# Determination of metrics by boundary energy 

Constantin Udrişte, Ariana Pitea and Janina Mihăilă

Dedicated to the memory of Radu Rosca (1908-2005)


#### Abstract

This paper reformulates a problem of Sharafutdinov [4] and extend the new variant from the single-time context to the multi-time context.

Section 1 is dedicated to the single-time case. It starts with well-known facts of describing geodesics as extremals. Then it is formulated and studied the problem of determination of a metric by the boundary energy. The linearization of this problem leads to the ray transform of a tensor field and to moment problem. Section 2 extend the single-time case to the multi-time case. It begins with well-known facts about harmonic maps and continues with determining a pair of metrics from boundary energy. Using the linearization, we extend the idea to multi-ray transform of a distinguished tensor field (moment problem).


Mathematics Subject Classification: 53C43, 53C21.
Key words: boundary energy, ray transform, extremals, harmonic maps.

## 1 Single-time Case

### 1.1 Geodesics

Let $(M, g)$ be a Riemannian manifold, $\operatorname{dim} M=n$. Consider $\left(x^{1}, \ldots, x^{n}\right)$ the local coordinates and $\Gamma_{j k}^{i}$ the Christoffel symbols of the second type.

Definition 1.1 Let $x:[0,1] \rightarrow M, x(t)=\left(x^{1}(t), \ldots, x^{n}(t)\right)$ be a curve on $M$ joining the points $x(0)=p$ and $x(1)=q$ of $M$. The integral

$$
E_{g}(x)=\frac{1}{2} \int_{0}^{1}\|\dot{x}(t)\|^{2} d t=\frac{1}{2} \int_{0}^{1} g_{i j}(x(t)) \dot{x}^{i}(t) \dot{x}^{j}(t) d t
$$

is called the energy of the curve $x$.

[^0]Proposition 1.1 A minimum point of the energy functional $E_{g}$, with the boundary conditions $x(0)=p$ and $x(1)=q$, necessarily verifies the boundary value problem:

$$
\begin{align*}
& \frac{\partial L}{\partial x_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right)=0, \quad i=\overline{1, n}  \tag{1.1}\\
& x(0)=p, \quad x(1)=q
\end{align*}
$$

where $L\left(x^{i}, \dot{x}^{i}\right)=\frac{1}{2} g_{i j} \dot{x}^{i} \dot{x}^{j}$ is the Lagrangian (kinetic energy) determining the functional.

Explicitly,

$$
\begin{aligned}
& \ddot{x}^{i}+\Gamma_{j k}^{i} \dot{x}^{j} \dot{x}^{k}=0, \quad i=\overline{1, n} \\
& x(0)=p, \quad x(1)=q
\end{aligned}
$$

Proof. Let us refer to the second part of the Proposition. We have

$$
\begin{aligned}
& \frac{\partial L}{\partial x^{i}}=\frac{1}{2} \frac{\partial}{\partial x^{i}}\left(g_{j k} \dot{x}^{j} \dot{x}^{k}\right)=\frac{1}{2} \frac{\partial g_{j k}}{\partial x^{i}} \dot{x}^{j} \dot{x}^{k} \\
& \frac{\partial L}{\partial \dot{x}^{i}}=\frac{1}{2} \frac{\partial}{\partial \dot{x}^{i}}\left(g_{j k} \dot{x}^{j} \dot{x}^{k}\right)=g_{i j} \dot{x}^{j} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}^{i}}\right)=\frac{d}{d t}\left(g_{i j} \dot{x}^{j}\right)=\frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{k} \dot{x}^{j}+g_{i j} \ddot{x}^{j}
\end{aligned}
$$

Hence, the Euler-Lagrange equations become

$$
\begin{gather*}
\frac{1}{2} \frac{\partial g_{j k}}{\partial x^{i}} \dot{x}^{j} \dot{x}^{k}-\frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{k} \dot{x}^{j}-g_{i j} \ddot{x}^{j}=0 \Leftrightarrow  \tag{1.2}\\
g_{i j} \ddot{x}^{j}+\frac{1}{2}\left(2 \frac{\partial g_{i j}}{\partial x^{k}} \dot{x}^{k} \dot{x}^{j}-\frac{\partial g_{j k}}{\partial x^{i}} \dot{x}^{j} \dot{x}^{k}\right)=0 \Leftrightarrow \\
\ddot{x}^{p}+\frac{1}{2} g^{i p}\left(\frac{\partial g_{i j}}{\partial x^{k}}+\frac{\partial g_{i k}}{\partial x^{j}}-\frac{\partial g_{j k}}{\partial x^{i}}\right) \dot{x}^{j} \dot{x}^{k}=0 \Leftrightarrow \\
\ddot{x}^{p}+\Gamma_{j k}^{p} \dot{x}^{j} \dot{x}^{k}=0, \quad p=\overline{1, n} .
\end{gather*}
$$

Remark 1.1 a) We suppose that the problem (1.1) stated in the previous proposition has a unique solution.
b) The equations

$$
\ddot{x}^{i}+\Gamma_{j k}^{i} \dot{x}^{j} \dot{x}^{k}=0, \quad i=\overline{1, n}
$$

of the extremals of the energy functional $E_{g}$ coincide with the equations of the geodesics of $(M, g)$.

### 1.2 Determination of a Metric by Boundary Energy

Definition 1.2 Let $(M, g)$ be a compact Riemannian manifold and $\partial M$ be the boundary of $M$. The Riemannian metric $g$ is called simple if any two points $p, q \in \partial M$ can be joined by a unique geodesic

$$
\begin{aligned}
& x_{p q}:[0,1] \rightarrow \bar{M}, \quad \bar{M}=M \cup \partial M \\
& x(0)=p, \quad x(1)=q, \quad x(0,1) \subset M
\end{aligned}
$$

Definition 1.3 Let $(M, g)$ be a simple Riemannian manifold. The function

$$
E_{g}: \partial M \times \partial M \rightarrow \mathbf{R}, \quad E_{g}(p, q)=E\left(x_{p q}\right)
$$

where $x_{p q}$ is the geodesic joining the points $p, q,\left(x_{p q} \backslash\{p, q\}\right) \subset M \backslash \partial M$, is called the boundary energy produced by the metric $g$.

The problem of existence of a simple metric $g$ with the property that a given function $E: \partial M \times \partial M \rightarrow \mathbf{R}$ represents the boundary energy attached to $g$ cannot have a unique solution. To justify this statement, let $\varphi: M \rightarrow M$ be a diffeomorphism of $M$ such that $\left.\varphi\right|_{\partial M}=$ id and $g^{1}=\varphi^{*} g^{0}$. The diffeomorphism $\varphi$ transforms the simple metric $g^{0}$ into the simple metric $g^{1}$. The relation

$$
g^{1}(x)(\xi, \eta)=g^{0}\left(\left(d_{x} \varphi\right) \xi,\left(d_{x} \varphi\right) \eta\right)_{\varphi(x)}
$$

where $d_{x} \varphi: T_{x} M \rightarrow T_{\varphi(x)} M$ is the differential of $\varphi$, implies that $g^{0}$ and $g^{1}$ have different families of geodesics, but the energy is the same.

