2,3)
$$

and endowed with the quadratic form

$$
F(x)=\sum_{\alpha} x^{\alpha} x_{\alpha}, x=\sum_{\alpha}\left(x^{\alpha} b_{\alpha}+x_{\alpha} b^{\alpha}\right) .
$$

The relations $S \in G, x \in \mathbf{E}, s \in g$ imply

$$
Q(S x)=Q(x),{ }^{t} s \Sigma+\Sigma s=0 .
$$

When b, b^{\prime} are two of the symbols b_{α}, b^{α}, we denote by b / b^{\prime} the 8×8-matrix characterized by the properties

$$
\left(b / b^{\prime}\right) b^{\prime}=b,\left(b / b^{\prime}\right) b^{\prime \prime}=0,\left(b^{\prime \prime} \neq b^{\prime}\right)
$$

Then, whenever $b, b^{\prime}, b^{\prime \prime} \in b$, we will have

$$
\left(b / b^{\prime}\right)\left(b^{\prime} / b^{\prime \prime}\right)=b / b^{\prime \prime}
$$

The Lie algebra g is linearly spanned by the 28 matrices

$$
\begin{gathered}
B_{\alpha}^{\beta}=b_{\alpha} / b_{\beta}-b^{\beta} / b^{\alpha} \\
B_{\alpha \beta}=b_{\alpha} / b^{\beta}-b_{\beta} / b^{\alpha}, B^{\alpha \beta}=b^{\alpha} / b_{\beta}-b^{\beta} / b_{\alpha}, \quad(\alpha<\beta) .
\end{gathered}
$$

As long as we will work with a vector space which is endowed with specific base, we will identify any matrix with the endomorphism associated with that matrix.

Instead of considering the group $S O(4,4)$, we will consider the group G.
Let C_{8} be the Clifford algebra spanned by the eight symbols t_{α}, t^{α} subject to the relations

$$
t_{\alpha} t_{\beta}+t_{\beta} t_{\alpha}=t^{\alpha} t^{\beta}+t^{\beta} t^{\alpha}=0, t_{\alpha} t^{\beta}+t^{\beta} t_{\alpha}=\delta_{\alpha}^{\beta},(\alpha, \beta=1,2,3,4)
$$

We denote

$$
\varphi=t_{4}+t^{4}
$$

We want to make explicit the two fundamental spinorial representations of the group G. To this end, we denote

$$
\begin{gathered}
e_{0}=t_{1} t_{2} t_{3} t_{4}, e^{0}=-t^{1} t^{2} t^{3} t^{4} e_{0}, e_{i}=t^{i} t^{4} e_{0} \\
e^{i}=t^{j} t^{k} e_{0},(i j k=123,231,312) \\
f_{0}=t^{4} e_{0}=\varphi e_{0}, f^{0}=t^{1} t^{2} t^{3} e_{0}=\varphi e^{0} \\
f_{i}=-t^{i} e_{0}=\varphi e_{i}, f^{i}=t^{4} t^{j} t^{k} e_{0}=\varphi e^{i} \\
F_{i}=t_{i} t_{4}, G_{i}=t_{j} t_{k}, F^{i}=t^{i} t^{4}, G^{i}=t^{j} t^{k} \\
H_{a}^{b}=\frac{1}{2}\left(t_{a} t^{b}-t^{b} t_{a}\right), H_{a}=H_{a}^{a},(a, b=1,2,3,4)
\end{gathered}
$$

Then

$$
\begin{gathered}
H_{a}=t_{a} t^{a}-\frac{1}{2}=\frac{1}{2}-t^{a} t_{a} \\
{\left[t_{a} t_{b}, t^{b} t^{c}\right]=H_{a}^{c},(a \neq c)} \\
{\left[t_{a} t_{b}, t^{b} t^{a}\right]=H_{a}+H_{b}} \\
\varphi t_{i} \varphi=-t_{i}, \varphi t^{i} \varphi=-t^{i}, \varphi t_{4} \varphi=t^{4}, \varphi t^{4} \varphi=t_{4} \\
\varphi F_{i} \varphi=-F_{i}^{4}, \varphi F^{i} \varphi=F_{4}^{i}, \varphi G_{i} \varphi=G_{i}, \varphi G^{i} \varphi=G^{i} \\
\varphi H_{i}^{j} \varphi=H_{i}^{j}, \varphi H_{i}^{4} \varphi=-F_{i}, \varphi H_{4}^{i} \varphi=-F^{i}, \varphi H_{4} \varphi=-H_{4}
\end{gathered}
$$

The symbols F, G, H span a Lie algebra, denoted Γ. The algebra Γ is isomorphic to g. Multiplication by φ allows us to transform the action of F, G, H on the vectors f^{a}, f_{a} into an action on the vectors e^{a}, e_{a}.

The sets $e=\left(e_{0}, e_{i}, e^{0}, e^{i}\right)$, respectively $f=\left(f_{0}, f_{i}, f^{0}, f^{i}\right)$ span two complex 8 -dimensional vector spaces denoted \mathcal{E}, \mathcal{F} and multiplications on the left with F, G, H define two fundamental spinorial representations

$$
\rho_{+}: \Gamma \rightarrow \operatorname{End}(\mathcal{E}), \rho_{-}: \Gamma \rightarrow \operatorname{End}(\mathcal{F})
$$

of the Lie algebra Γ.
One has:

$$
\begin{gathered}
H_{i} e_{0}=\frac{1}{2} e_{0}, H_{4} e_{0}=\frac{1}{2} e_{0}, H_{i} e^{0}=-\frac{1}{2} e^{0}, H_{4} e^{0}=\frac{1}{2} e^{0} \\
H_{i} e_{i}=-\frac{1}{2} e_{i}, H_{i} e_{j}=\frac{1}{2} e_{j}, H_{i} e^{i}=\frac{1}{2} e^{i}, H_{i} e^{j}=-\frac{1}{2} e^{j} \\
H_{i} f_{0}=\frac{1}{2} f_{0}, H_{4} f_{0}=-\frac{1}{2} f_{0}, H_{i} f^{0}=-\frac{1}{2} f^{0}, H_{4} f^{0}=\frac{1}{2} f^{0} \\
H_{i} f_{i}=-\frac{1}{2} f_{i}, H_{i} f_{j}=\frac{1}{2} f_{j}, H_{i} f^{i}=\frac{1}{2} f^{i}, H_{i} f^{j}=-\frac{1}{2} f^{j} \\
F_{i} e_{i}=-e_{0}, F_{i} e^{0}=e^{i}, G_{i} e^{i}=-e_{0}, G_{i} e^{0}=e_{i} \\
F^{i} e_{0}=e_{i}, F^{i} e^{i}=-e^{0}, G^{i} e_{0}=e^{i}, G^{i} e_{i}=-e^{0} \\
F_{i} f^{j}=f_{k}, F_{i} f^{k}=-f_{j}, G_{i} f^{0}=f_{i}, G_{i} f^{i}=-f_{0} \\
F^{i} f_{j}=f^{k}, F^{i} f_{k}=-f^{j}, G^{i} f_{0}=f^{i}, G^{i} f_{i}=-f^{0},
\end{gathered}
$$

where the triple $i j k$ is one of the triples $123,231,312$.
Using the same convention, one has:

$$
\begin{gathered}
\rho_{+}\left(H_{i}\right)=\frac{1}{2}\left(e_{0} / e_{0}-e_{i} / e_{i}+e_{j} / e_{j}+e_{k} / e_{k}-e^{0} / e^{0}+e^{i} / e^{i}-e^{j} / e^{j}-e^{k} / e^{k}\right) \\
\rho_{-}\left(H_{i}\right)=\frac{1}{2}\left(f_{0} / f_{0}-f_{i} / f_{i}+f_{j} / f_{j}+f_{k} / f_{k}-f^{0} / f^{0}+f^{i} / f^{i}-f^{j} / f^{j}-f^{k} / f^{k}\right) \\
\rho_{+}\left(H_{4}\right)=\frac{1}{2}\left(e_{0} / e_{0}-e_{1} / e_{1}-e_{2} / e_{2}-e_{3} / e_{3}-e^{0} / e^{0}+e^{1} / e^{1}+e^{2} / e^{2}+e^{3} / e^{3}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \rho_{-}\left(H_{4}\right)=\frac{1}{2}\left(f_{0} / f_{0}-f_{1} / f_{1}-f_{2} / f_{2}-f_{3} / f_{3}-e^{0} / e^{0}+f^{1} / f^{1}+f^{2} / f^{2}+f^{3} / f^{3}\right) \\
& \rho_{+}\left(t_{i} t_{4}\right)=e^{i} / e^{0}-e_{0} / e_{i}, \rho_{-}\left(t_{i} t_{4}\right)=f_{k} / f^{j}-f_{j} / f^{k} \\
& \rho_{+}\left(t_{j} t_{k}\right)=e_{i} / e^{0}-e_{0} / e^{i}, \rho_{-}\left(t_{j} t_{k}\right)=f_{i} / f^{0}-f_{0} / f^{i} \\
& \rho_{+}\left(t^{i} t^{4}\right)=e_{i} / e_{0}-e^{0} / e^{i}, \rho_{-}\left(t^{i} t^{4}\right)=f^{k} / f_{j}-f^{j} / f_{k} \\
& \rho_{+}\left(t^{j} t^{k}\right)=e^{i} / e_{0}-e^{0} / e_{i}, \rho_{-}\left(t^{j} t^{k}\right)=f^{i} / f_{0}-f^{0} / f_{i}
\end{aligned}
$$

3 The vectorial representation

We will now consider the linear representation ρ of the Lie algebra Γ, which is induced by the adjoint representation of the Clifford algebra C_{8} :

$$
(F, t) \mapsto[F, t],(G, t) \mapsto[G, t],(H, t) \mapsto[H, t] .
$$

Let \mathbf{D} be the complex vector space spanned by the eight symbols t_{a}, t^{a}, ($a=1,2,3,4$). We have:

$$
\begin{gathered}
{\left[F_{i}, t^{i}\right]=-t_{4},\left[F_{i}, t^{4}\right]=t_{i},\left[G_{i}, t^{j}\right]=-t_{k},\left[G_{i}, t^{k}\right]=t_{j}} \\
{\left[F^{i}, t_{i}\right]=-t^{4},\left[F^{i}, t_{4}\right]=t^{i},\left[G^{i}, t_{j}\right]=-t^{k},\left[G^{i}, t_{k}\right]=t^{j}}
\end{gathered}
$$

Thus \mathbf{D} is an invariant subspace of C_{8} and we get the following endomorphisms of \mathbf{D}, defining the vectorial representation $\rho: \Gamma \rightarrow \operatorname{End}(\mathbf{D})::$

$$
\rho\left(t_{a} t_{b}\right)=t_{a} / t^{b}-t_{b} / t^{a}, \rho\left(t^{a} t^{b}\right)=t^{a} / t_{b}-t^{b} / t_{a}, \rho\left(t_{a} t^{b}\right)=t_{a} / t_{b}-t^{b} / t^{a}
$$

We resume the results concerning the two spinorial representations ρ_{+}, ρ_{-}and the vectorial representation ρ of the Lie algebra Γ, by composing the following tables:

$\tau \in \Gamma$	$\rho_{+}(\tau)$	$\rho_{-}(\tau)$	$\rho(\tau)$
$t_{i} t_{4}$	$e^{i} / e^{0}-e_{0} / e_{i}$	$e_{k} / e^{j}-e_{j} / e^{k}$	$e_{i} / e^{0}-e_{0} / e^{i}$
$t_{j} t_{k}$	$e_{i} / e^{0}-e_{0} / e^{i}$	$e_{i} / e^{0}-e_{0} / e^{i}$	$e_{j} / e^{k}-e_{k} / e^{j}$
$t^{i} t^{4}$	$e_{i} / e_{0}-e^{0} / e^{i}$	$e^{k} / e_{j}-e^{j} / e_{k}$	$e^{i} / e_{0}-e^{0} / e_{i}$
$t^{j} t^{k}$	$e^{i} / e_{0}-e^{0} / e_{i}$	$e^{i} / e_{0}-e^{0} / e_{i}$	$e^{j} / e_{k}-e^{k} / e_{j}$
$t_{i} t^{j}$	$e^{i} / e^{j}-e_{j} / e_{i}$	$e^{i} / e^{j}-e_{j} / e_{i}$	$e_{i} / e_{j}-e^{j} / e^{i}$
$t_{4} t^{i}$	$e^{k} / e_{j}-e^{j} / e_{k}$	$e_{i} / e_{0}-e^{0} / e^{i}$	$e_{0} / e_{i}-e^{i} / e^{0}$
$t_{i} t^{4}$	$e_{j} / e^{k}-e_{k} / e^{j}$	$e_{0} / e_{i}-e^{i} / e^{0}$	$e_{i} / e_{0}-e^{0} / e^{i}$
$t_{i} t^{2}-t^{i} t_{i}$	$E_{0}-E_{i}+E_{j}+E_{k}$	$E_{0}-E_{i}+E_{j}+E_{k}$	$e_{i} / e_{i}-e^{i} / e^{i}$
$t_{4} t^{4}-t^{4} t_{4}$	$E_{0}-E_{1}-E_{2}-E_{3}$	$-E_{0}+E_{1}+E_{2}+E_{3}$	$e_{0} / e_{0}-e^{0} / e^{0}$

where the following notation has been used: $E_{\alpha}=e_{\alpha} / e_{\alpha}-e^{\alpha} / e^{\alpha}$.
Denoting, for $\alpha, \beta=0,1,2,3, \alpha \neq \beta$ and $a=1,2,3,4$,

$$
\begin{aligned}
E_{\alpha}^{\beta}=e_{\alpha} / e_{\beta}-e^{\beta} / e^{\alpha}, E_{\alpha \beta} & =e_{\alpha} / e^{\beta}-e_{\beta} / e^{\alpha}, E^{\alpha \beta}=e^{\alpha} / e_{\beta}-e^{\beta} / e_{\alpha} \\
h_{a} & =t_{a} t^{a}-t^{a} t_{a}
\end{aligned}
$$

the following table will define the inverses of the representations ρ_{+}, ρ_{-}, ρ :

$E \in g$	$\left(\rho_{+}\right)^{-1}(E)$	$\left(\rho_{-}\right)^{-1}(E)$	$\rho^{-1}(E)$
$-E_{0}^{i}$	$t_{i} t_{4}$	$-t_{i} t^{4}$	$t^{i} t_{4}$
E_{i}^{0}	$t^{i} t^{4}$	$-t^{i} t_{4}$	$t_{i} t^{4}$
$E_{i 0}$	$t_{j} t_{k}$	$t_{j} t_{k}$	$t_{i} t_{4}$
$E^{i 0}$	$t^{j} t^{k}$	$t^{j} t^{k}$	$t^{i} t^{4}$
$-E_{j}^{i}$	$t_{i} t^{j}$	$t_{i} t^{j}$	$t^{i} t_{j}$
$E^{j k}$	$t^{i} t_{4}$	$-t^{i} t^{4}$	$t^{j} t^{k}$
$E_{j k}$	$t_{i} t^{4}$	$-t_{i} t_{4}$	$t_{j} t_{k}$
$4 E_{0}$	$h_{1}+h_{2}+h_{3}+h_{4}$	$h_{1}+h_{2}+h_{3}-h_{4}$	$4 h_{4}$
$4 E_{i}$	$-h_{i}+h_{j}+h_{k}-h_{4}$	$-h_{i}+h_{j}+h_{k}+h_{4}$	$4 h_{i}$

It is interesting to note that $\left(\rho_{+}\right)^{-1} \rho_{-}, \rho^{-1} \rho_{-},(\rho)^{-1} \rho_{-}$are automorphisms of the Lie algebra Γ verifying the following periodicity relations:

$$
\left(\left(\lambda^{\prime}\right)^{-1} \mu^{\prime}\right)^{2}=\left(\left(\nu^{\prime}\right)^{-1} \mu^{\prime}\right)^{4}=\left(\left(\nu^{\prime}\right)^{-1} \lambda^{\prime}\right)^{6}=i d_{\Gamma}
$$

On the other side, according to the general theory regarding linear representations of orthogonal groups, the G-module $\mathcal{E} \otimes \mathcal{F}$ decomposes into the direct sum of two irreducible submodules of dimensions 8 and 56 , with highest weights λ_{1} respectively $\lambda_{1}+\lambda_{2}+\lambda_{3}$, the first of which being isomorphic to D, while the second is isomorphic to $\Lambda^{3} \mathbf{R}^{8}$; as a consequence, there exists a monomorphism of G-modules

$$
\psi: D \rightarrow \mathcal{E} \otimes \mathcal{F}
$$

in our setting, this monomorphism is defined by the formulas

$$
\begin{gathered}
\psi\left(t_{l}\right)=e_{0} \otimes f^{i j k}-f^{i j} \otimes f^{k}-f^{j k} \otimes f^{i}-f^{k i} \otimes f^{j} \\
\psi\left(t^{l}\right)=f^{l i j k} \otimes f^{l}-f^{l i} \otimes f^{l j k}-f^{l j} \otimes f^{l k i}-f^{l k} \otimes f^{l i j}
\end{gathered}
$$

where $\{i, j, k, l\}=\{1,2,3,4\}$ and

$$
f^{l}=t^{l} e_{0}, f^{l i}=t^{l} t^{i} e_{0}, f^{l i j}=t^{l} t^{i} t^{j} e_{0}
$$

For more details concerning the groups $S O(8), \operatorname{Spin}(8), S O(4,4)$ and $\operatorname{Spin}(4,4)$ see the book Spin Geometry [1, p.56].

4 Octets

Let \mathbf{H} be the skew-field of quaternions and denote $\mathbf{Q}=\mathbf{H} \times \mathbf{H}$.
We shall introduce in \mathbf{Q} a new multiplication law, by performing a slight modification of the multiplication rules governing the Cayley algebra.

We will get a link between the so modified Cayley algebra and the fundamental spinorial representations of the group $S O(4,4)$.

