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1 Introduction

It is well known that the orthogonal groups SO(n) , n > 2 are connected, but are not
simply connected, since π1(SO(n)) ≈ ZZ2. Their simply connected covering groups
Spin(n) are obtained by making use of the Clifford algebras Cn.

The pseudo-orthogonal groups SO(m,m) are also connected and not simply con-
nected. The groups Spin(m,m) are also defined by using convenient Clifford algebras.
It is worthwhile to note this

Proposition. When m > 2, π1(SO(m,m)) ≈ ZZ2 × ZZ2 .

Proof. The group SO(m,m) acts transitively on the group space SO(m) through
homographic transformations: A 7→ (aA + b)(cA + d)−1; this action induces a tran-
sitive action on the space W formed by the pairs (A,B) ∈ SO(m) × SO(m) with
det(A−B) 6= 0. The isotropy group H at the point (I,−I) is formed by the matrices(

a ca
ca a

)
∈ SO(m,m), where (I −t c c)a ta = I. The space W is diffeomorphic to

the tangent space TSO(m). Thus W and H are homotopically equivalent to SO(m)
and therefore π1(W ) ≈ π1(H) ≈ π1(SO(m)) ≈ ZZ2.

The exact sequence of homotopy groups associated with the fibration H ⊂
SO(m, m) → W provides the final step of the proof.

2 The spinorial representations of SO(4, 4)

We denote by G the group defined as the set of real 8 × 8-matrices S verifying the
relations

det(S) = 1 , tS Σ S = Σ, Σ =
(

0 I4

I4 0

)
.

The group G is isomorphic to SO(4, 4).
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Let g be the Lie algebra of the group G.
We denote by E the real vector space spanned by the eight symbols

bα , bα , (α = 0, 1, 2, 3)

and endowed with the quadratic form

F (x) =
∑
α

xαxα , x =
∑
α

(xαbα + xαbα).

The relations S ∈ G , x ∈ E , s ∈ g imply

Q(Sx) = Q(x) , ts Σ + Σ s = 0.

When b, b′ are two of the symbols bα , bα, we denote by b/b′ the 8 × 8-matrix
characterized by the properties

(b/b′)b′ = b , (b/b′)b′′ = 0 , (b′′ 6= b′).

Then, whenever b, b′, b′′ ∈ b, we will have

(b/b′)(b′/b′′) = b/b′′.

The Lie algebra g is linearly spanned by the 28 matrices

Bβ
α = bα/bβ − bβ/bα

Bαβ = bα/bβ − bβ/bα , Bαβ = bα/bβ − bβ/bα , (α < β).

As long as we will work with a vector space which is endowed with specific base,
we will identify any matrix with the endomorphism associated with that matrix.

Instead of considering the group SO(4, 4), we will consider the group G.
Let C8 be the Clifford algebra spanned by the eight symbols tα , tα subject to the

relations

tαtβ + tβtα = tαtβ + tβtα = 0 , tαtβ + tβtα = δβ
α , (α, β = 1, 2, 3, 4).

We denote
ϕ = t4 + t4.

We want to make explicit the two fundamental spinorial representations of the
group G. To this end, we denote

e0 = t1t2t3t4 , e0 = −t1t2t3t4e0 , ei = tit4e0

ei = tjtke0 , (ijk = 123, 231, 312)

f0 = t4e0 = ϕe0 , f0 = t1t2t3e0 = ϕe0

fi = −tie0 = ϕei , f i = t4tjtke0 = ϕei

Fi = tit4 , Gi = tjtk , F i = tit4 , Gi = tjtk

Hb
a =

1
2
(tatb − tbta) , Ha = Ha

a , (a, b = 1, 2, 3, 4)
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Then
Ha = tata − 1

2
=

1
2
− tata

[tatb , tbtc] = Hc
a , (a 6= c)

[tatb , tbta] = Ha + Hb

ϕtiϕ = −ti , ϕtiϕ = −ti , ϕt4ϕ = t4 , ϕt4ϕ = t4

ϕFiϕ = −F 4
i , ϕF iϕ = F i

4 , ϕGiϕ = Gi , ϕGiϕ = Gi

ϕHj
i ϕ = Hj

i , ϕH4
i ϕ = −Fi , ϕHi

4ϕ = −F i , ϕH4ϕ = −H4 .

