Subgradient estimates for a nonlinear subparabolic equation on pseudo-Hermitian manifold

Yingbo Han

Abstract

Let (M, J, θ) be a closed pseudo-Hermintian ($2 n+1$)-manifold. In this paper, we derive the subgradient estimate for positive solutions to a nonlinear subparabolic equation $\frac{\partial u}{\partial t}=\triangle_{b} u+a u \log u+b u$ on $M \times[0, \infty)$, where a, b are two real constants.

M.S.C. 2010: 32V05, 32V20.

Key words: subgradient estimate; nonlinear subparabolic equation; pseudo-Hermitian manifold.

1 Introduction

In the seminal paper of [4], P. Li and S.-T. Yau established the parabolic Li-Yau gradient estimate and Harnack inequality for the positive solution of the heat equation

$$
\frac{\partial u}{\partial t}(x, t)=\triangle u(x, t)
$$

in a complete Riemannian l-manifold with nonnegative Ricci curvature. Here \triangle is the Laplace-Beltrami operator. Along this line with method of Li-Yau gradient estimate, it is the very first paper of H.-D. Can and S.-T. Yau [3] to consider the heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}(x, t)=L u(x, t) \tag{1.1}
\end{equation*}
$$

in a closed l-manifold with a positive measure and a subelliptic operator with respect to the sum squares of vector fields

$$
L=\sum_{i=1}^{h} X_{i}^{2}-Y, \quad Y=\sum_{i=1}^{h} c_{i} X_{i}
$$

where X_{1}, \cdots, X_{h} are smooth vector fields which satisfy Hörmander's condition: the vector fields together with their commutators up to finite order span the tangent space at every point of M. Suppose that $\left[X_{i},\left[X_{j}, X_{k}\right]\right]$ can be expressed as linear

[^0]combinations of X_{1}, \cdots, X_{h} and their brackets $\left[X_{1}, X_{2}\right], \cdots,\left[X_{l-1}, x_{h}\right]$. they showed that for the positive solution $u(x, t)$ of (1.1) on $M \times[0, \infty)$, there exist constants $C^{\prime}, C^{\prime \prime}, C^{\prime \prime \prime}$ and $\frac{1}{2}<\lambda<\frac{2}{3}$, such that for any $\delta>1, f=\log u$ satisfies the following gradient estimate
$$
\sum_{i}\left|X_{i} f\right|-\delta f_{t}+\sum_{\alpha}\left(1+\left|Y_{\alpha} f\right|^{2}\right) \lambda-\delta Y f \leq \frac{C^{\prime}}{t}+C^{\prime \prime}+C^{\prime \prime \prime} t^{\frac{\lambda}{\lambda-1}}
$$
with $\left\{Y_{\alpha}\right\}=\left\{\left[X_{i}, X_{j}\right]\right\}$. In [1], S.-C. Chang, T.-J. Kuo and S.-H. Lai established the CR Cao-Yau type Harmack estimate
$$
4 \frac{\partial(\log u)}{\partial t}-\left|\nabla_{b} \log u\right|^{2}-\frac{1}{3} t\left[(\log u)_{0}\right]^{2}+\frac{16}{t} \geq 0
$$
for the positive solution u of the CR heat equation $\frac{\partial u}{\partial t}=\triangle_{b} u$ in a closed pseudoHermitian 3-manifold (M, J, θ) with nonnegative Tanaka-webster curvature and vanishing torsion. Here \triangle_{b} is the time-independent sub-Laplacian, ∇_{b} is the subgradient and $\varphi_{0}=T \varphi$ for a smooth function φ.

Recently, S.-C. Chang, T.-J. Kuo and S.-H. Lai established the CR Cao-Yau type Harmack estimate

$$
\left(1+\frac{3}{n}\right) \frac{\partial(\log u)}{\partial t}-\left|\nabla_{b} \log u\right|^{2}-\frac{n}{3} t\left[(\log u)_{0}\right]^{2}+\frac{\frac{9}{n}+6+n}{t} \geq 0
$$

for the positive solution u of the CR heat equation

$$
\frac{\partial u}{\partial t}=\triangle_{b} u
$$

in a closed pseudo-Hermitian $(2 n+1)$-manifold (M, J, θ) with 2 Ric $-(n-2)$ Tor ≥ 0 and $\left[\triangle_{b}, T\right]=0$.

On the other hand, for Riemannian case, there are many papers (such as $[8,7]$ and references therein) to investigate the following nonlinear parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\triangle u+a u \log u+b u \tag{1.2}
\end{equation*}
$$

on $M \times[0, \infty)$, where (M, g) is a Riemannian manifold, a, b are two real constants. They obtained the gradient estimate for the positive solution of the equation (1.2).