We denote by $1, i, j, k$ the standard quaternions satisfying the relations

$$
i^{2}=j^{2}=k^{2}=-1, i j=-j i=k
$$

The pairs $(x, y) \in \mathbf{Q}=\mathbf{H} \times \mathbf{H}$ will be named octets. The product of two octets, the scalar product of two octets, the norm of an octet, the conjugate of an octet and the inverse of a non vanishing octet are defined by the formulas:

$$
\begin{gathered}
(x, y)(u, v)=(x u+\bar{v} y, v x+y \bar{u}) \\
<(x, y),(u, v)>=<x, u>-<y, v>,\|(x, y)\|^{2}=|x|^{2}-|y|^{2} \\
(x, y)^{*}=(\bar{x},-y),(x, y)^{-1}=\frac{(\bar{x},-y)}{|x|^{2}-|y|^{2}} .
\end{gathered}
$$

Then we will have

$$
|(x, y)(u, v)|^{2}=|(x, y)|^{2}|(u, v)|^{2} .
$$

The last formula shows that multiplication either on the left or on the right with objects $(a, b) \in \mathbf{Q}$ having $|a|^{2}-|b|^{2}=1$ defines linear transformations that keep invariant the quadratic form

$$
P(x, y)=|x|^{2}-|y|^{2} .
$$

We introduce the following octets, forming two bases of the real vector space \mathbf{Q} :

$$
\begin{gathered}
1^{\prime}=(1,0), i^{\prime}=(i, 0), j^{\prime}=(j, 0), k^{\prime}=(k, 0) \\
1^{\prime \prime}=(0,1), i^{\prime \prime}=(0, i), j^{\prime \prime}=(0, j), k^{\prime \prime}=(0, k) \\
e_{0}=\frac{1^{\prime}-1^{\prime \prime}}{2}, e_{1}=\frac{i^{\prime}+i^{\prime \prime}}{2}, e_{2}=\frac{j^{\prime}+j^{\prime \prime}}{2}, e_{3}=\frac{k^{\prime}+k^{\prime \prime}}{2} \\
e^{0}=\frac{1^{\prime}+1^{\prime \prime}}{2}, e^{1}=\frac{i^{\prime}-i^{\prime \prime}}{2}, e^{2}=\frac{j^{\prime}-j^{\prime \prime}}{2}, e^{3}=\frac{k^{\prime}-k^{\prime \prime}}{2} .
\end{gathered}
$$

Then we get:

$$
\begin{gathered}
1^{\prime 2}=1^{\prime}, i^{\prime 2}=j^{\prime 2}=k^{\prime 2}=-1^{\prime}, i^{\prime} j^{\prime}=-j^{\prime} i^{\prime}=k^{\prime} \\
1^{\prime \prime 2}=i^{\prime \prime} 2=j^{\prime \prime 2}=k^{\prime \prime 2}=1^{\prime}, i^{\prime \prime} j^{\prime \prime}=k^{\prime} \\
i^{\prime} j^{\prime \prime}=-j^{\prime \prime} i^{\prime}=i^{\prime \prime} j^{\prime}=-j^{\prime} i^{\prime \prime}=-k^{\prime \prime} \\
\left(e_{0}\right)^{2}=e_{0},\left(e^{0}\right)^{2}=e^{0}, e_{0} e^{0}=e^{0} e_{0}=0 \\
e_{0} e_{a}=e_{a} e^{0}=e_{a}, e^{0} e^{a}=e^{a} e_{0}=e^{a},(a=1,2,3) \\
e^{0} e_{a}=e_{a} e_{0}=e_{0} e^{a}=e^{a} e^{0}=0 \\
\left(e_{a}\right)^{2}=\left(e^{a}\right)^{2}=0, e_{a} e^{a}=-e_{0}, e^{a} e_{a}=-e^{0} \\
e^{a} e^{b}=-e^{b} e^{a}=e_{c}, e_{a} e_{b}=-e_{b} e_{a}=e^{c},(a b c=123,231,312) \\
e_{a} e^{b}=e^{b} e_{a}=0 \\
\overline{1}^{\prime}=1^{\prime}, \overline{1}^{\prime \prime}=1^{\prime \prime}, \bar{i}^{\prime}=-i^{\prime}, \bar{i}^{\prime \prime}=i^{\prime \prime} \\
\bar{e}_{0}=e_{0}, \bar{e}^{0}=e^{0}, \bar{e}_{a}=-e^{a}, \bar{e}^{a}=-e_{a} .
\end{gathered}
$$

The formula

$$
E(x)=\sum_{\alpha=0}^{3}\left(x^{\alpha} e_{\alpha}+x_{\alpha} e^{\alpha}\right)
$$

defines a map $E: \mathbf{R}^{8} \rightarrow \mathbf{Q}$. One has:

$$
\begin{gathered}
E(x) E(y)=\left(x^{0} y^{0}-\sum_{a} x^{a} y_{a}\right) e_{0}+\left(x_{0} y_{0}-\sum_{a} x_{a} y^{a}\right) e^{0} \\
+\sum_{a}\left(x^{0} y^{a}+x^{a} y_{0}+x_{b} y_{c}-x_{c} y_{b}\right) e_{a}+\sum_{a}\left(x_{0} y_{a}+x_{a} y^{0}+x^{b} y^{c}-x^{c} y^{b}\right) e^{a} .
\end{gathered}
$$

When we denote

$$
\bar{E}(x)=x_{0} e_{0}+x^{0} e^{0}-\sum_{a=1}^{3}\left(x^{a} e_{a}+x_{a} e^{a}\right), Q(x, y)=\sum_{\alpha=0}^{3} x_{\alpha} y^{\alpha}
$$

we get

$$
\begin{gathered}
E(x) \bar{E}(y)=Q(x, y) e^{0}+Q(y, x) e_{0} \\
+\sum_{a=1}^{3}\left(\left(x^{a} y^{0}-x^{0} y^{a}-x^{b} y^{c}+x^{c} y^{b}\right) e_{a}+\left(x_{a} y_{0}-x_{0} y_{a}-x_{b} y_{c}+x_{c} y_{b}\right) e^{a}\right) \\
E(x) \bar{E}(y)+E(y) \bar{E}(x)=(Q(x, y)+Q(y, x)) 1^{\prime}, E(x) \bar{E}(x)=Q(x, x) 1^{\prime}
\end{gathered}
$$