The symbols F,G, H span a Lie algebra, denoted Γ. The algebra Γ is isomorphic
to g. Multiplication by ϕ allows us to transform the action of F, G,H on the vectors
fa, fa into an action on the vectors ea, ea.

The sets e = (e0 , ei , e0, ei), respectively f = (f0 , fi, f0 , f i) span two complex
8-dimensional vector spaces denoted E , F and multiplications on the left with F,G, H
define two fundamental spinorial representations

ρ+ : Γ → End(E) , ρ− : Γ → End(F)

of the Lie algebra Γ.
One has:

Hi e0 =
1
2

e0 , H4e0 =
1
2
e0 , Hi e0 = −1

2
e0 , H4e

0 =
1
2
e0

Hiei = −1
2
ei , Hiej =

1
2
ej , Hie

i =
1
2
ei , Hie

j = −1
2
ej

Hif0 =
1
2
f0 , H4f0 = −1

2
f0 , Hif

0 = −1
2
f0 , H4f

0 =
1
2
f0

Hifi = −1
2
fi , Hifj =

1
2
fj , Hif

i =
1
2
f i , Hif

j = −1
2
f j

Fiei = −e0 , Fie
0 = ei , Gie

i = −e0 , Gie
0 = ei

F ie0 = ei , F iei = −e0 , Gie0 = ei , Giei = −e0

Fif
j = fk , Fif

k = −fj , Gif
0 = fi , Gif

i = −f0

F ifj = fk , F ifk = −f j , Gif0 = f i , Gifi = −f0,

where the triple ijk is one of the triples 123, 231, 312.
Using the same convention, one has:

ρ+(Hi) =
1
2
(e0/e0 − ei/ei + ej/ej + ek/ek − e0/e0 + ei/ei − ej/ej − ek/ek)

ρ−(Hi) =
1
2
(f0/f0 − fi/fi + fj/fj + fk/fk − f0/f0 + f i/f i − f j/f j − fk/fk)

ρ+(H4) =
1
2
(e0/e0 − e1/e1 − e2/e2 − e3/e3 − e0/e0 + e1/e1 + e2/e2 + e3/e3)
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ρ−(H4) =
1
2
(f0/f0 − f1/f1 − f2/f2 − f3/f3 − e0/e0 + f1/f1 + f2/f2 + f3/f3)

ρ+(tit4) = ei/e0 − e0/ei , ρ−(tit4) = fk/f j − fj/fk

ρ+(tjtk) = ei/e0 − e0/ei , ρ−(tjtk) = fi/f0 − f0/f i

ρ+(tit4) = ei/e0 − e0/ei , ρ−(tit4) = fk/fj − f j/fk

ρ+(tjtk) = ei/e0 − e0/ei , ρ−(tjtk) = f i/f0 − f0/fi

3 The vectorial representation

We will now consider the linear representation ρ of the Lie algebra Γ, which is induced
by the adjoint representation of the Clifford algebra C8:

(F, t) 7→ [F, t] , (G, t) 7→ [G, t] , (H, t) 7→ [H, t].

Let D be the complex vector space spanned by the eight symbols ta , ta ,
(a = 1, 2, 3, 4). We have:

[Fi , ti] = −t4 , [Fi , t4] = ti , [Gi , tj ] = −tk , [Gi , tk] = tj

[F i, ti] = −t4 , [F i, t4] = ti , [Gi, tj ] = −tk , [Gi, tk] = tj .

Thus D is an invariant subspace of C8 and we get the following endomorphisms
of D, defining the vectorial representation ρ : Γ → End(D) ::

ρ(tatb) = ta/tb − tb/ta , ρ(tatb) = ta/tb − tb/ta , ρ(tatb) = ta/tb − tb/ta .