Is the nonuniqueness of the proposed problem settled by the above-mentioned cons-truction?

Problem 1. Let $g^{0}$ and $g^{1}$ be simple metrics on the manifold $M$, with the boundary $\partial M$, such that $E_{g^{0}}=E_{g^{1}}$. Is there a diffeomorphism $\varphi: M \rightarrow M$, such that $\left.\varphi\right|_{\partial M}=$ id and $g^{1}=\varphi^{*} g^{0}$ ? (the problem of determination of a metric by its boundary energy).

### 1.3 Linearization of The Problem of Determination of a Metric by its Boundary Energy

Let us linearize the above-mentioned problem.
Let $\left(g^{\tau}\right)$ be a family of simple metrics on $M$, depending smoothly on the parameter $\tau \in(-\varepsilon, \varepsilon), \varepsilon>0$. Let $x^{\tau}:[0,1] \rightarrow M$ be a geodesic joining the points $p=x^{\tau}(0)$ and $q=x^{\tau}(1)$. Consider $x^{\tau}(t)=\left(x^{1}(t, \tau), \ldots, x^{n}(t, \tau)\right)$ as the representation of $x^{\tau}$ in a local coordinate system. Suppose that $g^{\tau}=\left(g_{i j}^{\tau}\right)$ and $x^{i}(t, \tau), i, j=\overline{1, n}$, are $C^{\infty}$ functions.

We start with the boundary energy

$$
E_{g \tau}(p, q)=\frac{1}{2} \int_{0}^{1} g_{i j}^{\tau}\left(x^{\tau}(t)\right) \dot{x}^{i}(t, \tau) \dot{x}^{j}(t, \tau) d t
$$

Differentiating with respect to $\tau$ and then considering $\tau=0$, we have

$$
\begin{aligned}
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{g \tau}(p, q)= & \int_{0}^{1} f_{i j}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0) d t \\
& +\frac{1}{2} \int_{0}^{1}\left[\frac{\partial g_{i j}^{0}}{\partial x^{k}}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0) \frac{\partial x^{k}}{\partial \tau}(t, 0)\right. \\
& \left.+2 g_{i j}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \frac{\partial x^{j}}{\partial \tau}(t, 0)\right] d t
\end{aligned}
$$

where

$$
\begin{equation*}
f_{i j}=\left.\frac{1}{2} \frac{\partial}{\partial \tau}\right|_{\tau=0} g_{i j}^{\tau} \tag{1.3}
\end{equation*}
$$

Using an integration by parts, having in mind that $\frac{\partial x^{i}}{\partial \tau}(0,0)=\frac{\partial x^{i}}{\partial \tau}(1,0)=0$ and $x^{0}$ is extremal of energy functional, we obtain

$$
\begin{aligned}
& \int_{0}^{1} g_{i j}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \frac{\partial \dot{x}^{j}}{\partial \tau}(t, 0) d t=\int_{0}^{1} g_{i j}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \frac{\partial}{\partial t}\left(\frac{\partial x^{j}}{\partial \tau}\right)(t, 0) d t \\
& \quad=\left.g_{i j}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \frac{\partial x^{j}}{\partial \tau}(t, 0)\right|_{0} ^{1}-\int_{0}^{1} \frac{\partial}{\partial t}\left[g_{i j}^{0}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0)\right] \frac{\partial x^{j}}{\partial \tau}(t, 0) d t \\
& \quad=-\int_{0}^{1}\left[\frac{\partial g_{i j}^{0}}{\partial x^{k}}\left(x^{0}(t)\right) \dot{x}^{k}(t, 0) \dot{x}^{i}(t, 0)+g_{i j}^{0}\left(x^{0}(t)\right) \ddot{x}^{i}(t, 0)\right] \frac{\partial x^{j}}{\partial \tau}(t, 0) d t
\end{aligned}
$$

The equations (1.2) can be written in the form

$$
\begin{equation*}
\frac{\partial g_{i j}^{0}}{\partial x^{k}} \dot{x}^{i} \dot{x}^{j}=2\left(\frac{\partial g_{j k}^{0}}{\partial x^{i}} \dot{x}^{i} \dot{x}^{j}+g_{j k} \ddot{x}^{k}\right) \tag{1.5}
\end{equation*}
$$

By replacing the relations (1.4) and (1.5) in the equality (1.3), we find

$$
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{g \tau}(p, q)=\int_{0}^{1} f_{i j}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0) d t
$$

If we denote

$$
I_{f}\left(x_{p q}\right)=\int_{0}^{1} f_{i j}\left(x^{0}(t)\right) \dot{x}^{i}(t, 0) \dot{x}^{j}(t, 0) d t
$$

the previous relation becomes

$$
\begin{equation*}
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{g \tau}(p, q)=I_{f}\left(x_{p q}\right) \tag{1.6}
\end{equation*}
$$

$x_{p q}$ being a geodesic of the metric $g^{0}$.
In the particular case when the energy $E_{g \tau}$ does not depend on $\tau$, the left side of the equality (1.6) is null.

From $\left.\varphi\right|_{\partial M}=$ id we obtain $\left.v\right|_{\partial M}=0$, so we have the following linearization of the problem 1: to what extent the family of integrals

$$
I_{f}\left(x_{p q}\right)=\int_{x_{p q}} f_{i j}(x(t)) \dot{x}^{i}(t) \dot{x}^{j}(t) d t
$$

counted after $p, q \in \partial M$, determine the tensor $f=\left(f_{i j}\right)$ over a Riemannian manifold $\left(M, g^{0}\right)$ ?

The existence of the solutions of the stated problem for the family $\left(g^{\tau}\right)$ implies the existence of an one-parameter group of diffeomorphisms $\varphi: M \rightarrow M$, such that $\left.\varphi^{\tau}\right|_{\partial M}=\mathrm{id}$ and $g^{\tau}=\left(\varphi^{\tau}\right)^{*} g^{0}$, that is

$$
\begin{equation*}
g_{i j}^{\tau}=\left(g_{k \ell}^{0} \circ \varphi^{\tau}\right) \frac{\partial x^{\prime k}}{\partial x^{i}}(x, \tau) \frac{\partial x^{\prime \ell}}{\partial x^{j}}(x, \tau) \tag{1.7}
\end{equation*}
$$

where $\varphi^{\tau}(x)=\left(\varphi^{1}(x, \tau), \ldots, \varphi^{n}(x, \tau)\right)$ and $x^{\prime}=\varphi^{\tau}(x)$.
If we differentiate with respect to $\tau$ and we make $\tau=0$, we obtain
Theorem 1.1 The relation (1.7) implies

$$
\begin{equation*}
f_{i j}=\frac{1}{2}\left(v_{i ; j}+v_{j ; i}\right), \tag{1.8}
\end{equation*}
$$

$v=\left(v^{i}\right)$ being the covariant vector field that generates the one-parameter group $\left(\varphi^{\tau}\right)$ and $v_{i, j}$ is the covariant derivative of the covariant vector field $\left(v_{i}=g_{i j}^{0} v^{j}\right)$ in the metric $g^{0}$.