In this paper, we consider the following nonlinear subparabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\triangle_{b} u+a u \log u+b u \tag{1.3}
\end{equation*}
$$

in a closed pseudohermintian $(2 n+1)$-manifold (M, J, θ). We obtain the following results:

Theorem 1.1. (cf. Theorem 3.1) Let (M, J, θ) be a closed pseudo-Hermitian $(2 n+1)$ manifold. Suppose that

$$
2 \operatorname{Ric}(X, X)-(n-2) \operatorname{Tor}(X, X) \geq 0
$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If u is the positive solution of

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\triangle_{b} u+a u \log u \tag{1.4}
\end{equation*}
$$

with $\left[\triangle_{b}, T\right]=0$ on $M \times[0, \infty)$, let $f(x, t)=\log u(x, t)$. Then we have

$$
\left|\nabla_{b} f\right|^{2}-\left(1+\frac{3}{n}\right)\left(f_{t}-a f\right)+\frac{n}{3} t f_{0}^{2}<\frac{1}{t}\left(1-\frac{a}{2} t\right)\left(\frac{9}{n}+6+n\right)
$$

where $a \leq 0$ is a constant.
Remark 1.1. By replacing u by $e^{\frac{b}{a}} u$, equation (1.3) reduces to equation (1.4).

2 Preliminaries

We first introduced some basic materials in a pseudo-Hermitian $(2 n+1)$-manifold (see [5], [6] for more details). Let (M, ξ) be a $(2 n+1)$-dimensional, orientable, contact manifold with contract structure ξ. A CR structure compatible with ξ is an endomorphism $J: \xi \rightarrow \xi$ such that $J^{2}=-1$. We also assume that J satisfies the following integrability condition: If X and Y are in ξ, then so are $[J X, Y]+[X, J Y]$ and $J([J X, Y]+[X, J Y])=[J X, Y]-[X, Y]$.

Let $\left\{T, Z_{\alpha}, Z_{\bar{\alpha}}\right\}$ be a frame of $T M \otimes C$, where Z_{α} is any local frame of $T_{1,0}$, $Z_{\bar{\alpha}}=\bar{Z}_{\alpha} \in T_{0,1}$ and T is the characteristic vector field. Then $\left\{\theta, \theta^{\alpha}, \theta^{\vec{\alpha}}\right\}$, which is the coframe dual to $\left\{T, Z_{\alpha}, Z_{\bar{\alpha}}\right\}$, satisfies $d \theta=i h_{\alpha \bar{\beta}} \theta^{\alpha} \wedge \theta^{\bar{\beta}}$ for some positive definite hermitian matrix of function $\left(h_{\alpha \bar{\beta}}\right)$. Actually we can always choose Z_{α} such that $h_{\alpha \bar{\beta}}=\delta_{\alpha \beta}$; hence, through this note, we assume $h_{\alpha \bar{\beta}}=\delta_{\alpha \beta}$.

The Levi form $\langle,\rangle_{L_{\theta}}$ is the Hermitian form on $T_{1,0}$ defined by $\langle Z, W\rangle_{L_{\theta}}=-i\langle d \theta, Z \wedge$ $\bar{W}\rangle$. We can extend $\langle,\rangle_{L_{\theta}}$ to $T_{0,1}$ by defining $\langle\bar{Z}, \bar{W}\rangle_{L_{\theta}}=\langle Z, \bar{W}\rangle_{L_{\theta}}$, for all Z, W in $T_{0,1}$. The Levi form induces naturally a Hermitian form on the dual bundle of $T_{1,0}$, denoted by $\langle,\rangle_{L_{\theta}^{*}}$, and hence on all the induced tensor bundles. Integrating the Hermitian form over M with respect to the volume form $d \mu=\theta \wedge(d \theta)^{n}$, we get an inner product on the space of sections of each tensor bundle. We denote the inner product by the notation \langle,$\rangle .$

The pseudo-Hermitian connection of (J, θ) is the connection ∇ on $T M \otimes C$ (and extended to tensors) given in terms of a local frame $Z_{\alpha} \in T_{1,0}$ by

$$
\nabla Z_{\alpha}=\theta_{\alpha}^{\beta} \otimes Z_{\beta}, \quad \nabla Z_{\bar{\alpha}}=\theta_{\bar{\alpha}}^{\bar{\beta}} \otimes Z_{\bar{\beta}}, \quad \nabla T=0
$$

where θ_{α}^{β} are the 1-forms uniquely determined by the following equations:

$$
\begin{aligned}
d \theta^{\beta} & =\theta^{\alpha} \wedge \theta_{\alpha}^{\beta}+\theta \wedge \tau^{\beta} \\
0 & =\tau_{\alpha} \wedge \theta^{\alpha} \\
0 & =\theta_{\alpha}^{\beta}+\theta_{\bar{\beta}}^{\bar{\alpha}} .
\end{aligned}
$$