We resume the results concerning the two spinorial representations ρ+ , ρ− and
the vectorial representation ρ of the Lie algebra Γ, by composing the following tables:

τ ∈ Γ ρ+(τ) ρ−(τ) ρ(τ)
tit4 ei/e0 − e0/ei ek/ej − ej/ek ei/e0 − e0/ei

tjtk ei/e0 − e0/ei ei/e0 − e0/ei ej/ek − ek/ej

tit4 ei/e0 − e0/ei ek/ej − ej/ek ei/e0 − e0/ei

tjtk ei/e0 − e0/ei ei/e0 − e0/ei ej/ek − ek/ej

tit
j ei/ej − ej/ei ei/ej − ej/ei ei/ej − ej/ei

t4t
i ek/ej − ej/ek ei/e0 − e0/ei e0/ei − ei/e0

tit
4 ej/ek − ek/ej e0/ei − ei/e0 ei/e0 − e0/ei

tit
i − titi E0 − Ei + Ej + Ek E0 − Ei + Ej + Ek ei/ei − ei/ei

t4t
4 − t4t4 E0 − E1 − E2 − E3 −E0 + E1 + E2 + E3 e0/e0 − e0/e0

where the following notation has been used: Eα = eα/eα − eα/eα.
Denoting, for α, β = 0, 1, 2, 3, α 6= β and a = 1, 2, 3, 4,

Eβ
α = eα/eβ − eβ/eα , Eαβ = eα/eβ − eβ/eα , Eαβ = eα/eβ − eβ/eα

ha = tata − tata ,
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the following table will define the inverses of the representations ρ+, ρ−, ρ:
E ∈ g (ρ+)−1(E) (ρ−)−1(E) ρ−1(E)
−Ei

0 tit4 −tit
4 tit4

E0
i tit4 −tit4 tit

4

Ei0 tjtk tjtk tit4
Ei0 tjtk tjtk tit4

−Ei
j tit

j tit
j titj

Ejk tit4 −tit4 tjtk

Ejk tit
4 −tit4 tjtk

4E0 h1 + h2 + h3 + h4 h1 + h2 + h3 − h4 4h4

4Ei −hi + hj + hk − h4 −hi + hj + hk + h4 4hi

It is interesting to note that (ρ+)−1ρ− , ρ−1ρ− , (ρ)−1ρ− are automorphisms of
the Lie algebra Γ verifying the following periodicity relations:

(
(λ′)−1µ′

)2

=
(
(ν′)−1µ′

)4

=
(
(ν′)−1λ′

)6

= idΓ .

On the other side, according to the general theory regarding linear representations
of orthogonal groups, the G-module E ⊗ F decomposes into the direct sum of two
irreducible submodules of dimensions 8 and 56, with highest weights λ1 respectively
λ1 +λ2 +λ3, the first of which being isomorphic to D, while the second is isomorphic
to Λ3R8; as a consequence, there exists a monomorphism of G-modules

ψ : D → E ⊗F ;

in our setting, this monomorphism is defined by the formulas

ψ(tl) = e0 ⊗ f ijk − f ij ⊗ fk − f jk ⊗ f i − fki ⊗ f j

ψ(tl) = f lijk ⊗ f l − f li ⊗ f ljk − f lj ⊗ f lki − f lk ⊗ f lij ,

where {i, j, k, l} = {1, 2, 3, 4} and

f l = tle0 , f li = tltie0 , f lij = tltitje0 .

For more details concerning the groups SO(8), Spin(8), SO(4, 4) and Spin(4, 4)
see the book Spin Geometry [1, p.56].

4 Octets

Let H be the skew-field of quaternions and denote Q = H×H.
We shall introduce in Q a new multiplication law, by performing a slight modifi-

cation of the multiplication rules governing the Cayley algebra.
We will get a link between the so modified Cayley algebra and the fundamental

spinorial representations of the group SO(4, 4).
We denote by 1, i, j, k the standard quaternions satisfying the relations

i2 = j2 = k2 = −1 , ij = −ji = k.
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The pairs (x, y) ∈ Q = H ×H will be named octets. The product of two octets,
the scalar product of two octets, the norm of an octet, the conjugate of an octet and
the inverse of a non vanishing octet are defined by the formulas:

(x, y)(u, v) = (xu + v̄y, vx + yū)

< (x, y), (u, v) >=< x, u > − < y, v > , || (x, y) ||2=| x |2 − | y |2

(x, y)∗ = (x̄,−y) , (x, y)−1 =
(x̄,−y)

| x |2 − | y |2 .

Then we will have

| (x, y)(u, v) |2=| (x, y) |2 | (u, v) |2 .