Proof. The covariant derivative of $v$ in the metric $g^{\circ}$ is

$$
v_{i ; j}=\frac{\partial v_{i}}{\partial x^{j}}-\Gamma_{i j}^{k} v_{k}
$$

where

$$
\begin{aligned}
& v_{i}=g_{i j}^{0} v^{j} \\
& \Gamma_{i j}^{k}=\frac{1}{2} g^{k p}\left(\frac{\partial g_{j p}^{0}}{\partial x^{i}}+\frac{\partial g_{i p}^{0}}{\partial x^{j}}-\frac{\partial g_{i j}^{0}}{\partial x^{p}}\right), \\
& v^{k}(x)=\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} \varphi^{k}(x, \tau), \quad i, j, k=\overline{1, n} .
\end{aligned}
$$

Differentiating the relation (1.7) with respect to $\tau$ and then considering $\tau=0$, we find

$$
\begin{aligned}
2 f_{i j}= & \left.\frac{\partial}{\partial \tau}\right|_{\tau=0} g_{i j}^{\tau}=\frac{\partial g_{k \ell}^{0}}{\partial \varphi^{m}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} \varphi^{m}\right) \frac{\partial x^{k}}{\partial x^{i}}(x, 0) \frac{\partial x^{\prime \ell}}{\partial x^{j}}(x, 0) \\
& +\left(g_{k \ell}^{0} \circ \varphi^{0}\right) \frac{\partial}{\partial \tau}\left(\frac{\partial x^{\prime k}}{\partial x^{i}}\right)(x, 0) \frac{\partial x^{\prime \ell}}{\partial x^{j}}(x, 0) \\
& +\left(g_{k \ell}^{0} \circ \varphi^{0}\right) \frac{\partial x^{\prime k}}{\partial x^{i}}(x, 0) \frac{\partial}{\partial \tau}\left(\frac{\partial x^{\prime \ell}}{\partial x^{j}}\right)(x, 0)=\frac{\partial g_{k \ell}^{0}}{\partial x^{m}} v^{m} \frac{\partial x^{\prime k}}{\partial x^{i}} \cdot \frac{\partial x^{\prime \ell}}{\partial x^{j}} \\
& +g_{k \ell}^{0} \frac{\partial}{\partial x^{i}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} x^{\prime k}\right) \frac{\partial x^{\prime \ell}}{\partial x^{j}} \\
& +g_{k \ell}^{0} \frac{\partial x^{\prime k}}{\partial x^{i}} \cdot \frac{\partial}{\partial x^{j}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} x^{\prime \ell}\right)=\frac{\partial g_{k \ell}^{0}}{\partial x^{m}} v^{m} \delta_{i}^{k} \delta_{j}^{\ell}+g_{k \ell}^{0} \frac{\partial v^{k}}{\partial x^{i}} \delta_{j}^{\ell} \\
& +g_{k \ell}^{0} \delta_{i}^{k} \frac{\partial v^{\ell}}{\partial x^{j}}=\frac{\partial g_{i j}^{0}}{\partial x^{p}} v^{p}+g_{j p}^{0} \frac{\partial v^{p}}{\partial x^{i}}+g_{i p}^{0} \frac{\partial v^{p}}{\partial x^{j}} .
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
v_{i ; j}+v_{j ; i}= & \frac{\partial v_{i}}{\partial x^{j}}-\Gamma_{i j}^{m} v_{m}+\frac{\partial v_{j}}{\partial x^{i}}-\Gamma_{j i}^{m} v_{m}=\frac{\partial g_{i m}^{0}}{\partial x^{j}} v^{m}+g_{i m}^{0} \frac{\partial v^{m}}{\partial x^{j}}+\frac{\partial g_{j m}^{0}}{\partial x^{i}} v^{m} \\
& +g_{j m}^{0} \frac{\partial v^{m}}{\partial x^{i}}-g_{0}^{m p}\left(\frac{\partial g_{j p}^{0}}{\partial x^{i}}+\frac{\partial g_{i p}^{0}}{\partial x^{j}}-\frac{\partial g_{i j}^{0}}{\partial x^{p}}\right) g_{m s}^{0} v^{s}=\left(\frac{\partial g_{i m}^{0}}{\partial x^{j}}+\frac{\partial g_{j m}^{0}}{\partial x^{i}}\right) v^{m}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(g_{i m}^{0} \frac{\partial v^{m}}{\partial x^{j}}+g_{j m}^{0} \frac{\partial v^{m}}{\partial x^{i}}\right)-\left(\frac{\partial g_{j p}^{0}}{\partial x^{i}}+\frac{\partial g_{i p}^{0}}{\partial x^{j}}-\frac{\partial g_{i j}^{0}}{\partial x^{p}}\right) v^{p} \\
= & \frac{\partial g_{i j}^{0}}{\partial x^{p}} v^{p}+g_{j p}^{0} \frac{\partial v^{p}}{\partial x^{i}}+g_{i p}^{0} \frac{\partial v^{p}}{\partial x^{j}}
\end{aligned}
$$

Hence, we obtained the equality

$$
f_{i j}=\frac{1}{2}\left(v_{i ; j}+v_{j ; i}\right)
$$

### 1.4 Ray Transform of a Tensor field

Let us generalize this problem from covariant tensors of second order to covariant tensors of superior order.

Let $(M, g)$ be a simple Riemannian manifold and $\tau_{M}=(T M, p, M), \tau_{M}^{\prime}=$ $\left(T^{\prime} M, p^{\prime}, M\right)$ the tangent and the cotangent bundle of $M$, respectively. Let $S^{m} \tau_{M}^{\prime}$ be the set of the symmetric tensor fields on $\tau_{M}^{\prime}$ and $C^{\infty}\left(S^{m} \tau_{M}^{\prime}\right)$ the space of the sections of this bundle. Consider $\nabla$ the covariant derivative and $\sigma$ the symmetrization.

Problem 2. Let $(M, g)$ be a simple Riemannian manifold. Do integrals

$$
\begin{equation*}
I_{f}\left(x_{p q}\right)=\int_{x_{p q}} f_{i_{1} \ldots i_{m}}(x(t)) \dot{x}^{i_{1}}(t) \cdots \dot{x}^{i_{m}}(t) d t \tag{1.9}
\end{equation*}
$$

$p, q \in \partial M$, determine a symmetric tensor field $f \in C^{\infty}\left(S^{m} \tau_{M}^{\prime}\right)\left(x_{p q}\right.$ is the geodesic joining the endpoints $p, q$ and $d t$ is the geodesic arc length)? Particulary, the equality $I_{f}\left(x_{p q}\right)=0$ allows us to state the existence of a field $v \in C^{\infty}\left(S^{m-1} \tau_{M}^{\prime}\right)$, such that $\left.v\right|_{\partial M}=0$ and $\sigma(\nabla v)=f ?$

The function $I_{f}$, determined by the equality (1.9) on the set of the geodesics joining the points situated on the boundary of $M$, is called single-ray transform of the tensor field $f$.

Remark 1.2 According[4],there are some known results on problem 1.
R. Michel obtained a posi-tive answer to problem 1 in the two-dimensional case when $g^{0}$ has constant Gauss curvature.
R. G. Mukhometov, J. W. Bernstein and M. L. Gerver found a solution to the linear problem 2 for simple metrics, in the case $m=0$. When $m=1$, Yu. E. Anikonov and V. G. Romanov solved problem 2. R. G. Mukhometov generalised these results to metrics whose geodesics form a typical caustics.