We can write (by Cartan lemma) $\tau_{\alpha}=A_{\alpha \gamma} \theta^{\gamma}$ with $A_{\alpha \gamma}=A_{\gamma \alpha}$. The curvature of Tanaka-Webster connection, expressed in terms of the coframe $\left\{\theta=\theta^{0}, \theta^{\alpha}, \theta^{\bar{\alpha}}\right\}$, is

$$
\begin{aligned}
& \Pi_{\beta}^{\alpha}=\overline{\Pi_{\bar{\beta}}^{\bar{\alpha}}}=d \omega_{\beta}^{\alpha}-\omega_{\beta}^{\gamma} \wedge \omega_{\gamma}^{\alpha} \\
& \Pi_{0}^{\alpha}=\Pi_{\alpha}^{0}=\Pi_{0}^{\bar{\beta}}=\Pi_{\bar{\beta}}^{0}=\Pi_{0}^{0}=0
\end{aligned}
$$

Webster showed that Π_{β}^{α} can be written

$$
\Pi_{\beta}^{\alpha}=R_{\beta \rho \bar{\sigma}}^{\alpha} \theta^{\rho} \wedge \theta^{\bar{\sigma}}+W_{\beta \rho}^{\alpha} \theta^{\rho} \wedge \theta-W_{\beta \bar{\rho}}^{\alpha} \theta^{\bar{\rho}} \wedge \theta+i \theta_{\beta} \wedge \tau^{\alpha}-i \tau_{\beta} \wedge \theta^{\alpha}
$$

where the coefficients satisfy

$$
R_{\beta \bar{\alpha} \rho \bar{\sigma}}=\overline{R_{\alpha \bar{\beta} \sigma \bar{\rho}}}=R_{\bar{\alpha} \beta \bar{\sigma} \rho}=R_{\rho \bar{\alpha} \beta \bar{\sigma}}, \quad W_{\beta \bar{\alpha} \gamma}=W_{\gamma \bar{\alpha} \beta} .
$$

Here $R_{\delta \alpha \bar{\beta}}^{\gamma}$ is the pseudo-Hermitian curvature tensor, $R_{\alpha \bar{\beta}}=R_{\gamma \alpha \bar{\beta}}^{\gamma}$ is the pseudoHermitian Ricci curvature tensor and $A_{\alpha \beta}$ is the torsion tensor. We define Ric and Tor by

$$
\operatorname{Ric}(X, Y)=R_{\alpha \bar{\beta}} X^{\alpha} Y^{\bar{\beta}}, \quad \operatorname{Tor}(X, Y)=i\left(A_{\bar{\alpha} \bar{\beta}} X^{\bar{\alpha}} Y^{\bar{\beta}}-A_{\alpha \beta} X^{\alpha} Y^{\beta}\right)
$$

for $X=X^{\alpha} Z_{\alpha}, Y=Y^{\beta} Z_{\beta}$ on $T_{1,0}$.
We will denote components of covariant derivatives with indices preceded by comma; thus write $A_{\alpha \beta, \gamma}$. The indices $\{0, \alpha, \bar{\alpha}\}$ indices derivatives with respect to $\left\{T, Z_{\alpha}, Z_{\bar{\alpha}}\right\}$. For derivatives of a scalar function, we will often omit the comma, for instance, $u_{\alpha}=Z_{\alpha} u, u_{\alpha \bar{\beta}}=Z_{\bar{\beta}} Z_{\alpha} u-\omega_{\alpha}^{\gamma}\left(Z_{\bar{\beta}}\right) Z_{\gamma} u$. For a real function u, the subgradient ∇_{b} is defined by $\nabla_{b} u \in \xi$ and $\left\langle Z, \nabla_{b} u\right\rangle=d u(Z)$, for all vector fields Z tangent to contact plane. Locally $\nabla_{b} u=\sum_{\alpha} u_{\bar{\alpha}} Z_{\alpha}+\sum_{\alpha} u_{\alpha} Z_{\bar{\alpha}}$. We can use the connection to define the subhessian as the complex linear map $\left(\nabla^{H}\right)^{2} u: T_{1,0} \oplus T_{0,1} \rightarrow T_{1,0} \oplus T_{0,1}$ by

$$
\left(\nabla^{H}\right)^{2} u(Z)=\nabla_{Z} \nabla_{b} u
$$

In particular, $\left|\nabla_{b} u\right|^{2}=2 u_{\alpha} u_{\bar{\alpha}},\left|\nabla_{b}^{2} u\right|^{2}=2\left(u_{\alpha \beta} u_{\bar{\alpha} \bar{\beta}}+u_{\alpha \bar{\beta}} u_{\bar{\alpha} \beta}\right)$ and $\triangle_{b} u=\sum_{\alpha}\left(u_{\alpha \bar{\alpha}}+\right.$ $u_{\bar{\alpha} \alpha}$).