When $x_{0}+x^{0}=y_{0}+y^{0}=0$, we also have

$$
E(x) E(y)+E(y) E(x)=-(Q(x, y)+Q(y, x)) 1^{\prime}
$$

Multiplication on the left $w \mapsto E(x) w$ defines a linear map $\mathbf{Q} \rightarrow \mathbf{Q}$. Using the basis $\left(e_{0}, \ldots, e_{3}, e^{0}, \ldots, e^{3}\right)$, this linear map is represented by the matrix

$$
E_{l}(x)=\left(\begin{array}{ll}
x^{0} I_{4} & X_{l} \\
X_{l}^{!} & x_{0} I_{4}
\end{array}\right)
$$

where

$$
X_{l}=\left(\begin{array}{llll}
0 & x_{1} & x_{2} & x_{3} \\
-x_{1} & 0 & x^{3} & -x^{2} \\
-x_{2} & -x^{3} & 0 & x^{1} \\
-x_{3} & x^{2} & -x^{1} & 0
\end{array}\right), X_{i}^{!}=\left(\begin{array}{llll}
0 & x^{1} & x^{2} & x^{3} \\
-x^{1} & 0 & x_{3} & -x_{2} \\
-x^{2} & -x_{3} & 0 & x_{1} \\
-x^{3} & x_{2} & -x_{1} & 0
\end{array}\right)
$$

We shall have, for each vector $w \in \mathbf{R}^{8}$,

$$
E\left(E_{l}(x) w\right)=E(x) E(w)
$$

Similarly, the multiplication on the right $w \mapsto w E(x)$ is described by the matrix

$$
E_{r}(x)=\left(\begin{array}{ll}
X_{r}^{\prime} & X_{r}^{\prime \prime} \\
X_{r}^{\prime \prime!} & X_{r}^{\prime!}
\end{array}\right)
$$

where

$$
\begin{gathered}
X_{r}^{\prime}=\left(\begin{array}{llll}
x^{0} & x^{1} & x^{2} & x^{3} \\
-x_{1} & x_{0} & 0 & 0 \\
-x_{2} & 0 & x_{0} & 0 \\
-x_{3} & 0 & 0 & x_{0}
\end{array}\right), X_{r}^{\prime \prime}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & -x^{3} & x^{2} \\
0 & x^{3} & 0 & -x^{1} \\
0 & -x^{2} & x^{1} & 0
\end{array}\right) \\
X_{r}^{\prime!}=\left(\begin{array}{llll}
x_{0} & x_{1} & x_{2} & x_{3} \\
-x^{1} & x^{0} & 0 & 0 \\
-x^{2} & 0 & x^{0} & 0 \\
-x^{3} & 0 & 0 & x^{0}
\end{array}\right), X_{r}^{\prime \prime!}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & -x_{3} & x_{2} \\
0 & x_{3} & 0 & -x_{1} \\
0 & -x_{2} & x_{1} & 0
\end{array}\right) .
\end{gathered}
$$

One has

$$
X_{l} X_{l}^{!}=-\left(\sum_{i=1}^{3} x_{i} x^{i}\right) I_{4}
$$

Let us denote

$$
F(x)=\sum_{\alpha=0}^{3} x_{\alpha} x^{\alpha}=Q(x, x)
$$

Then G is the linear group formed by the real 8×8-matrices A which verify the relations $\operatorname{det}(A)=1, F(A w)=F(w)$.

When $F(x)=1$, any of the relations $E\left(w^{\prime}\right)=E_{l}(x) E(w), E\left(w^{\prime}\right)=E(w) E_{r}(x)$ implies $F\left(w^{\prime}\right)=F(w)$. This means that

When $F(x)=1$, the matrices $E_{l}(x), E_{r}(x)$ belong to the group G.
More generaly, denoting

$$
E_{l}^{\prime}(x)=-\left(\begin{array}{ll}
-x_{0} I_{4} & X_{l} \\
X_{l}^{!} & -x^{0} I_{4}
\end{array}\right)
$$

we get

$$
E_{l}(x) E_{l}^{\prime}(x)=\left(\sum_{\alpha} x_{\alpha} x^{\alpha}\right) I_{8}
$$

In particular, when $x_{0}+x^{0}=0$, one has $E_{l}^{\prime}(x)=-E_{l}(x)$ and

$$
\left(E_{l}(x)\right)^{2}=-\left(\sum_{\alpha=0}^{3} x_{\alpha} x^{\alpha}\right) I_{8}
$$

Similar relations hold for the matrix $E_{r}(x)$.
Let us now consider the matrices $r_{\alpha}, r^{\alpha}, s_{\alpha}, s^{\alpha}$ verifying the relations

$$
E_{l}(x)=\sum_{\alpha=0}^{3}\left(-x^{\alpha} r_{\alpha}+x_{\alpha} r^{\alpha}\right), E_{r}(y)=\sum_{\alpha=0}^{3}\left(y^{\alpha} s_{\alpha}-y_{\alpha} s^{\alpha}\right)
$$

and denote

$$
\begin{gathered}
r=r^{0}-r_{0}, s=s^{0}-s_{0} \\
k_{a}=\frac{1}{2}\left(r_{a} r^{a}-r^{a} r_{a}\right), h_{a}=\frac{1}{2}\left(s_{a} s^{a}-s^{a} s_{a}\right)
\end{gathered}
$$

We shall have, for $w \in \mathbf{R}^{8}$ and $\alpha=0,1,2,3$

$$
E\left(r_{\alpha} w\right)=e_{\alpha} E(w), E\left(r^{\alpha} w\right)=e^{\alpha} E(w)
$$

Using the relation $E(x) \bar{E}(y)+E(y) \bar{E}(x)=(Q(x, y)+Q(y, x)) 1^{\prime}$, we get, for $a, b=1,2,3$,

$$
\begin{aligned}
& r^{2}=s^{2}=I_{8}, r_{a} r^{b}+r^{b} r_{a}=\delta_{a}^{b} I_{8}, s_{a} s^{b}+s^{b} s_{a}=\delta_{a}^{b} I_{8} \\
& r r_{a}+r_{a} r=r r^{a}+r^{a} r=r_{a} r_{b}+r_{b} r_{a}=r^{a} r^{b}+r^{b} r^{a}=0 \\
& s s_{a}+s_{a} s=\mathfrak{s} s^{a}+s^{a} s=s_{a} s_{b}+s_{b} s_{a}=s^{a} s^{b}+s^{b} s^{a}=0 .
\end{aligned}
$$