## 2 Multi-time Case

### 2.1 Harmonic maps

Let $(M, g)$ be a compact Riemannian manifold of dimension $n>1$, with the boundary $\partial M$. Let $\left(x^{1}, \ldots, x^{n}\right)$ be the local coordinates, $\Gamma_{i j, k}$, respectively $\Gamma_{j k}^{i}$ the Christoffel symbols of the first type, respectively the second type.

Definition 2.1 The pair of metrics $(h, g)$ is called simple if for any $\sigma \in \partial M$ there is a unique minimal submanifold $N$ represented by $x: T \cup \partial T \rightarrow M \cup \partial M,\left.x\right|_{\partial T}=\sigma, T$ parallelipiped, $x(T \backslash \partial T) \subset M$, such that $x$ depends smoothly on $\sigma$.

Let $(N, h)$ be a minimal Riemannian submanifold of $M, \operatorname{dim} N=p, 2 \leq p \leq n$, fixed by a closed border $\sigma$ of dimension $p-1$, included in $\partial M$. Suppose that $\partial M$ is foliated by submanifolds of type $\sigma$. Let $\left(t^{1}, \ldots, t^{p}\right)$ be the local coordinates in N .
Definition 2.2 Let $x: T \rightarrow M, x(t)=\left(x^{1}(t), \ldots, x^{n}(t)\right), t=\left(t^{1}, \ldots, t^{p}\right),\left.x\right|_{\partial T}=\sigma$, $x \in C^{\infty}(T, M)$.

The integral

$$
E_{(h, g)}(x)=\frac{1}{2} \int_{T} h^{\alpha \beta}(t) g_{i j}(x(t)) x_{\alpha}^{i}(x(t)) x_{\beta}^{j}(x(t)) d v_{h}
$$

where $\left(h^{\alpha \beta}\right)=\left(h_{\alpha \beta}\right)^{-1}, h_{\alpha \beta}=h\left(\frac{\partial}{\partial t^{\alpha}}, \frac{\partial}{\partial t^{\beta}}\right), g_{i j}=g\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right)$ and $x_{\alpha}^{i}=\frac{\partial x^{i}}{\partial t^{\alpha}}$, is called the energy of the application $x$.

Proposition 2.1 A minimum of the energy functional $E_{(h, g)}$, with the boundary condition $\left.x\right|_{\partial T}=\sigma$, necessarily verifies the boundary value problem

$$
\begin{aligned}
\frac{\partial L}{\partial x^{i}}-\frac{\partial}{\partial t^{\alpha}}\left(\frac{\partial L}{\partial x_{\alpha}^{i}}\right) & =0, \quad i=\overline{1, n} \\
\left.x\right|_{\partial T} & =\sigma
\end{aligned}
$$

where $L\left(x^{i}, x_{\alpha}^{i}\right)=\frac{1}{2} \sqrt{h} h^{\alpha \beta} g_{i j} x_{\alpha}^{i} x_{\beta}^{j}$ is the Lagrangian of the functional, $h=\operatorname{det}\left(h_{\alpha \beta}\right)$.
Explicitly, $\tau(x)=0,\left.x\right|_{\partial T}=\sigma$, where

$$
\tau(x)=h^{\alpha \beta}\left\{\frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}-\Gamma_{\alpha \beta}^{\gamma} x_{\gamma}^{i}+\Gamma_{j k}^{i} x_{\alpha}^{j} x_{\beta}^{k}\right\} \frac{\partial}{\partial x^{i}}
$$

is the tension field of the application $x$.
Proof. We have

$$
\begin{aligned}
\frac{\partial L}{\partial x^{i}} & =\frac{1}{2} \sqrt{h} h^{\beta \gamma} \frac{\partial}{\partial x^{i}}\left(g_{j k} x_{\beta}^{j} x_{\gamma}^{k}\right)=\frac{1}{2} \sqrt{h} h^{\beta \gamma} \frac{\partial g_{j k}}{\partial x^{i}} x_{\beta}^{j} x_{\gamma}^{k} \\
& =\frac{1}{2} \sqrt{h} h^{\beta \gamma}\left(\Gamma_{i j, k}+\Gamma_{i k, j}\right) x_{\beta}^{j} x_{\gamma}^{k}=\frac{1}{2} \sqrt{h} h^{\beta \gamma} \Gamma_{i j, k} x_{\beta}^{j} x_{\gamma}^{k}+\frac{1}{2} \sqrt{h} h^{\beta \gamma} \Gamma_{i k, j} x_{\beta}^{j} x_{\gamma}^{k} \\
& =\frac{1}{2} \sqrt{h} h^{\beta \gamma} \Gamma_{i j, k} x_{\beta}^{j} x_{\gamma}^{k}+\frac{1}{2} \sqrt{h} h^{\beta \gamma} \Gamma_{i j, k} x_{\beta}^{j} x_{\gamma}^{k}=\sqrt{h} h^{\beta \gamma} \Gamma_{i j, k} x_{\beta}^{j} x_{\gamma}^{k} ; \\
\frac{\partial L}{\partial x_{\alpha}^{i}} & =\frac{1}{2} \sqrt{h} h^{\beta \gamma} \frac{\partial}{\partial x_{\alpha}^{i}}\left(g_{j k} x_{\beta}^{j} x_{\gamma}^{k}\right)=\sqrt{h} h^{\alpha \beta} g_{i j} x_{\beta}^{j} ; \\
\frac{\partial}{\partial t^{\alpha}}\left(\frac{\partial L}{\partial x_{\alpha}^{i}}\right) & =\frac{\partial}{\partial t^{\alpha}}\left(\sqrt{h} h^{\alpha \beta} g_{i j} x_{\beta}^{j}\right)=\frac{1}{2 \sqrt{h}} \frac{\partial h}{\partial h_{\gamma \mu}} \frac{\partial h_{\gamma \mu}}{\partial t^{\alpha}} h^{\alpha \beta} g_{i j} x_{\beta}^{j}+\sqrt{h} \frac{\partial h^{\alpha \beta}}{\partial t^{\alpha}} g_{i j} x_{\beta}^{j}
\end{aligned}
$$

