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Abstract. In the paper it is shown that in order to prove the conformality
of a given diffeomorphism between Riemannian manifolds it is enough to
limit investigation to the conformal modules of some special families of
curves. The main result (Theorem 1.1) asserts that a sufficient condition
for the conformality of a diffeomorphism is the conservation of n-modules
of a family of mutually orthogonal 1-dimensional foliations.
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1 Introduction

The module is a geometric quantity whose origins lie in physics (can be treated as a
generalization of the capacity of a condenser). It is the inverse of the extremal length,
that was introduced by L.Ahlfors and H.Berling [2] at the beginning of 50s. During
the following years, it was subjected to several generalizations. Briefly, owing to the
notion of the module of a family of k-dimensional surfaces in Rn [5], it was possible
to define the p-module of a family of submanifolds of a Riemannian manifold (see: [9]
and Definition 2.2 in this paper). In particular, one can consider the p-module of a
k-dimensional foliation.

The module of a family of curves or, more generally, hypersurfaces, is a conformal
invariant that played the fundamental role in the study of the geometric properties
of diffeomorphisms. In particular, it was used by several authors for characterisation
of conformal and quasiconformal mappings ([1], [11]). The conformality criterions
(see: [2, 6, 8, 11]), either local or global, demanded that modules of all such families
be conserved. However, one can notice that in order to ensure the conformality of
a mapping, it is enough to control its distortion in a sufficient number of directions.
Thus, a natural candidate for a tool for verification of conformality are the modules
of mutually orthogonal foliations. We proved that the sufficient condition for the
conformality of a diffeomorphism is the conservation of n-modules of a family of
mutually orthogonal 1-dimensional foliations.
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Theorem 1.1. Let M and N be n-dimensional Riemannian manifolds, and f :M →
N - a diffeomorphism. Assume that for every x ∈ M there exists a neighborhood
U ∋ x and mutually orthogonal 1-dimensional foliations F1, ...,Fn on U , such that
the foliations f(Fi) (i = 1, ..., n) on f(U) are also mutually orthogonal and f locally
preserves n-modules of Fi. Then f is conformal.

The assumption of the existence of these foliations is not so restrictive. It is
fulfilled, e.g., on every smooth, n-dimensional Riemannian manifold that locally can be
isometrically embedded in Rn+1 in such a way, that it consists of strongly unumbilical
points (see: Corollary 3.3).

2 Preliminaries

Module of a family of submanifolds

Let us consider a n-dimensional, smooth Riemannian manifold (M, g) with the Lebesgue
measure µM .

Definition 2.1. We say that a family M of submanifolds of M is of measure zero
if µM ( ∪

L∈M
L) = 0. We write that a given property holds for almost every element

of a family M if the set of elements for which it does not hold has measure zero.

Set k ∈ N , 0 < k < n.

Definition 2.2. (Compare also [5]).Denote by M a family of smooth, k-dimensional
submanifolds of M . We call the function f p-admissible (p ≥ 1) for M with respect
to M (writing: f ∈ admp(M,M)) if

1. f ∈ Lp(M)

2. f ≥ 0 almost everywhere on M

3.
∫
L
fdµL ≥ 1 for almost every element L ∈ M.

The p-module of M is the number:

modp(M,M) = inf
f∈admp(M,M)

||f ||Lp(M),

(setting: modp(M,M) = ∞ if admp(M,M) = f� ).

Definition 2.3. A p-admissible function f0 is called p-extremal if

||f0||Lp(M) = modp(M,M).

It is a direct consequence of the above definition that if N is an open submanifold of
M , such that

∪
M ⊂ N , then

modp(N ,M) = modp(N , N).

So we will write modp(M) instead of modp(M,M) and admp(M) instead of admp(M,M).
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Module of a foliation

Definition 2.4. A k-dimensional foliation is a decomposition ofM into a family F of
disjoint, connected submanifolds of dimension k with the property that for every point
x ∈M there exists a neighborhood D of x and a chart φ = (φ1, φ2, . . . , φn) : D → Rn,
such that φ(D) is an open cube and for every L ∈ F , satisfying: L ∩D ̸= 0,

φ1
|L = const,

...

φj
|L = const,

and

φj+k+1
|L = const,

...
φn
|L = const,

for a given j ∈ {0, ..., n − k}. The elements of F are called leaves and φ is named a
foliated chart for F .

Definition 2.5. Two families of submanifolds M1 and M2 are called transversal,
if for arbitrary two elements L1 ∈ M1, L2 ∈ M2 and for every point x ∈ L1 ∩ L2,
TxL1 ∩ TxL2 = 0.

Definition 2.6. Let F1, ...,Fk be mutually transversal foliations ofM , of dimensions
n1, .., nk such that n1 + ... + nk = n. By a n-(foliated) chart we will understand a
chart which is a foliated chart of every foliation Fi.

The following fact is a straightforward generalization of the Theorem 5.1.4 from [4]:

Theorem 2.1. Let F1, ...,Fn be mutually transversal, 1-dimensional foliations of M .
Then for every x ∈ M there exists an n-chart (defined) in the neighborhood of this
point.

We will use the following

Definition 2.7. LetM , N be smooth manifolds and ϕ :M → N - such a submersion,
that for every y ∈ N the preimage ϕ−1(y) is connected. We will call a foliation whose
leaves are: Ly = ϕ−1(y), y ∈ N a foliation given by the submersion.