To get more precise formulas, let us denote by e / e^{\prime} the matrix having a single non vanishing entry, equal to 1 and situated on the line e and the column e^{\prime}; then we have

$$
\left(e_{1} / e\right)\left(e^{\prime} / e_{2}\right)=\delta_{e e^{\prime}} e_{1} / e_{2}
$$

and, under the restrictions $a \neq b, a b c=123,231,312$,

$$
\begin{gathered}
r_{0}=\sum_{\alpha=0}^{3} e_{\alpha} / e_{\alpha}, r^{0}=\sum_{\alpha=0}^{3} e^{\alpha} / e^{\alpha}, r=\sum_{\alpha=0}^{3}\left(e^{\alpha} / e^{\alpha}-e_{\alpha} / e_{\alpha}\right) \\
r_{a}=-\left(e_{b} / e^{c}-e_{c} / e^{b}+e^{0} / e_{a}-e^{a} / e_{0}\right) \\
r^{a}=e_{0} / e^{a}-e_{a} / e^{0}+e^{b} / e_{c}-e^{c} / e_{b} \\
r_{0} r_{a}=r_{a} r^{0}=-\left(e_{b} / e^{c}-e_{c} / e^{b}\right)=-t_{a} t^{4} \\
r^{0} r_{a}=r_{a} r_{0}=-\left(e^{0} / e_{a}-e^{a} / e_{0}\right)=t^{b} t^{c} \\
r_{0} r^{a}=r^{a} r^{0}=e_{0} / e^{a}-e_{a} / e^{0}=-t_{b} t_{c} \\
r^{0} r^{a}=r^{a} r_{0}=e^{b} / e_{c}-e^{c} / e_{b}=t^{a} t_{4} \\
\left(r_{0}\right)^{2}=r_{0},\left(r^{0}\right)^{2}=r^{0}, r_{0} r^{0}=r^{0} r_{0}=\left(r_{a}\right)^{2}=\left(r^{a}\right)^{2}=0 \\
r_{a} r^{a}=e^{0} / e^{0}+e^{a} / e^{a}+e_{b} / e_{b}+e_{c} / e_{c} \\
r^{a} r_{a}=e_{0} / e_{0}+e_{a} / e_{a}+e^{b} / e^{b}+e^{c} / e^{c} \\
k_{a}=-\frac{1}{2}\left(e_{0} / e_{0}+e_{a} / e_{a}-e_{b} / e_{b}-e_{c} / e_{c}-e^{0} / e^{0}-e^{a} / e^{a}+e^{b} / e^{b}+e^{c} / e^{c}\right)
\end{gathered}
$$

When $a b c=123,231,312$, we also get

$$
\begin{gathered}
r_{a} r^{b}=-r^{b} r_{a}=-\left(e_{b} / e_{a}-e^{a} / e^{b}\right) \\
r_{a} r_{b}=-r_{b} r_{a}=e_{c} / e_{0}-e^{0} / e^{c}=t^{c} t^{4} \\
r^{a} r^{b}=-r^{b} r^{a}=e^{c} / e^{0}-e_{0} / e_{c}=t_{c} t_{4} .
\end{gathered}
$$

When we denote

$$
R=-r_{1} r_{2} r_{3}, R^{\prime}=r^{1} r^{2} r^{3}
$$

we get

$$
\begin{gathered}
R=e^{0} / e_{0}, R^{\prime}=e_{0} / e^{0}, R^{\prime} R=e_{0} / e_{0} \quad, R R^{\prime}=e^{0} / e^{0} \\
R R^{\prime} R=R, R^{\prime} R R^{\prime}=R^{\prime}
\end{gathered}
$$

$$
\begin{gathered}
r^{a} R=-e_{a} / e_{0}, R r^{a}=e^{0} / e^{a}, r^{a} R r^{c^{\prime}}=-e_{a} / e^{c^{\prime}} \\
r^{a} r^{b} R=e^{c} / e_{0}, R r^{a} r^{b}=-e^{0} / e_{c}, r^{a} r^{b} R r^{a^{\prime}} r^{b^{\prime}}=-e^{c} / e_{c^{\prime}} \\
r^{a} R r^{a^{\prime}} r^{b^{\prime}}=e_{a} / e_{c^{\prime}}, r^{a} r^{b} R r^{a^{\prime}}=e^{c} / e^{a^{\prime}}, r^{a} R R^{\prime}=-e_{a} / e^{0} \\
r^{a} r^{b} R R^{\prime}=e^{c} / e^{0}, R^{\prime} R r^{a^{\prime}}=e_{0} / e^{a^{\prime}}, R^{\prime} R r^{a^{\prime}} r^{b^{\prime}}=-e_{0} / e_{c^{\prime}} .
\end{gathered}
$$

Let us redenote the basis of \mathbf{R}^{8} as follows

$$
\begin{equation*}
e_{0}^{-}=e_{0}, e_{i}^{-}=e_{i}, e_{0}^{+}=e^{0}, e_{i}^{+}=e^{i},(i=1,2,3) \tag{4.1}
\end{equation*}
$$

and denote by e / e^{\prime} the matrix verifying the formula

$$
\left(e / e^{\prime}\right) e^{\prime \prime}=\delta_{e^{\prime} e^{\prime \prime}} e
$$

The matrix \mathcal{E}, with matricial entries

$$
\left(e_{0}^{-}, e_{1}^{-}, e_{2}^{-}, e_{3}^{-}, e_{0}^{+}, e_{1}^{+}, e_{2}^{+}, e_{3}^{+}\right) /\left(e_{0}^{-}, e_{1}^{-}, e_{2}^{-}, e_{3}^{-}, e_{0}^{+},{ }_{1}^{+}, e_{2}^{+}, e_{3}^{+}\right)
$$

writes:

$$
\left.\right) .
$$

Using the relation

$$
e / e^{\prime}=\left(e / e_{0}\right)\left(e_{0} / e^{\prime}\right)
$$

we can write

$$
\mathcal{E}=\left(\begin{array}{l}
r^{1} r^{2} r^{3} \\
-r^{1} \\
-r^{2} \\
-r^{3} \\
1 \\
r^{2} r^{3} \\
r^{3} r^{1} \\
r^{1} r^{2}
\end{array}\right)(R)\left(\begin{array}{lllllll}
1 & -r^{2} r^{3} & -r^{3} r^{1} & -r^{1} r^{2} & r^{1} r^{2} r^{3} & r^{1} & r^{2} \\
r^{3}
\end{array}\right)
$$