The last formula shows that multiplication either on the left or on the right with
objects (a, b) ∈ Q having | a |2 − | b |2= 1 defines linear transformations that keep
invariant the quadratic form

P (x, y) =| x |2 − | y |2 .

We introduce the following octets, forming two bases of the real vector space Q:

1′ = (1, 0) , i′ = (i, 0) , j′ = (j, 0) , k′ = (k, 0)

1′′ = (0, 1) , i′′ = (0, i) , j′′ = (0, j) , k′′ = (0, k)

e0 =
1′ − 1′′

2
, e1 =

i′ + i′′

2
, e2 =

j′ + j′′

2
, e3 =

k′ + k′′

2

e0 =
1′ + 1′′

2
, e1 =

i′ − i′′

2
, e2 =

j′ − j′′

2
, e3 =

k′ − k′′

2
.

Then we get:

1
′2 = 1′ , i

′2 = j
′2 = k

′2 = −1′ , i′j′ = −j′i′ = k′

1
′′2 = i

′′2 = j
′′2 = k

′′2 = 1′ , i′′j′′ = k′

i′j′′ = −j′′i′ = i′′j′ = −j′i′′ = −k′′

(e0)2 = e0 , (e0)2 = e0 , e0e
0 = e0e0 = 0

e0ea = eae0 = ea , e0ea = eae0 = ea , (a = 1, 2, 3)

e0ea = eae0 = e0e
a = eae0 = 0

(ea)2 = (ea)2 = 0 , eaea = −e0 , eaea = −e0

eaeb = −ebea = ec , eaeb = −ebea = ec , (abc = 123, 231, 312)

eaeb = ebea = 0

1̄′ = 1′ , 1̄′′ = 1′′ , ī′ = −i′ , ī′′ = i′′

ē0 = e0 , ē0 = e0 , ēa = −ea , ēa = −ea.

The formula
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E(x) =
3∑

α=0

(xαeα + xαeα)

defines a map E : R8 → Q. One has:

E(x)E(y) = (x0y0 −
∑

a

xaya)e0 + (x0y0 −
∑

a

xaya)e0

+
∑

a

(x0ya + xay0 + xbyc − xcyb)ea +
∑

a

(x0ya + xay0 + xbyc − xcyb)ea.

When we denote

Ē(x) = x0e0 + x0e0 −
3∑

a=1

(xaea + xaea) , Q(x, y) =
3∑

α=0

xαyα,

we get
E(x)Ē(y) = Q(x, y) e0 + Q(y, x) e0

+
3∑

a=1

(
(xay0 − x0ya − xbyc + xcyb)ea + (xay0 − x0ya − xbyc + xcyb)ea

)

E(x)Ē(y) + E(y)Ē(x) =
(
Q(x, y) + Q(y, x)

)
1′ , E(x)Ē(x) = Q(x, x) 1′.

When x0 + x0 = y0 + y0 = 0, we also have

E(x)E(y) + E(y)E(x) = −
(
Q(x, y) + Q(y, x)

)
1′.

Multiplication on the left w 7→ E(x)w defines a linear map Q → Q. Using the
basis (e0 , ..., e3 , e0, ..., e3), this linear map is represented by the matrix

El(x) =
(

x0I4 Xl

X !
l x0I4

)
,

where

Xl =




0 x1 x2 x3

−x1 0 x3 −x2

−x2 −x3 0 x1

−x3 x2 −x1 0


 , X !

l =




0 x1 x2 x3

−x1 0 x3 −x2

−x2 −x3 0 x1

−x3 x2 −x1 0


 .

We shall have, for each vector w ∈ R8 ,

E
(
El(x)w

)
= E(x)E(w).

Similarly, the multiplication on the right w 7→ wE(x) is described by the matrix

Er(x) =
(

X ′
r X ′′

r

X
′′!
r X

′!
r

)
,

where
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X ′
r =




x0 x1 x2 x3

−x1 x0 0 0
−x2 0 x0 0
−x3 0 0 x0


 , X ′′

r =




0 0 0 0
0 0 −x3 x2

0 x3 0 −x1

0 −x2 x1 0




X
′!
r =




x0 x1 x2 x3

−x1 x0 0 0
−x2 0 x0 0
−x3 0 0 x0


 , X

′′!
r =




0 0 0 0
0 0 −x3 x2

0 x3 0 −x1

0 −x2 x1 0


 .