We need the following Lemmas.
Lemma 2.1. [2] For a smooth real-valued function u and any $\nu>0$, we have

$$
\begin{align*}
& \triangle_{b}\left|\nabla_{b} u\right|^{2} \geq \frac{1}{n}\left(\triangle_{b} u\right)^{2}+n u_{0}^{2}+2\left\langle\nabla_{b} u, \nabla_{b} \triangle_{b} u\right\rangle \\
& +2(2 \text { Ric }-(n-2) \text { Tor })\left(\left(\nabla_{b} u\right)_{C},\left(\nabla_{b} u\right)_{C}\right)-2 v\left|\nabla_{b} u_{0}\right|^{2}-\frac{2}{\nu}\left|\nabla_{b} u\right|^{2} \tag{2.1}
\end{align*}
$$

where $\left(\nabla_{b} u\right)_{C}=u_{\bar{\alpha}} Z_{\alpha}$ is the corresponding complex $(1,0)$-vector of $\nabla_{b} u$.
Lemma 2.2. Let (M, J, θ) be a pseudo-Hermitian $(2 n+1)$-manifold with $\left[\triangle_{b}, T\right]=0$. If $u(x, t)$ is the positive solution of $\frac{\partial u}{\partial t}=\triangle_{b} u+a u \log u$, then $f=\log u$ satisfies

$$
\begin{equation*}
\triangle_{b} f_{0}-f_{o t}=-a f_{0}-2\left\langle\nabla_{b} f_{0}, \nabla_{b} f\right\rangle \tag{2.2}
\end{equation*}
$$

Proof. Since u is the solution of (2.2), we have

$$
\begin{equation*}
\left(\triangle_{b}-\frac{\partial}{\partial t}\right) f=-a f-\left|\nabla_{b} f\right|^{2} \tag{2.3}
\end{equation*}
$$

From $\left[\triangle_{b}, T\right]=0$ and (2.3), we have

$$
\triangle_{b} f_{0}-f_{0 t}=\left(\triangle_{b} f\right)_{0}-f_{t 0}=\left[\triangle_{b} f-f_{t}\right]_{0}=-a f_{0}-2\left\langle\nabla_{b} f_{0}, \nabla_{b} f\right\rangle
$$

3 Subgradient estimates for a nonlinear subparabolic equation

In this section, we obtain the following results:
Theorem 3.1. Let (M, J, θ) be a closed pseudo-Hermitian $(2 n+1)$ manifold. Suppose that

$$
\begin{equation*}
2 \operatorname{Ric}(X, X)-(n-2) \operatorname{Tor}(X, X) \geq 0 \tag{3.1}
\end{equation*}
$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If u is the positive solution of

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\triangle_{b} u+a u \log u \tag{3.2}
\end{equation*}
$$

with $\left[\triangle_{b}, T\right]=0$ on $M \times[0, \infty)$, let $f(x, t)=\log u(x, t)$. Then we have

$$
\left|\nabla_{b} f\right|^{2}-\left(1+\frac{3}{n}\right)\left(f_{t}-a f\right)+\frac{n}{3} t f_{0}^{2}<\frac{1}{t}\left[1-\frac{a}{2} t\right]\left[\frac{9}{n}+6+n\right]
$$

where $a \leq 0$ is a constant.
Proof. Since u is the positive solution of (3.2), we have

$$
\begin{equation*}
\left(\triangle_{b}-\frac{\partial}{\partial t}\right) f(x, t)=-a f(x, t)-\left|\nabla_{b} f(x, t)\right|^{2} \tag{3.3}
\end{equation*}
$$

Now we define a real-valued function $F(x, t, \alpha, \beta): M \times\left[0, T^{*}\right] \times R^{*} \times R^{+} \rightarrow R$ by

$$
\begin{equation*}
F(x, t, \alpha, \beta)=t\left(\left|\nabla_{b} f\right|^{2}+\alpha\left(f_{t}-a f\right)+\beta t f_{0}^{2}\right) \tag{3.4}
\end{equation*}
$$

First we differentiate F with respect to the t-variable.

$$
\begin{equation*}
F_{t}=\frac{F}{t}+t\left[2\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle+\alpha\left(f_{t t}-a f_{t}\right)+\beta f_{0}^{2}+2 \beta t f_{0} f_{0 t}\right] \tag{3.5}
\end{equation*}
$$

From equation (3.3), we have

$$
\begin{equation*}
f_{t t}-a f_{t}=2\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle+\triangle_{b} f_{t} \tag{3.6}
\end{equation*}
$$