Denoting by \mathcal{R} the column matrix on the left and by $\mathcal{R}^{!}$the matrix obtained by transposing \mathcal{R} and by applying the reversing operator to each entry, we can write

$$
\mathcal{E}=\mathcal{R}(R) \mathcal{R}^{!} J, J=\left(\begin{array}{ll}
0 & I_{4} \\
-I_{4} & 0
\end{array}\right) .
$$

As a consequence, we get the following relation:

$$
\mathcal{E}^{!}=-J \mathcal{E} J
$$

As far as concerns the matrices s, we get the following formulas:

$$
\begin{gathered}
s_{0}=e_{0} / e_{0}+\sum_{a=1}^{3} e^{a} / e^{a}, s^{0}=e^{0} / e^{0}+\sum_{a=1}^{3} e_{a} / e_{a} \\
s=e^{0} / e^{0}-e_{0} / e_{0}+\sum_{a=1}^{3}\left(e_{a} / e_{a}-e^{a} / e^{a}\right) \\
s_{a}=e_{0} / e_{a}-e^{a} / e^{0}-e_{b} / e^{c}+e_{c} / e^{b} \\
s^{a}=e_{a} / e_{0}-e^{0} / e^{a}+e^{b} / e_{c}-e^{c} / e_{b} \\
s_{0} s_{a}=s_{a} s^{0}=e_{0} / e_{a}-e^{a} / e^{0}=-r^{b} r^{c} \\
s^{0} s_{a}=s_{a} s_{0}=e_{c} / e^{b}-e_{b} / e^{c}=r_{0} r_{a} \\
s_{0} s^{a}=s^{a} s^{0}=-e^{c} / e_{b}+e^{b} / e_{c}=-r^{0} r_{a} \\
s^{0} s^{a}=s^{a} s_{0}=-e^{0} / e^{a}+e_{a} / e_{0}=r_{b} r_{c} \\
\left.\left(s_{0}\right)^{2}=s_{0}, s^{0}\right)^{2}=s^{0}, s_{0} s^{0}=s^{0} s_{0}=\left(s_{a}\right)^{2}=\left(s^{a}\right)^{2}=0, \\
s_{a} s_{b}=-s_{b} s_{a}=e_{0} / e^{c}-e_{c} / e^{0}=r_{0} r^{c} \\
s^{a} s^{b}=-s^{b} s^{a}=e^{0} / e_{c}-e^{c} / e_{0}=r^{0} r_{c} \\
s_{a} s^{a}=\left(e_{0} / e_{0}+e^{a} / e^{a}+e_{b} / e_{b}+e_{c} / e_{c}\right) \\
s^{a} s_{a}=\left(e^{0} / e^{0}+e_{a} / e_{a}+e^{b} / e^{b}+e^{c} / e^{c}\right) \\
s_{a} s^{b}=-s^{b} s_{a}=e_{b} / e_{a}-e^{a} / e^{b},(a \neq b) \\
s_{a}=\frac{1}{2}\left(e_{0} / e_{0}-e_{a} / e_{a}+e_{b} / e_{b}+e_{c} / e_{c}-e^{0} / e^{0}+e^{a} / e^{a}-e^{b} / e^{b}-e^{c} / e^{c}\right) \\
S^{\prime}=-s^{1} s^{2} s^{3}=-e^{0} / e_{0}=-R, S=s_{1} s_{2} s_{3}=-e_{0} / e^{0}=-R^{\prime} \\
S S^{\prime}=e_{0} / e_{0}, S^{\prime} S=e^{0} / e_{0}^{0}, s_{a} s_{b} S^{\prime}=e_{c} / e_{0}, S^{\prime} s_{a}=e^{0} / e_{a}, S^{\prime} S S^{\prime}=S_{a}^{\prime} s_{b}=-e^{0} / e^{c} \\
S S_{a}^{\prime} s_{a} s_{b}=e_{0} / e^{c}, s_{a} S^{\prime} S=e^{a} / e^{0}, s_{a} s_{b} S^{\prime} S=-e_{c} / e^{0} . .
\end{gathered}
$$

Resuming, we can give the matrix \mathcal{E} the following expressions:

$$
\mathcal{E}=\left(\begin{array}{l}
s_{1} s_{2} s_{3} \\
s_{2} s_{3} \\
s_{3} s_{1} \\
s_{1} s_{2} \\
-1 \\
-s_{1} \\
-s_{2} \\
-s_{3}
\end{array}\right)(-R)\left(\begin{array}{lllllll}
1 & -s_{1} & -s_{2} & -s_{3} & -s_{1} s_{2} s_{3} & s_{2} s_{3} & s_{3} s_{1}
\end{array} s_{1} s_{2}\right)=
$$

$$
\begin{aligned}
& =\left(\begin{array}{l}
r^{1} r^{2} r^{3} \\
-r^{1} \\
-r^{2} \\
-r^{3} \\
1 \\
r^{2} r^{3} \\
r^{3} r^{1} \\
r^{1} r^{2}
\end{array}\right)(R)\left(\begin{array}{llllllll}
1 & -r^{2} r^{3} & -r^{3} r^{1} & -r^{1} r^{2} & r^{1} r^{2} r^{3} & r^{1} & r^{2} & r^{3}
\end{array}\right)= \\
& =\left(\begin{array}{l}
1 \\
-s^{1} \\
-s^{2} \\
-s^{3} \\
-s^{1} s^{2} s^{3} \\
-s^{2} s^{3} \\
-s^{3} s^{1} \\
-s^{1} s^{2}
\end{array}\right)\left(R^{\prime}\right)\left(\begin{array}{llllllll}
-s^{1} s^{2} s^{3} & s^{2} s^{3} & s^{3} s^{1} & s^{1} s^{2} & 1 & s^{1} & s^{2} & s^{3}
\end{array}\right)
\end{aligned}
$$