One has

XlX
!
l = −(

3∑

i=1

xix
i)I4 .

Let us denote

F (x) =
3∑

α=0

xαxα = Q(x, x).

Then G is the linear group formed by the real 8 × 8-matrices A which verify the
relations det(A) = 1 , F (Aw) = F (w).

When F (x) = 1, any of the relations E(w′) = El(x)E(w), E(w′) = E(w)Er(x)
implies F (w′) = F (w). This means that

When F (x) = 1, the matrices El(x), Er(x) belong to the group G.
More generaly, denoting

E′
l(x) = −

( −x0I4 Xl

X !
l −x0I4

)
,

we get
El(x)E′

l(x) =
( ∑

α

xαxα
)
I8

In particular, when x0 + x0 = 0, one has E′
l(x) = −El(x) and

(
El(x)

)2

= −
( 3∑

α=0

xαxα
)
I8 .

Similar relations hold for the matrix Er(x).
Let us now consider the matrices rα , rα, sα , sα verifying the relations

El(x) =
3∑

α=0

(−xαrα + xαrα) , Er(y) =
3∑

α=0

(yαsα − yαsα)

and denote
r = r0 − r0 , s = s0 − s0

ka =
1
2
(rara − rara) , ha =

1
2
(sasa − sasa)

We shall have, for w ∈ R8 and α = 0, 1, 2, 3
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E(rαw) = eαE(w) , E(rαw) = eαE(w).

Using the relation E(x)Ē(y) + E(y)Ē(x) =
(
Q(x, y) + Q(y, x)

)
1′, we get, for

a, b = 1, 2, 3,

r2 = s2 = I8 , rarb + rbra = δb
aI8 , sasb + sbsa = δb

a I8

rra + rar = rra + rar = rarb + rbra = rarb + rbra = 0

ssa + sas = ssa + sas = sasb + sbsa = sasb + sbsa = 0.

To get more precise formulas, let us denote by e/e′ the matrix having a single non
vanishing entry, equal to 1 and situated on the line e and the column e′; then we have

(e1/e)(e′/e2) = δee′ e1/e2

and, under the restrictions a 6= b, abc = 123, 231, 312,

r0 =
3∑

α=0

eα/eα , r0 =
3∑

α=0

eα/eα , r =
3∑

α=0

(
eα/eα − eα/eα

)

ra = −(eb/ec − ec/eb + e0/ea − ea/e0)

ra = e0/ea − ea/e0 + eb/ec − ec/eb

r0ra = rar0 = −(eb/ec − ec/eb) = −tat4

r0ra = rar0 = −(e0/ea − ea/e0) = tbtc

r0r
a = rar0 = e0/ea − ea/e0 = −tbtc

r0ra = rar0 = eb/ec − ec/eb = tat4

(r0)2 = r0 , (r0)2 = r0 , r0r
0 = r0r0 = (ra)2 = (ra)2 = 0

rara = e0/e0 + ea/ea + eb/eb + ec/ec

rara = e0/e0 + ea/ea + eb/eb + ec/ec

ka = −1
2
(e0/e0 + ea/ea − eb/eb − ec/ec − e0/e0 − ea/ea + eb/eb + ec/ec).

When abc = 123, 231, 312, we also get

rarb = −rbra = −(eb/ea − ea/eb)

rarb = −rbra = ec/e0 − e0/ec = tct4

rarb = −rbra = ec/e0 − e0/ec = tct4 .

When we denote
R = −r1r2r3 , R′ = r1r2r3

we get
R = e0/e0 , R′ = e0/e0 , R′R = e0/e0 , RR′ = e0/e0

RR′R = R , R′RR′ = R′
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ra R = −ea/e0 , R ra = e0/ea , ra R rc′ = −ea/ec′

rarb R = ec/e0 , R rarb = −e0/ec , rarb R ra′rb′ = −ec/ec′

ra R ra′rb′ = ea/ec′ , rarb R ra′ = ec/ea′ , ra RR′ = −ea/e0

rarb RR′ = ec/e0 , R′R ra′ = e0/ea′ , R′R ra′rb′ = −e0/ec′ .