From (3.5) and (3.6), we have

$$
\begin{equation*}
F_{t}=\frac{F}{t}+t\left[2(1+\alpha)\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle+\alpha \triangle_{b} f_{t}+\beta f_{0}^{2}+2 \beta t f_{0} f_{0 t}\right] \tag{3.7}
\end{equation*}
$$

From Lemma 2.1 and the assumption (3.1), we have

$$
\begin{aligned}
& \triangle_{b} F=t\left[\triangle_{b}\left|\nabla_{b} f\right|+\alpha\left(\triangle_{b} f_{t}-a \triangle_{b} f\right)+\beta t \triangle_{b} f_{0}^{2}\right] \\
& \geq t\left[n f_{0}^{2}+\frac{1}{n}\left(\triangle_{b} f\right)^{2}+2\left\langle\nabla_{b} f, \nabla_{b} \triangle_{b} f\right\rangle-\frac{2}{\nu}\left|\nabla_{b} f\right|^{2}-2 \nu\left|\nabla_{b} f_{0}\right|^{2}\right. \\
& \left.+\alpha\left(\triangle_{b} f_{t}-a \triangle_{b} f\right)+2 \beta t f_{0} \triangle_{b} f_{0}+2 \beta t\left|\nabla_{b} f_{0}\right|^{2}\right] .
\end{aligned}
$$

Taking $\nu=\beta t$, we have

$$
\begin{align*}
\triangle_{b} F & \geq t\left[n f_{0}^{2}+\frac{1}{n}\left(\triangle_{b} f\right)^{2}+2\left\langle\nabla_{b} f, \nabla_{b} \triangle_{b} f\right\rangle-\frac{2}{\beta t}\left|\nabla_{b} f\right|^{2}\right. \\
& \left.+\alpha\left(\triangle_{b} f_{t}-a \triangle_{b} f\right)+2 \beta t f_{0} \triangle_{b} f_{0}\right] \tag{3.8}
\end{align*}
$$

From (3.7) and (3.8), we have

$$
\begin{aligned}
& \left(\triangle_{b}-\frac{\partial}{\partial t}\right) F \geq-\frac{F}{t}+t\left[(n-\beta) f_{0}^{2}+\frac{1}{n}\left(\triangle_{b} f\right)^{2}+2\left\langle\nabla_{b} f, \nabla_{b} \triangle_{b} f\right\rangle-\frac{2}{\beta t}\left|\nabla_{b} f\right|^{2}\right. \\
(3.9) & \left.-\alpha a \triangle_{b} f+2 \beta t f_{0}\left(\triangle_{b} f_{0}-f_{0 t}\right)-2(1+\alpha)\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle\right] .
\end{aligned}
$$

From the lemma 2.2 and the definition of F, we have

$$
\begin{align*}
& 2\left\langle\nabla_{b} f, \nabla_{b} \triangle_{b} f\right\rangle+2 \beta t f_{0}\left(\triangle_{b} f_{0}-f_{0 t}\right)-2(1+\alpha)\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle-\alpha a \triangle_{b} f \\
& =2\left\langle\nabla_{b} f, \nabla_{b}\left[f_{t}-a f-\left|\nabla_{b} f\right|^{2}\right]\right\rangle+2 \beta t f_{0}\left(-a f-\left|\nabla_{b} f\right|^{2}\right)_{0} \\
& -2(1+\alpha)\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle-\alpha a \triangle_{b} f \\
& \left.=-2 \alpha\left\langle\nabla_{b} f, \nabla_{b} f_{t}\right\rangle-2 a\left|\nabla_{b} f\right|^{2}-\left.2\left\langle\nabla_{b} f, \nabla_{b}\right| \nabla_{b} f\right|^{2}\right\rangle-2 a \beta t f_{0}^{2} \\
& -4 \beta t\left\langle\nabla_{b} f, \nabla_{b} f_{0}\right\rangle-\alpha a \triangle_{b} f \\
& =-2 \alpha\left\langle\nabla_{b} f, \nabla_{b}\left(\frac{1}{\alpha t} F-\frac{1}{\alpha}\left|\nabla_{b} f\right|^{2}-\frac{\beta t}{\alpha} f_{0}^{2}+a f\right)\right\rangle-2 a\left|\nabla_{b} f\right|^{2} \\
& \left.-\left.2\left\langle\nabla_{b} f, \nabla_{b}\right| \nabla_{b} f\right|^{2}\right\rangle-2 a \beta t f_{0}^{2}-4 \beta t\left\langle\nabla_{b} f, \nabla_{b} f_{0}\right\rangle-\alpha a \triangle_{b} f \\
& =-\frac{2}{t}\left\langle\nabla_{b} f, \nabla_{b} F\right\rangle-2(\alpha+1) a\left|\nabla_{b} f\right|^{2}-2 a \beta t f_{0}^{2}-\alpha a \triangle_{b} f \tag{3.10}
\end{align*}
$$