$$
\begin{aligned}
& +\sqrt{h} h^{\alpha \beta} \frac{\partial g_{i j}}{\partial x^{k}} x_{\beta}^{j} x_{\alpha}^{k}+\sqrt{h} h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}} \\
= & \frac{1}{2} \sqrt{h} h^{\gamma \mu}\left(h_{\gamma \nu} \Gamma_{\mu \alpha}^{\nu}+h_{\mu \nu} \Gamma_{\gamma \alpha}^{\nu}\right) h^{\alpha \beta} g_{i j} x_{\beta}^{j}-\sqrt{h}\left(h^{\alpha \nu} \Gamma_{\alpha \nu}^{\beta}+h^{\beta \nu} \Gamma_{\nu \alpha}^{\alpha}\right) g_{i j} x_{\beta}^{j} \\
& +\sqrt{h} h^{\alpha \beta} \frac{\partial g_{i j}}{\partial x^{k}} x_{\beta}^{j} x_{\alpha}^{k}+\sqrt{h} h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}} \\
= & \frac{1}{2} \sqrt{h}\left(\delta_{\nu}^{\mu} \Gamma_{\mu \alpha}^{\nu}+\delta_{\nu}^{\gamma} \Gamma_{\gamma \alpha}^{\nu}\right) h^{\alpha \beta} g_{i j} x_{\beta}^{j}-\sqrt{h}\left(h^{\alpha \nu} \Gamma_{\alpha \nu}^{\beta}+h^{\beta \nu} \Gamma_{\nu \alpha}^{\alpha}\right) g_{i j} x_{\beta}^{j} \\
& +\sqrt{h} h^{\alpha \beta}\left(\Gamma_{i k, j}+\Gamma_{j k, i}\right) x_{\beta}^{j} x_{\alpha}^{k}+\sqrt{h} h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}} \\
= & \frac{1}{2} \sqrt{h}\left(\Gamma_{\mu \alpha}^{\mu}+\Gamma_{\gamma \alpha}^{\gamma}\right) h^{\alpha \beta} g_{i j} x_{\beta}^{j}-\sqrt{h}\left(h^{\alpha \nu} \Gamma_{\alpha \nu}^{\beta}+h^{\beta \nu} \Gamma_{\nu \alpha}^{\alpha}\right) g_{i j} x_{\beta}^{j} \\
& +\sqrt{h} h^{\alpha \beta}\left(\Gamma_{i k, j}+\Gamma_{j k, i}\right) x_{\beta}^{j} x_{\alpha}^{k}+\sqrt{h} h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}} \\
= & \sqrt{h} \Gamma_{\mu \alpha}^{\mu} h^{\alpha \beta} g_{i j} x_{\beta}^{j}-\sqrt{h} h^{\alpha \nu} \Gamma_{\alpha \nu}^{\beta} g_{i j} x_{\beta}^{j}-\sqrt{h} h^{\beta \nu} \Gamma_{\nu \alpha}^{\alpha} g_{i j} x_{\beta}^{j} \\
& +\sqrt{h} h^{\alpha \beta}\left(\Gamma_{i k, j}+\Gamma_{j k, i}\right) x_{\beta}^{j} x_{\alpha}^{k}+\sqrt{h} h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}} \\
= & \sqrt{h} \Gamma_{\mu \alpha}^{\mu} h^{\alpha \beta} g_{i j} x_{\beta}^{j}-\sqrt{h} h^{\alpha \nu} \Gamma_{\alpha \nu}^{\beta} g_{i j} x_{\beta}^{j}-\sqrt{h} \Gamma_{\mu \alpha}^{\mu} h^{\alpha} g_{i j} x_{\beta}^{j} \\
& +\sqrt{h} h^{\alpha \beta}\left(\Gamma_{i k, j}+\Gamma_{j k, i}\right) x_{\beta}^{j} x_{\alpha}^{k}+\sqrt{h} h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}} \\
= & \sqrt{h}\left[h^{\alpha \beta} g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}}-h^{\alpha \nu} \Gamma_{\alpha \nu}^{\beta} g_{i j} x_{\beta}^{j}+h^{\alpha \beta}\left(\Gamma_{i k, j}+\Gamma_{j k, i}\right) x_{\beta}^{j} x_{\alpha}^{k}\right] .
\end{aligned}
$$

Finally, we obtain

$$
\begin{gathered}
\frac{\partial L}{\partial x^{\alpha}}-\frac{\partial}{\partial t^{i}}\left(\frac{\partial L}{\partial x_{i}^{\alpha}}\right)=0 \Leftrightarrow \\
h^{\alpha \beta}\left[\Gamma_{i j, k} x_{\alpha}^{j} x_{\beta}^{k}-g_{i j} \frac{\partial^{2} x^{j}}{\partial t^{\alpha} \partial t^{\beta}}+\Gamma_{\alpha \beta}^{\gamma} g_{i j} x_{\gamma}^{j}-\left(\Gamma_{i k, j}+\Gamma_{j k, i}\right) x_{\alpha}^{k} x_{\beta}^{j}\right]=0 \Leftrightarrow \\
h^{\alpha \beta} g_{i \ell}\left(\frac{\partial^{2} x^{\ell}}{\partial t^{\alpha} \partial t^{\beta}}-\Gamma_{\alpha \beta}^{\gamma} x_{\gamma}^{i}+\Gamma_{j k}^{i} x_{\alpha}^{j} x_{\beta}^{k}\right)=0 .
\end{gathered}
$$

We suppose that the problem stated in the previous proposition has a unique solution.
Remark 2.1 a) The mapping $x \in C^{\infty}(T, M)$ for which $\tau(x)=0$ is called harmonic mapping.
b) If the mapping $x \in C^{\infty}(T, M)$ is a Riemannian immersion, $x$ is harmonic if and only if $x$ is minimal.

### 2.2 Determining a Pair of Metrics by Boundary Energy

Let us consider $(h, g)$ a simple pair of metrics.
Definition 2.3 Let $\sigma \in \partial M$ and $E_{(h, g)}(\sigma)$ the energy of the submanifold $N$ that corres-ponds to the border $\sigma$. The function $E_{(h, g)}: \partial M \rightarrow \mathbf{R}$ generated by the correspondence $\sigma \rightarrow E_{(h, g)}(\sigma)$ is called the boundary energy.

Given an energy function $E$, is there a pair of simple metrics $(h, g)$ that realize that energy? How can these metrics be found?

Let us show that the existence problem of the metrics with the property that $E: \partial M \rightarrow \mathbf{R}$ represents the boundary energy cannot have a unique solution.

Let $\Phi: T \times M \rightarrow T \times M, \Phi\left(t^{1}, \ldots, t^{p} ; x^{1}, \ldots, x^{n}\right)=(\psi(t), \varphi(x))$ be a diffeomorphism with the properties $\left.\psi\right|_{\partial T}=\mathrm{id},\left.\varphi\right|_{\partial M}=\mathrm{id}$. The diffeomorphism transforms the simple metrics $h^{0}, g^{0}$ into the simple metrics $h^{1}=\psi^{*} h^{0}$ and $g^{1}=\varphi^{*} g^{0}$, because we have

$$
h^{1}(t)(\mu, \nu)=h^{0}\left(\left(d_{t} \psi\right) \mu,\left(d_{t} \psi\right) \nu\right)_{\psi(t)}
$$

where $d_{t} \psi: T_{t} T \rightarrow T_{\psi(t)} T$ is the differential of $\psi$, and

$$
g^{1}(x)(\xi, \eta)=g^{0}\left(\left(d_{x} \varphi\right) \xi,\left(d_{x} \varphi\right) \eta\right)_{\varphi(x)}
$$

$d_{x} \varphi: T_{x} M \rightarrow T_{\varphi(x)} M$ is the differential of $\varphi$.
$\left(h^{0}, g^{0}\right)$ and $\left(h^{1}, g^{1}\right)$ give different families of minimal submanifolds with the same boundary energy $E$.