Let us redenote the basis of R8 as follows

e−0 = e0 , e−i = ei , e+
0 = e0 , e+

i = ei , (i = 1, 2, 3)(4.1)

and denote by e/e′ the matrix verifying the formula

(e/e′)e′′ = δe′e′′ e.

The matrix E , with matricial entries

(e−0 , e−1 , e−2 , e−3 , e+
0 , e+

1 , e+
2 , e+

3 )/(e−0 , e−1 , e−2 , e−3 , e+
0 ,+1 , e+

2 , e+
3 )

writes:
E =




R′R −R′Rr2r3 −R′Rr3r1 −R′Rr1r2 R′ R′Rr1 R′Rr2 R′Rr3

−r1R r1Rr2r3 r1Rr3r1 r1Rr1r2 −r1RR′ −r1Rr1 −r1Rr2 −r1Rr3

−r2R r2Rr2r3 r2Rr3r1 r2Rr1r2 −r2RR′ −r2Rr1 −r2Rr2 −r2Rr3

−r3R r3Rr2r3 r3Rr3r1 r3Rr1r2 −r3RR′ −r3Rr1 −r3Rr2 −r3Rr3

R −Rr2r3 −Rr3r1 −Rr1r2 RR′ Rr1 Rr2 Rr3

r2r3R −r2r3Rr2r3 −r2r3Rr3r1 −r2r3Rr1r2 r2r3RR′ r2r3Rr1 r2r3Rr2 r2r3Rr3

r3r1R −r3r1Rr2r3 −r3r1Rr3r1 −r3r1Rr1r2 r3r1RR′ r3r1Rr1 r3r1Tr2 r3r1Rr3

r1r2T −r1r2Rr2r3 −r1r2Rr3r1 −r1r2Rr1r2 r1r2RR′ r1r2Rr1 r1r2Rr2 r1r2Rr3




.

Using the relation
e/e′ = (e/e0)(e0/e′)

we can write

E =




r1r2r3

−r1

−r2

−r3

1
r2r3

r3r1

r1r2




(R)
(

1 −r2r3 −r3r1 −r1r2 r1r2r3 r1 r2 r3
)
.

Denoting by R the column matrix on the left and by R! the matrix obtained by
transposing R and by applying the reversing operator to each entry, we can write

E = R (R) R! J , J =
(

0 I4

−I4 0

)
.

As a consequence, we get the following relation:

E ! = −J E J.
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As far as concerns the matrices s, we get the following formulas:

s0 = e0/e0 +
3∑

a=1

ea/ea , s0 = e0/e0 +
3∑

a=1

ea/ea

s = e0/e0 − e0/e0 +
3∑

a=1

(
ea/ea − ea/ea

)

sa = e0/ea − ea/e0 − eb/ec + ec/eb

sa = ea/e0 − e0/ea + eb/ec − ec/eb

s0sa = sas0 = e0/ea − ea/e0 = −rbrc

s0sa = sas0 = ec/eb − eb/ec = r0ra

s0s
a = sas0 = −ec/eb + eb/ec = −r0ra

s0sa = sas0 = −e0/ea + ea/e0 = rbrc

(s0)2 = s0 , (s0)2 = s0 , s0s
0 = s0s0 = (sa)2 = (sa)2 = 0 ,

sasb = −sbsa = e0/ec − ec/e0 = r0r
c

sasb = −sbsa = e0/ec − ec/e0 = r0rc

sasa = (e0/e0 + ea/ea + eb/eb + ec/ec)

sasa = (e0/e0 + ea/ea + eb/eb + ec/ec)

sasb = −sbsa = eb/ea − ea/eb , (a 6= b)

ha =
1
2
(e0/e0 − ea/ea + eb/eb + ec/ec − e0/e0 + ea/ea − eb/eb − ec/ec)

S′ = −s1s2s3 = −e0/e0 = −R , S = s1s2s3 = −e0/e0 = −R′

SS′ = e0/e0 , S′S = e0/e0 , SS′S = S , S′SS′ = S′

saS′ = −ea/e0 , sasbS
′ = ec/e0 , S′sa = e0/ea , S′sasb = −e0/ec

SS′sa = −e0/ea , SS′sasb = e0/ec , saS′S = ea/e0 , sasbS
′S = −ec/e0 ..