From (3.9) and (3.10), we have

$$
\begin{align*}
& \left(\triangle_{b}-\frac{\partial}{\partial t}\right) F \geq-\frac{F}{t}-2\left\langle\nabla_{b} f, \nabla_{b} F\right\rangle+t\left[(n-\beta-2 a \beta t) f_{0}^{2}\right. \\
& \left.+\frac{1}{n}\left(\triangle_{b} f\right)^{2}-\frac{2}{\beta t}\left|\nabla_{b} f\right|^{2}-\alpha a \triangle_{b} f-2(\alpha+1) a\left|\nabla_{b} f\right|^{2}\right] \\
& =-\frac{F}{t}-2\left\langle\nabla_{b} f, \nabla_{b} F\right\rangle+t\left[(n-\beta-2 a \beta t) f_{0}^{2}+\frac{1}{n}\left(\triangle_{b} f\right)^{2}\right. \\
& \left.-\frac{2}{\beta t}\left|\nabla_{b} f\right|^{2}-\alpha a\left[\frac{F}{\alpha t}-\left(1+\frac{1}{\alpha}\right)\left|\nabla_{b} f\right|^{2}-\frac{\beta t}{\alpha} f_{0}^{2}\right]-2(\alpha+1) a\left|\nabla_{b} f\right|^{2}\right] \\
& =-\frac{F}{t}-2\left\langle\nabla_{b} f, \nabla_{b} F\right\rangle-a F+t\left[(n-\beta-2 a \beta t) f_{0}^{2}+\frac{1}{n}\left(\triangle_{b} f\right)^{2}\right. \\
& \left.-\frac{2}{\beta t}\left|\nabla_{b} f\right|^{2}-\alpha a\left[\frac{F}{\alpha t}-\left(1+\frac{1}{\alpha}\right)\left|\nabla_{b} f\right|^{2}-\frac{\beta t}{\alpha} f_{0}^{2}\right]-2(\alpha+1) a\left|\nabla_{b} f\right|^{2}\right] \\
& =-\frac{F}{t}-2\left\langle\nabla_{b} f, \nabla_{b} F\right\rangle-a F+t\left[(n-\beta-a \beta t) f_{0}^{2}+\frac{1}{n}\left(\triangle_{b} f\right)^{2}\right. \\
& \left.-\left(\frac{2}{\beta t}+a(1+\alpha)\right)\left|\nabla_{b} f\right|^{2}\right] \tag{3.11}
\end{align*}
$$

From the definition of F, we have

$$
\begin{align*}
& \left(\triangle_{b} f\right)^{2}=\left(\frac{F}{\alpha t}-\frac{1+\alpha}{\alpha}\left|\nabla_{b} f\right|^{2}-\frac{\beta t}{\alpha} f_{0}^{2}\right)^{2} \\
& \geq \frac{1}{\alpha^{2} t^{2}} F^{2}-\frac{2(1+\alpha)}{\alpha^{2} t} F\left|\nabla_{b} f\right|^{2}-\frac{2 \beta}{\alpha^{2}} F f_{0}^{2} \tag{3.12}
\end{align*}
$$

From (3.11) and (3.12), we have

$$
\begin{align*}
& \left(\triangle_{b}-\frac{\partial}{\partial t}\right) F \geq\left(\frac{F}{n \alpha^{2} t}-\frac{1}{t}-a\right) F-2\left\langle\nabla_{b} F, \nabla_{b} f\right\rangle \\
& +t\left[\left(n-\beta-a \beta t-\frac{2 \beta}{n \alpha^{2}} F\right) f_{0}^{2}+\left(-\frac{2(1+\alpha)}{n \alpha^{2} t} F-\frac{2}{\beta t}-a(1+\alpha)\right)\left|\nabla_{b} f\right|^{2}\right] \tag{3.13}
\end{align*}
$$

For each fixed $T^{\prime}<\infty$ and each $t \in\left[0, T^{\prime}\right]$, let $(p(t), s(t)) \in M \times[0, t]$ be the maximal point of F on $M \times[0, t]$, that is,

$$
F(p(t), s(t), \alpha, \beta)=\max _{(x, \mu) \in M \times[0, t]} F(x, \mu, \alpha, \beta) .
$$

Then we have

$$
\begin{align*}
& \nabla_{b} F(p(t), s(t), \alpha, \beta)=0 \tag{3.14}\\
& \triangle_{b} F(p(t), s(t), \alpha, \beta) \leq 0 \tag{3.15}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial t} F(p(t), s(t), \alpha, \beta) \geq 0 \tag{3.16}
\end{equation*}
$$