Problem $1^{\prime}$. Let $\left(h^{0}, g^{0}\right)$ and $\left(h^{1}, g^{1}\right)$ be pairs of simple metrics, $h^{0}, h^{1}$ on $T$, respectively $g^{0}, g^{1}$ on $M$. The equality $E_{\left(h^{0}, g^{0}\right)}=E_{\left(h^{1}, g^{1}\right)}$ implies the existence of a diffeomorphism $\Phi: T \times M \rightarrow T \times M, \Phi=(\psi, \varphi),\left.\psi\right|_{\partial T}=\mathrm{id},\left.\varphi\right|_{\partial M}=\mathrm{id}, h^{1}=\psi^{*} h^{0}$ and $g^{1}=\varphi^{*} g^{1}$ (the problem of finding a pair metrics by the boundary energy)?

### 2.3 Linearization of the Problem of Determining Metrics by the Boundary Energy

Let us linearize the problem $1^{\prime}$. Let $\left(g^{\tau}\right)$ be a family of simple metrics on $M$ which depends smoothly on $\tau \in(-\varepsilon, \varepsilon), \varepsilon>0$. Let $\sigma \in \partial M$ and $a=E(\sigma), E: \partial M \rightarrow \mathbf{R}$ the given frontier energy. Consider $x^{\tau}: T \rightarrow M$ a minimal submanifold of the metric $g^{\tau}$, for which $\left.x^{\tau}\right|_{\partial T}=\sigma, x^{i}=x^{i}\left(t^{\alpha}\right), \alpha=\overline{1, p}, i=\overline{1, n}$. Let $T=[0, a]^{p}$ with the induced Riemannian metric $\left(h_{\alpha \beta}^{\tau}\right), t=\left(t^{1}, \ldots, t^{p}\right)$.

Let $x^{\tau}(t)=\left(x^{1}(t, \tau), \ldots, x^{n}(t, \tau)\right)$ be the representation of $x^{\tau}$ in a coordinate system and $g^{\tau}=\left(g_{i j}^{\tau}\right)$. The energy of the deformation $x^{\tau}$ is

$$
E_{\left(h^{\tau}, g^{\tau}\right)}(\sigma)=\frac{1}{2} \int_{T} h_{\tau}^{\alpha \beta}(t) g_{i j}^{\tau}\left(x^{\tau}(t)\right) x_{\alpha}^{i}(t, \tau) x_{\beta}^{j}(t, \tau) d v_{h} .
$$

Differentiating with respect to $\tau$, we obtain

$$
\begin{align*}
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{\left(h^{\tau}, g^{\tau}\right)}(\sigma) & =\int_{T}\left[h_{0}^{\alpha \beta}(t) f_{i j}\left(x^{0}(t)\right)+k^{\alpha \beta}(t) g_{i j}^{0}\left(x^{0}(t)\right)\right] x_{\alpha}^{i}(t, 0) x_{\beta}^{j}(t, 0) d v_{h} \\
+ & \frac{1}{2} \int_{T}\left[h_{0}^{\alpha \beta}(t) \frac{\partial g_{i j}^{0}}{\partial x^{k}}\left(x^{0}(t)\right) x_{\alpha}^{i}(t, 0) x_{\beta}^{j}(t, 0) \frac{\partial x^{k}}{\partial \tau}(t, 0)\right. \\
& \left.+2 h_{0}^{\alpha \beta}(t) g_{i j}^{0}\left(x^{0}(t)\right) x_{\alpha}^{i}(t, 0) \frac{\partial x_{\beta}^{j}}{\partial \tau}(t, 0)\right] d v_{h}, \tag{2.1}
\end{align*}
$$

where $f_{i j}=\left.\frac{1}{2} \frac{\partial}{\partial \tau}\right|_{\tau=0} g_{i j}^{\tau}$ and $k^{\alpha \beta}=\left.\frac{1}{2} \frac{\partial}{\partial \tau}\right|_{\tau=0} h_{\tau}^{\alpha \beta}$.
Integrating by parts and using the fact that $\left.\frac{\partial x^{i}}{\partial \tau}\right|_{\partial T}=0$, we have

$$
\begin{aligned}
& \int_{T} h_{0}^{\alpha \beta}(t) g_{i j}^{0}\left(x^{0}(t)\right) x_{\alpha}^{i}(t, \tau) \frac{\partial x_{\beta}^{j}}{\partial \tau}(t, 0) d v_{h}=\int_{T} h_{0}^{\alpha \beta} g_{i j}^{0} x_{\alpha}^{i} \frac{\partial}{\partial t^{\beta}}\left(\frac{\partial x^{j}}{\partial \tau}\right) \sqrt{h} d t^{1} \wedge \cdots \wedge d t^{p} \\
&=-\int_{T}\left[\frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i} \sqrt{h}+h_{0}^{\alpha \beta} \frac{\partial g_{i j}^{0}}{\partial x^{k}} x_{\beta}^{k} x_{\alpha}^{i} \sqrt{h}+h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}} \sqrt{h}\right. \\
&\left.+h_{0}^{\alpha \beta} g_{i j}^{0} x_{\alpha}^{i} \frac{1}{2 \sqrt{h}} \frac{\partial h}{\partial h_{\gamma \delta}} \frac{\partial h_{\gamma \delta}}{\partial t^{\beta}}\right] \frac{\partial x^{j}}{\partial \tau} \frac{1}{\sqrt{h}} d v_{h} \\
&=-\int_{T}\left[\frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}+h_{0}^{\alpha \beta} \frac{\partial g_{i j}^{0}}{\partial x^{k}} x_{\beta}^{k} x_{\alpha}^{i}+h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}\right. \\
&\left.+\frac{1}{2} h_{0}^{\alpha \beta} h_{0}^{\gamma \delta} g_{i j}^{0} x_{\alpha}^{i} \frac{\partial h_{\gamma \delta}}{\partial t^{\beta}}\right] \frac{\partial x^{j}}{\partial \tau} d v_{h}
\end{aligned}
$$