We add the relations

$$
\begin{aligned}
& k_{a}\left(e / e^{\prime}\right)=\frac{1}{2} e / e^{\prime},\left(e^{\prime} / e\right) k_{a}=\frac{1}{2} e^{\prime} / e, \text { valid for } e=e_{0}^{+}, e_{a}^{+}, e_{b}^{-}, e_{c}^{-} \\
& k_{a}\left(e / e^{\prime}\right)=-\frac{1}{2} e / e^{\prime},\left(e^{\prime} / e\right) k_{a}=-\frac{1}{2} e^{\prime} / e, \text { valid for } e=e_{b}^{+}, e_{c}^{+}, e_{0}^{-}, e_{a}^{-} \\
& h_{a}\left(e / e^{\prime}\right)=\frac{1}{2} e / e^{\prime},\left(e^{\prime} / e\right) h_{a}=\frac{1}{2} e^{\prime} / e, \operatorname{valid} \text { for } e=e_{a}^{-}, e_{0}^{+}, e_{b}^{+}, e_{c}^{+} \\
& h_{a}\left(e / e^{\prime}\right)=-\frac{1}{2} e / e^{\prime},\left(e^{\prime} / e\right) h_{a}=-\frac{1}{2} e^{\prime} / e, \operatorname{valid} \text { for } e=e_{0}^{-}, e_{b}^{-}, e_{c}^{-}, e_{a}^{+} .
\end{aligned}
$$

We also have:

$$
\begin{gathered}
e_{0}^{-}=e_{0}=\left(e_{0} / e_{0}\right) e_{0}=R^{\prime} R e_{0}=S^{\prime} e_{0} \\
e_{i}^{-}=e_{i}=\left(e_{i} / e_{0}\right) e_{0}=-r^{i} R e_{0}=s_{j} s_{k} S^{\prime} e_{0} \\
e_{0}^{+}=e^{0}=\left(e^{0} / e_{0}\right) e_{0}=R e_{0}=-S^{\prime} e_{0} \\
e_{i}^{+}=e^{i}=\left(e^{i} / e_{0}\right) e_{0}=r^{j} r^{k} R e_{0}=-s_{i} S^{\prime} e_{0} \\
(i j k=123,231,312) .
\end{gathered}
$$

5 Summary: the spinorial G-modules

The group G is formed by the real 8×8-matrices A verifying the relations $\operatorname{det}(A)=$ $1, F(A x)=F(x)$, where F is quadratic form

$$
F(x)=\sum_{\alpha=0}^{3} x_{\alpha} x^{\alpha}
$$

is spanned by the following 28 matrices:

$$
\begin{gathered}
e_{0} / e_{0}-e^{0} / e^{0}=r_{0}-r^{0} \\
e_{a} / e_{a}-e^{a} / e^{a}=k_{b}+k_{c}+r_{0}-r^{0}=h_{b}+h_{c}-r_{0}+r^{0} \\
e_{0} / e_{a}-e^{a} / e^{0}=-r^{b} r^{c}=s_{0} s_{a} \\
e_{0} / e^{a}-e_{a} / e^{0}=-r_{0} r^{a}=s_{b} s_{c} \\
e_{a} / e_{b}-e^{b} / e^{a}=-r_{b} r^{a}=s_{b} s^{a} \\
e_{a} / e_{0}-e^{0} / e^{a}=r_{b} r_{c}=-s^{0} s^{a} \\
e_{a} / e^{b}-e_{b} / e^{a}=-r_{0} r_{c}=-s^{0} s_{c} \\
e^{a} / e_{b}-e^{b} / e_{a}=r^{0} r^{c}=-s_{0} s^{c} .
\end{gathered}
$$

We produced four spinorial representations of the Lie algebra Γ, namely $\rho_{+}, \rho_{-}, \rho^{\prime}, \rho^{\prime \prime}$. It is not difficult to prove that ρ^{\prime} is equivalent to ρ_{+}, while $\rho^{\prime \prime}$ is equivalent to ρ_{-}.

The six matrices r_{a}, r^{a} generate algebraically a Clifford algebra C_{6} associated with the quadratic form

$$
F_{0}(x)=\sum_{a=1}^{3} x_{a} x^{a} .
$$

The matrices r, r_{a}, r^{a} generate the Clifford algebra C_{7} associated with the quadratic form $F_{0}(x)+z^{2}$.

For each $e \in\left\{e_{0}, e_{1}, e_{2}, e_{3}, e^{0}, e^{1}, e^{2}, e^{3}\right\}$, the vector space V_{e}, which is linearly spanned by the eight matrices $e_{\alpha} / e, e^{\alpha} / e$ with $\alpha=0,1,2,3$, provides the fundamental spinorial representation of the pseudo-orthogonal group $G^{\prime} \approx S O(3,4)$ associated with the quadratic form $F_{0}(x)+\left(x^{0}\right)^{2}$ and also the two fundamental spinorial representations of the pseudo-orthogonal group $G^{\prime \prime} \approx S O(3,3)$ associated with $F_{0}(x)$.

The 15 matrices $r_{a} r_{b},(a \neq b), r_{a} r^{b}-r^{b} r_{a}, r^{a} r^{b},(a \neq b)$ span the Lie algebra of the group $G^{\prime \prime}$.

The 21 matrices $r r_{a}, r r^{a}, r_{a} r_{b}, r_{a} r^{b}-r^{b} r_{a}, r^{a} r^{b}$ span the Lie algebra of the group G^{\prime}.

The 28 matrices $t_{0} t_{a}, t_{0} t^{a}, t^{0} t_{a}, t^{0} t^{a}, t_{a} t_{b}, t_{a} t^{b}, t^{a} t^{b}$ span the Lie algebra g of the pseudo-orthogonal group $G \approx S O(4,4)$ associated with the quadratic form $F(x)=$ $\sum_{\alpha=0}^{3} x_{\alpha} x^{\alpha}$.

References

[1] H.B. Lawson, M.-L. Michelson, Spin Geometry, Princeton, 1997.

Author's address:

Kostake Teleman
University of Bucharest, Faculty of Mathematics and Informatics, Department of Geometriy, 14 Academiei Str., Bucharest, Romania.

[^0]: Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 108-120.