From (3.13), (3.14), (3.15) and (3.16), we have at $(p(t), s(t))$,

$$
\begin{align*}
& 0 \geq\left[\frac{F}{n \alpha^{2} s(t)}-\frac{1}{s(t)}-a\right] F+s(t)\left[\left(n-\beta-a \beta s(t)-\frac{2 \beta}{n \alpha^{2}} F\right) f_{0}^{2}\right. \\
& \left.+\left(-\frac{2(1+\alpha)}{n \alpha^{2} s(t)} F-\frac{2}{\beta s(t)}-a(1+\alpha)\right)\left|\nabla_{b} f\right|^{2}\right] \tag{3.17}
\end{align*}
$$

Next, we claim that for each fixed $T^{\prime}<\infty$,

$$
F\left(p\left(T^{\prime}\right), s\left(T^{\prime}\right),-1-\frac{3}{n}, \beta\right)<\left(\frac{n}{3 \beta}-\frac{a}{2} s\left(T^{\prime}\right)\right)\left[\frac{9}{n}+6+n\right]
$$

where $\alpha=-\left(1+\frac{3}{n}\right)$ and $0<\beta<\frac{n}{3}$. Here $\left(p\left(T^{\prime}\right), s\left(T^{\prime}\right)\right) \in M \times\left[0, T^{\prime}\right]$ is the maximal point of F on $M \times\left[0, T^{\prime}\right]$.

We prove by contradiction. Suppose not, that is

$$
F\left(p\left(T^{\prime}\right), s\left(T^{\prime}\right),-1-\frac{3}{n}, \beta\right)-\left(\frac{n}{3 \beta}-\frac{a}{2} s\left(T^{\prime}\right)\right)\left[\frac{9}{n}+6+n\right] \geq 0
$$

Since $F\left(p(t), s(t),-1-\frac{3}{n}, \beta\right)-\left(\frac{n}{3 \beta}-\frac{a}{2} s(t)\right)\left[\frac{9}{n}+6+n\right]$ is continuous in the variable t when α, β are fixed and $F\left(p(0), s(0),-1-\frac{3}{n}, \beta\right)-\left(\frac{n}{3 \beta}-\frac{a}{2} s(0)\right)\left[\frac{9}{n}+6+n\right]=-\frac{n}{3 \beta}\left[\frac{9}{n}+6+n\right]<0$, by Intermdiate-value theorem there exists a $t_{0} \in\left(0, T^{\prime}\right]$ such that

$$
F\left(p\left(t_{0}\right), s\left(t_{0}\right),-1-\frac{3}{n}, \beta\right)-\left(\frac{n}{3 \beta}-\frac{a}{2} s\left(t_{0}\right)\right)\left(\frac{9}{n}+6+n\right)=0
$$

Then we have

$$
\begin{gather*}
-\frac{2(1+\alpha)}{n \alpha^{2} s\left(t_{0}\right)} F-\frac{2}{\beta s\left(t_{0}\right)}-a(1+\alpha)=\frac{3}{n}\left(-\frac{s\left(t_{0}\right)}{s\left(t_{0}\right)}+1\right) a=0, \tag{3.18}\\
n-\beta-a \beta s\left(t_{0}\right)-\frac{2 \beta}{n \alpha^{2}} F=\frac{n}{3}-\beta>0, \tag{3.19}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{F}{n \alpha^{2} s\left(t_{0}\right)}-\frac{1}{s\left(t_{0}\right)}-a \geq \frac{1}{s\left(t_{0}\right)}\left[1-\frac{3}{n} \beta\right] \frac{n}{3 \beta}>0 \tag{3.20}
\end{equation*}
$$

From (3.17), (3.18), (3.19) and (3.20), we have

$$
\begin{aligned}
& 0 \geq\left[\frac{F}{n \alpha^{2} s\left(t_{0}\right)}-\frac{1}{s\left(t_{0}\right)}-a\right] F+s\left(t_{0}\right)\left[\left(n-\beta-a \beta s\left(t_{0}\right)-\frac{2 \beta}{n \alpha^{2}} F\right) f_{0}^{2}\right. \\
& \left.+\left(-\frac{2(1+\alpha)}{n \alpha^{2} s\left(t_{0}\right)} F-\frac{2}{\beta s\left(t_{0}\right)}-a(1+\alpha)\right)\left|\nabla_{b} f\right|^{2}\right]>0
\end{aligned}
$$