The second integral of (2.1) becomes

$$
\begin{aligned}
\int_{T}\left[h_{0}^{\alpha \beta} \frac{\partial g_{i \ell}^{0}}{\partial x^{j}} x_{\alpha}^{i} x_{\beta}^{\ell}-\right. & 2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} \frac{\partial g_{i j}^{0}}{\partial x^{\ell}} x_{\beta}^{\ell} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}} \\
& \left.-h_{0}^{\alpha \beta} h_{0}^{\gamma \delta} g_{i j}^{0} x_{\alpha}^{i} \frac{\partial h_{\gamma \delta}^{0}}{\partial t^{\beta}}\right] \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
= & \int_{T}\left\{h_{0}^{\alpha \beta}\left[\frac{\partial g_{i \ell}^{0}}{\partial x^{j}}-2 \frac{\partial g_{i j}^{0}}{\partial x^{\ell}}\right] x_{\alpha}^{i} x_{\beta}^{\ell}-2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}\right. \\
& \left.-h_{0}^{\alpha \beta} h_{0}^{\gamma \delta} g_{i j}^{0} x_{\alpha}^{i} \frac{\partial h_{\gamma \delta}^{0}}{\partial t^{\beta}}\right\} \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
= & \int_{T}\left[-2 h_{0}^{\alpha \beta} \Gamma_{i \ell, j} x_{\alpha}^{i} x_{\beta}^{\ell}-2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}\right. \\
& \left.-h_{0}^{\alpha \beta} h_{0}^{\gamma \delta} g_{i j}^{0} x_{\alpha}^{i} \frac{\partial h_{\gamma \delta}^{0}}{\partial t^{\beta}}\right] \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
= & \int_{T}\left\{-2 h_{0}^{\alpha \beta} \Gamma_{i \ell, j} x_{\alpha}^{i} x_{\beta}^{\ell}-2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial x^{\beta}}\right. \\
& \left.-h_{0}^{\alpha \beta} g_{i j}^{0} x_{\alpha}^{i} h_{0}^{\gamma \delta}\left[\Gamma_{\gamma \beta, \delta}+\Gamma_{\delta \beta, \gamma}\right]\right\} \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
= & \int_{T}\left\{-2 h_{0}^{\alpha \beta} g_{j p}^{0} \Gamma_{i \ell}^{p} x_{\alpha}^{i} x_{\beta}^{\ell}-2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} g_{i j}^{0} \frac{\partial^{2} x^{i}}{\partial t^{\alpha} \partial t^{\beta}}\right. \\
& \left.-h_{0}^{\alpha \beta} g_{i j}^{0} x_{\alpha}^{i}\left(\Gamma_{\gamma \beta}^{\gamma}+\Gamma_{\delta \beta}^{\delta}\right)\right\} \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
= & \int_{T}\left\{2 h_{0}^{\alpha \beta} g_{j p}^{0}\left(-\Gamma_{i \ell}^{p} x_{\alpha}^{i} x_{\beta}^{\ell}-\frac{\partial^{2} x^{p}}{\partial t^{\alpha} \partial t^{\beta}}\right)-2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}\right.
\end{aligned}
$$

$$
\left.-2 h_{0}^{\alpha \beta} g_{i j}^{0} x_{\alpha}^{i} \Gamma_{\gamma \beta}^{\gamma}\right\} \frac{\partial x^{j}}{\partial \tau} d v_{h}
$$

Since $x_{0}$ is an extremal of the energy, we have

$$
h_{0}^{\alpha \beta} g_{j p}^{0}\left(-\Gamma_{i \ell}^{p} x_{\alpha}^{i} x_{\beta}^{\ell}-\frac{\partial^{2} x^{p}}{\partial t^{\alpha} \partial t^{\beta}}\right)=-2 g_{j p}^{0} h^{\alpha \beta} \Gamma_{\alpha \beta}^{\gamma} x_{\gamma}^{p}
$$

and the previous integral becomes

$$
\begin{aligned}
\int_{T}[- & \left.2 g_{j p}^{0} h_{0}^{\alpha \beta} \Gamma_{\alpha \beta}^{\gamma} x_{\gamma}^{p}-2 \frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\beta}} g_{i j}^{0} x_{\alpha}^{i}-2 h_{0}^{\alpha \beta} g_{i j}^{0} x_{\alpha}^{i} \Gamma_{\gamma \beta}^{\gamma}\right] \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
& =-2 \int_{T} g_{i j}^{0} x_{\mu}^{i}\left(h_{0}^{\alpha \beta} \Gamma_{\alpha \beta}^{\mu}+\frac{\partial h_{0}^{\mu \beta}}{\partial t^{\beta}}+h_{0}^{\mu \beta} \Gamma_{\mu \beta}^{\gamma}\right) \frac{\partial x^{j}}{\partial \tau} d v_{h} \\
& =-2 \int_{T} g_{i j}^{0} x_{\mu}^{i}\left(h_{0}^{\alpha \beta} \Gamma_{\alpha \beta}^{\mu}-h_{0}^{\mu \nu} \Gamma_{\beta \gamma}^{\beta}-h^{\gamma \beta} \Gamma_{\beta \nu}^{\mu}+h_{0}^{\mu \beta} \Gamma_{\gamma \beta}^{\gamma}\right) \frac{\partial x^{j}}{\partial \tau} d v_{h}=0 .
\end{aligned}
$$

Denoting $F_{i j}^{\alpha \beta}=h_{0}^{\alpha \beta} f_{i j}+k^{\alpha \beta} g_{i j}^{0}$, we have the equality

$$
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{\left(h^{\tau}, g^{\tau}\right)}(\sigma)=\int_{T} F_{i j}^{\alpha \beta} x_{\alpha}^{i}(t, 0) x_{\beta}^{j}(t, 0) d v_{h}
$$

Using the functional $I_{F}\left(x_{0}\right)=\int_{T} F_{i j}^{\alpha \beta}(x(t)) x_{\alpha}^{i}(t) x_{\beta}^{j}(t) d v_{h}$, the previous relation becomes

$$
\begin{equation*}
\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} E_{\left(h^{\tau}, g^{\tau}\right)}(\sigma)=I_{F}\left(x^{0}\right) \tag{2.2}
\end{equation*}
$$

where $x^{0}$ is a minimal submanifold of the metric $g^{0}$.
The existence of solutions of this problem for the family $\left(g^{\tau}\right)$ implies the existence of an one-parameter group of diffeomorphisms $\Phi^{\tau}(t, x)=\left(\psi^{\tau}(t), \varphi^{\tau}(x)\right)$, such that $g^{\tau}=\left(\varphi^{\tau}\right)^{*} g^{0}$ and $h^{\tau}=\left(\psi^{\tau}\right)^{*} h^{0}$. Explicitly

$$
\begin{equation*}
h_{\alpha \beta}^{\tau}=\left(h_{\mu \nu}^{0} \circ \psi^{\tau}\right) \frac{\partial t^{\prime \mu}}{\partial t^{\alpha}}(t, \tau) \frac{\partial t^{\prime \nu}}{\partial t^{\beta}}(t, \tau), \tag{2.3}
\end{equation*}
$$

where $\psi^{\tau}(t)=\left(\psi^{1}(t, \tau), \ldots, \psi^{p}(t, \tau)\right), t^{\prime}=\psi^{\tau}(t)$,

$$
\begin{equation*}
g_{i j}^{\tau}=\left(g_{k \ell}^{0} \circ \varphi^{\tau}\right) \frac{\partial x^{\prime k}}{\partial x^{i}}(x, \tau) \frac{\partial x^{\prime \ell}}{\partial x^{j}}(x, \tau), \tag{2.4}
\end{equation*}
$$

where $\varphi^{\tau}(x)=\left(\varphi^{1}(x, \tau), \ldots, \varphi^{n}(x, \tau)\right), x^{\prime}=\varphi^{\tau}(x)$.
Instead of (2.3), we need

$$
\begin{equation*}
h_{\tau}^{\alpha \beta}=\left(h_{0}^{\mu \nu} \circ \psi^{-\tau}\right) \frac{\partial t^{\alpha}}{\partial t^{\prime \mu}}(t, \tau) \frac{\partial t^{\beta}}{\partial t^{\prime \nu}}(t, \tau) \tag{2.5}
\end{equation*}
$$

Theorem 2.1 The relations (2.4) and (2.5) imply

$$
\begin{equation*}
f_{i j}=\frac{1}{2}\left(v_{i ; j}+v_{j ; i}\right), \tag{2.6}
\end{equation*}
$$

where $v^{k}(x)=\frac{\partial}{\partial \tau}\left(x^{\prime k}\right)(x, \tau), v_{i}=g_{i j}^{0} v^{j}$ and $v_{i ; j}$ is the covariant derivative of $\left(v_{i}\right)$ and

$$
\begin{equation*}
k^{\alpha \beta}=\frac{1}{2}\left(u^{\alpha ; \beta}+u^{\beta ; \alpha}\right) \tag{2.7}
\end{equation*}
$$

where $\left.\frac{\partial}{\partial \tau}\right|_{\tau=0}\left(\psi^{\alpha}\right)(t, \tau)=u^{\alpha}, u^{\alpha ; \beta}=u_{; \mu}^{\alpha} h_{0}^{\mu \beta}$ and $u_{; \mu}^{\alpha}$ is the covariant derivative of $\left(u^{\alpha}\right)$.