Resuming, we can give the matrix E the following expressions:

E =




s1s2s3

s2s3

s3s1

s1s2

−1
−s1

−s2

−s3




(−R)
(

1 −s1 −s2 −s3 −s1s2s3 s2s3 s3s1 s1s2

)
=



On the spinorial representations of SO(4, 4) 119

=




r1r2r3

−r1

−r2

−r3

1
r2r3

r3r1

r1r2




(R)
(

1 −r2r3 −r3r1 −r1r2 r1r2r3 r1 r2 r3
)

=

=




1
−s1

−s2

−s3

−s1s2s3

−s2s3

−s3s1

−s1s2




(R′)
( −s1s2s3 s2s3 s3s1 s1s2 1 s1 s2 s3

)
.

We add the relations

ka (e/e′) =
1
2

e/e′ , (e′/e) ka =
1
2

e′/e , valid for e = e+
0 , e+

a , e−b , e−c

ka (e/e′) = −1
2

e/e′ , (e′/e)ka = −1
2

e′/e , valid for e = e+
b , e+

c , e−0 , e−a

ha (e/e′) =
1
2

e/e′ , (e′/e) ha =
1
2

e′/e , valid for e = e−a , e+
0 , e+

b , e+
c

ha (e/e′) = −1
2

e/e′ , (e′/e) ha = −1
2

e′/e , valid for e = e−0 , e−b , e−c , e+
a .

We also have:
e−0 = e0 = (e0/e0)e0 = R′Re0 = SS′e0

e−i = ei = (ei/e0)e0 = −riRe0 = sjskS′e0

e+
0 = e0 = (e0/e0)e0 = Re0 = −S′e0

e+
i = ei = (ei/e0)e0 = rjrkRe0 = −siS

′e0

(ijk = 123, 231, 312).

5 Summary: the spinorial G-modules

The group G is formed by the real 8× 8-matrices A verifying the relations det(A) =
1 , F (Ax) = F (x), where F is quadratic form

F (x) =
3∑

α=0

xα xα,

is spanned by the following 28 matrices:
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e0/e0 − e0/e0 = r0 − r0

ea/ea − ea/ea = kb + kc + r0 − r0 = hb + hc − r0 + r0

e0/ea − ea/e0 = −rbrc = s0sa

e0/ea − ea/e0 = −r0r
a = sbsc

ea/eb − eb/ea = −rbr
a = sbs

a

ea/e0 − e0/ea = rbrc = −s0sa

ea/eb − eb/ea = −r0rc = −s0sc

ea/eb − eb/ea = r0rc = −s0s
c.

We produced four spinorial representations of the Lie algebra Γ, namely ρ+ , ρ− , ρ′, ρ′′.
It is not difficult to prove that ρ′ is equivalent to ρ+, while ρ′′ is equivalent to ρ−.

The six matrices ra , ra generate algebraically a Clifford algebra C6 associated
with the quadratic form

F0(x) =
3∑

a=1

xaxa.

The matrices r, ra , ra generate the Clifford algebra C7 associated with the
quadratic form F0(x) + z2.

For each e ∈ {e0 , e1 , e2 , e3 , e0, e1, e2, e3}, the vector space Ve, which is linearly
spanned by the eight matrices eα/e , eα/e with α = 0, 1, 2, 3, provides the fundamen-
tal spinorial representation of the pseudo-orthogonal group G′ ≈ SO(3, 4) associated
with the quadratic form F0(x) + (x0)2 and also the two fundamental spinorial repre-
sentations of the pseudo-orthogonal group G′′ ≈ SO(3, 3) associated with F0(x).

The 15 matrices rarb , (a 6= b) , rarb − rbra , rarb , (a 6= b) span the Lie algebra
of the group G′′.

The 21 matrices rra , rra, rarb , rarb−rbra , rarb span the Lie algebra of the group
G′.

The 28 matrices t0ta , t0t
a, t0ta, t0ta, tatb , tatb, tatb span the Lie algebra g of the

pseudo-orthogonal group G ≈ SO(4, 4) associated with the quadratic form F (x) =∑3
α=0 xαxα.
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