This gives a contradiction. Hence we have
$F\left(p\left(T^{\prime}\right), s\left(T^{\prime}\right),-1-\frac{3}{n}, \beta\right)<\left(\frac{n}{3 \beta}-\frac{a}{2} s\left(T^{\prime}\right)\right)\left[\frac{9}{n}+6+n\right] \leq\left(\frac{n}{3 \beta}-\frac{a}{2} T^{\prime}\right)\left[\frac{9}{n}+6+n\right]$
This implies that

$$
\max _{(x, t) \in M \times\left[0, T^{\prime}\right]} t\left(\left|\nabla_{b} f\right|^{2}+\alpha\left(f_{t}-a f\right)+\beta t f_{0}^{2}\right)<\left(\frac{n}{3 \beta}-\frac{a}{2} T^{\prime}\right)\left[\frac{9}{n}+6+n\right]
$$

When we fix on the set $M \times\left\{T^{\prime}\right\}$, we have

$$
T^{\prime}\left(\left|\nabla_{b} f\right|^{2}+\alpha\left(f_{t}-a f\right)+\beta T^{\prime} f_{0}^{2}\right)<\left(\frac{n}{3 \beta}-\frac{a}{2} T^{\prime}\right)\left[\frac{9}{n}+6+n\right]
$$

Since T^{\prime} is arbitrary, we obtain

$$
\left.\left|\nabla_{b} f\right|^{2}+\alpha\left(f_{t}-a f\right)+\beta t f_{0}^{2}\right)<\left(\frac{n}{3 \beta t}-\frac{a}{2}\right)\left[\frac{9}{n}+6+n\right]
$$

Finally let $\beta \rightarrow \frac{n}{3}$, then we have

$$
\left|\nabla_{b} f\right|^{2}-\left(1+\frac{3}{n}\right)\left(f_{t}-a f\right)+\frac{n}{3} t f_{0}^{2}<\frac{1}{t}\left[1-\frac{a}{2} t\right]\left[\frac{9}{n}+6+n\right]
$$

This completes the proof.
When $a=0$, we have the following results:
Corollary 3.2. Let (M, J, θ) be a closed pseudo-Hermitian $(2 n+1)$ manifold. Suppose that

$$
2 \operatorname{Ric}(X, X)-(n-2) \operatorname{Tor}(X, X) \geq 0
$$

for all $X \in T_{1,0} \oplus T_{0,1}$. If u is the positive solution of

$$
\frac{\partial u}{\partial t}=\triangle_{b} u
$$

with $\left[\triangle_{b}, T\right]=0$ on $M \times[0, \infty)$, let $f(x, t)=\log u(x, t)$. Then we have

$$
\left|\nabla_{b} f\right|^{2}-\left(1+\frac{3}{n}\right) f_{t}+\frac{n}{3} t f_{0}^{2}<\frac{1}{t}\left(\frac{9}{n}+6+n\right)
$$

Acknowledgements. This work was supported by the National Natural Science Foundation of China (Grant No.11201400), Project for youth teacher of Xinyang Normal University (Grant No.2014-QN-061), Nanhu Scholars Program for Young Scholars of XYNU.

References

[1] S. C. Chang, T. J. Kuo and S. H. Lai, Li-Yau grandient estimate and entropy formula for the CR heat equation in a closed pseudo-Hermitian manifold 3-manifold, J. Differential Geometry, 89(2011), 185-216.
[2] S. C. Chang, T. J. Kuo and J. Z. Tie, Yau's gradient estimate and Liouville theroem for positive pseudoharmonic functions in a complete pseudo-Hermitian manifold, arXiv, 1506.03270v1 [math.Ap] 10 Jun 2015.
[3] H. D. Cao, S. T. Yau, Harnack inequalities and estimates for heat kernels of the sum of squares of vector fields, Math. Z. 211 (1992), 485-504.
[4] P. Li, S. T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156(1985), 153-201.
[5] J. M. Lee, Pseudo-Einstein structure on CR Manifold, Amer. J. Math. 110 (1988), 157-178.
[6] J. M. Lee, The Fefferman metric and pseudo-Hermitian invariants, Trans. A.M.S. 296 (1986), 411-429.
[7] G. Y. Huang, B.Q. Ma, Gradient estimates for nonlinear parabolic equation on Riemannian manifolds, Arch. Math. 94(2010), 256-275.
[8] Y. Y. Yang, Gradient estimates for a nonlinear parabolic equation on Reimannian manifolds, Pro. of Amer. Math. Soc. 136(2008), 4095-4102.

Author's address:
Yingbo Han
College of Mathematics and Information Science,
Xinyang Normal University, Xinyang,464000, Henan, China.
E-mail, yingbohan@163.com

[^0]: Balkan Journal of Geometry and Its Applications, Vol.21, No.1, 2016, pp. 42-50
 (c) Balkan Society of Geometers, Geometry Balkan Press 2016.