Proof. The relation (2.6) is similar to relation (1.8). Differentiating the relation (2.5) with respect to $\tau$, we have

$$
\begin{aligned}
2 k^{\alpha \beta}= & \frac{\partial h_{0}^{\mu \nu}}{\partial t^{\gamma}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} t^{\gamma}\right) \frac{\partial t^{\alpha}}{\partial t^{\prime \mu}}(t, 0) \frac{\partial t^{\beta}}{\partial t^{\prime \nu}}(t, 0)+\left(h_{0}^{\mu \nu} \circ \psi^{0}\right) \frac{\partial}{\partial \tau}\left(\frac{\partial t^{\alpha}}{\partial t^{\prime \mu}}\right)(t, 0) \frac{\partial t^{\beta}}{\partial t^{\prime \nu}}(t, 0) \\
& +\left(h_{0}^{\mu \nu} \circ \psi^{0}\right) \frac{\partial t^{\alpha}}{\partial t^{\prime \mu}}(t, 0) \frac{\partial}{\partial \tau}\left(\frac{\partial t^{\beta}}{\partial t^{\prime \nu}}\right)(t, 0)=-\frac{\partial h_{0}^{\mu \nu}}{\partial t^{\gamma}} \mu^{\gamma} \delta_{\mu}^{\alpha} \delta_{\nu}^{\beta} \\
& +h_{0}^{\mu \nu} \frac{\partial}{\partial t^{\prime \mu}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} t^{\alpha}\right) \delta_{\nu}^{\beta}+h_{0}^{\mu \nu} \delta_{\mu}^{\alpha} \frac{\partial}{\partial t^{\prime \nu}}\left(\left.\frac{\partial}{\partial \tau}\right|_{\tau=0} t^{\beta}\right) \\
= & -\frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\prime \mu}} u^{\mu}+h_{0}^{\mu \beta} \frac{\partial u^{\beta}}{\partial t^{\prime \mu}}+h_{0}^{\nu \alpha} \frac{\partial u^{\alpha}}{\partial t^{\prime \mu}}
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
u^{\alpha ; \beta}+u^{\beta ; \alpha} & =u_{; \mu}^{\alpha} h_{0}^{\mu \beta}+u_{; \mu}^{\beta} h_{0}^{\alpha \mu}=h_{0}^{\mu \beta}\left(\frac{\partial u^{\alpha}}{\partial t^{\prime \mu}}+\Gamma_{\mu \nu}^{\alpha} u^{\nu}\right)+h^{\alpha \mu}\left(\frac{\partial u^{\beta}}{\partial t^{\prime \mu}}+\Gamma_{\mu \nu}^{\beta} u^{\nu}\right) \\
& =h_{0}^{\mu \nu} \frac{\partial u^{\alpha}}{\partial t^{\prime \mu}}+h_{0}^{\alpha \mu} \frac{\partial u^{\beta}}{\partial t^{\prime \mu}}+\left(h_{0}^{\mu \beta} \Gamma_{\mu \nu}^{\alpha}+h_{0}^{\alpha \mu} \Gamma_{\mu \nu}^{\beta}\right) u^{\nu} \\
& =h_{0}^{\mu \beta} \frac{\partial u^{\alpha}}{\partial t^{\prime \mu}}+h_{0}^{\alpha \mu} \frac{\partial u^{\beta}}{\partial t^{\prime \mu}}-\frac{\partial h_{0}^{\alpha \beta}}{\partial t^{\prime \mu}} u^{\mu} .
\end{aligned}
$$

The equality (2.7) was proved.
We have the following linearization of the problem $1^{\prime}$ : do integrals (2.2) determine the tensor $\left(F_{i j}^{\alpha \beta}\right)$ ?

### 2.4 Multi-ray Transform of a Distinguished Tensor Field

Problem $2^{\prime}$. Generalizing the problem to tensor fields of any rank, the following question appears: to what extent the integrals

$$
\begin{equation*}
I_{F}(x)=\int_{T} F_{i_{1} \ldots i_{m}}^{\alpha_{1} \ldots \alpha_{m}}(x(t)) x_{\alpha_{1}}^{i_{1}}(t) \cdots x_{\alpha_{m}}^{i_{m}}(t) d v_{h} \tag{2.8}
\end{equation*}
$$

determine a symmetric tensor field $F$ ?
The function $I_{F}$, determined by the equality (2.8) on the set of submanifolds $\sigma \in \partial M$, is called multi-ray transform of the tensor $F$.

## References

[1] V.I. Arnold, Metodele matematice ale mecanicii clasice, Editura Ştiinţifică şi Enciclopedică, Bucureşti, 1980.
[2] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, I, II, Interscience Publishers, New York, 1963, 1969.
[3] A. Mishchenko, A. Fomenko, A Course of Differential Geometry and Topology, Mir Publishers, Moscow, 1988.
[4] A. Sharafutdinov, Integral Geometry of Tensor Fields, VSPBV, Utrecht, 1994.
[5] C. Udrişte, Linii de câmp, Editura Tehnică, Bucureşti, 1998.
[6] C. Udrişte, Geometric Dynamics, Kluver Academic Publishers, 2000.
[7] C. Udrişte, M. Ferrara, D. Opriş, Economic Geometric Dynamics, Geometry Balkan Press, 2004.
[8] C. Udrişte, M. Postolache, Atlas of Magnetic Geometric Dynamics, Geometry Balkan Press, 2001.
[9] H. Urakawa, Calculus of Variations and Harmonic Maps, Shokabo Publishing Co. Ltd., Tokyo, 1990.
[10] Gh. Vrânceanu, Geometrie diferenţială globală, Editura Didactică şi Pedagogică, Bucureşti, 1973.

Authors' addresses:
Constantin Udrişte and Ariana Pitea
Faculty of Applied Sciences, Department Mathematics I,
University Politehnica of Bucharest, Splaiul Independentei 313, RO-060042, Bucharest, Romania.
email: udriste@mathem.pub.ro and apitea@mathem.pub.ro
Janina Mihăilă
Ecological University, Bucharest
email: janinamihaelamihaila@yahoo.it


[^0]:    Balkan Journal of Geometry and Its Applications, Vol.11, No.1, 2006, pp. 131-143.
    (c) Balkan Society of Geometers, Geometry Balkan Press 2006.