Definition 2.8. If M and N are Riemannian, the Jacobian Jϕ of the submersion
ϕ is a function that assigns to every x ∈ M the Jacobian of the isomorphism:
ϕ∗(x)|ker(ϕ∗(x))

⊥ .

The next theorem, being a more exact version of that one in [9], specifies the
formula for the module of a foliation given by the submersion.

Theorem 2.2. If a foliation F of M is given by the submersion ϕ and for almost

every y ∈ ϕ(M),
∫
Ly
J

1
p−1

ϕ (x)dµLy <∞, then for p > 1

(2.1) modpp(F) =

∫
ϕ(M)

( ∫
Ly

J
1

p−1

ϕ (x)dµLy

)1−p
dµϕ(M).

If modp(F) <∞ then there exists an extremal function f0 :M → R,

(2.2) f0(x) =
Jϕ(x)

1
p−1∫

Ly
J

1
p−1

ϕ (x)dµLy

,

where y ∈ ϕ(M) is the only point such that x ∈ ϕ−1(y).
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Proof. Take an arbitrary f ∈ admp(F). According to the Fubini’s theorem (see for
example [10]),

(2.3)

∫
M

|f(x)|pdµM =

∫
ϕ(M)

(

∫
Ly

|f(x)|p 1

Jϕ(x)
dµLy )dµϕ(M).

Since f ∈ admp(F),

(

∫
Ly

|f(x)|dµLy )
p ≥ 1

for a.e. y ∈ ϕ(M). Applying Hölder’s inequality to the left side of the latter inequality,
we get: ∫

Ly

|f(x)|p 1

Jϕ(x)
dµLy · (

∫
Ly

J
1

p−1

ϕ (x)dµLy )
p−1 ≥ 1,

so, from (2.3),

(2.4) modpp(F) ≥
∫
ϕ(M)

(

∫
Ly

J
1

p−1

ϕ (x)dµLy )
1−pdµϕ(M).

On the other hand, one can notice that if the right-hand side of (2.3) is finite, then

f0(x) =
J

1
p−1

ϕ (x)∫
Ly
J

1
p−1

ϕ (x)dµLy

is admissible for F . Indeed, the positivity of the Jacobian Jϕ (ϕ is a submersion) and

the assumption that
∫
Ly
J

1
p−1

ϕ (x)dµLy < ∞ for a.e. y ∈ ϕ(M), imply that f0 > 0

almost everywhere and

∫
Ly

f0dµLy =

∫
Ly

J
1

p−1

ϕ (x)∫
Ly
J

1
p−1

ϕ (x)dµLy

= 1

for a.e. y ∈ ϕ(M). Moreover,

∥ f0 ∥pLp(M)=
∫
M

|f0(x)|pdµm =
∫
ϕ(M)

(
∫
Ly

|f0(x)|p 1
Jϕ(x)

dµLy )dµϕ(M) =∫
ϕ(M)

(
∫
Ly

J
1

p−1
ϕ (x)

(
∫
Ly

J
1

p−1
ϕ (x)dµLy )

p

dµLy )dµϕ(M) =
∫
ϕ(M)

(
∫
Ly
J

1
p−1

ϕ (x)dµLy )
1−pdµϕ(M) <∞.

Therefore f0 ∈ admp(F) and

(2.5) modpp(F) ≤
∫
ϕ(M)

(

∫
Ly

J
1

p−1

ϕ (x)dµLy )
1−pdµϕ(M).

The above inequality together with (2.4) gives the thesis. �
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3 Module and conformality

Module as a conformal invariant

Definition 3.1. Let (M, g) and (N,h) be Riemannian manifolds. A diffeomorphism
f : M → N is called conformal if there exists a function λ : M → R, such that
f∗h = λ2g (where (f∗h)(x)(X,Y ) = h(f(x))(f∗(X), f∗(Y )) for arbitrary x ∈ M and
X,Y ∈ TxM).

The following fact specifies a well known necessary condition for conformality (see:
[6],[7], etc.)

Theorem 3.1. Let M be a family of k-dimensional submanifolds of M . Assume that
f :M → N is a conformal diffeomorphism. Then for p = n

k ,

modp(M) = modp(f(M)).

On the other hand, our Thorem 1.1 specifies a sufficient condition for conformality.

Proof of Theorem 1.1

Before presenting the proof, we need an auxiliary

Definition 3.2. LetM and N be n-dimensional Riemannian manifolds, and f :M →
N - a diffeomorphism. Denote by F1, ...,Fn mutually transversal, one dimensional
foliations of M . We write that f locally preserves p-modules of these foliations, if for
every point x ∈ M and every neighborhood U ∋ x, there exists D ⊂ U , x ∈ D, such
that D is the domain of some n-chart and for every i, modp(Fi|D) = modp(f(Fi|D)).

Proof of Theorem 1.1. Suppose that there exists a point x ∈ M , at which f is not
conformal. Choose an orthonormal basis e1(x), ..., en(x) of TxM , such that ei(x) ∈
TxLi. Denote y = f(x) and let e

′

1(y), ..., e
′

n(y) be an orthonormal basis of TyN , with

the property that e
′

i(y) ∈ Tyf(Li) and such that the deformation coefficient λi(x) of

f (f∗(ei(x)) = λi(x)e
′

i(y)) in the direction TxLi is positive.

Since it was supposed that f is not conformal at x, we can find an index j ∈
{1, ..., n}, such that λj(x) < Jf (x)

1
n (where Jf denotes the Jacobian of f). Further-

more, it remains true also in some neighborhood W ⊂ U of x.

Now let D ⊂W be such a neighborhood of x, that there exists an n-chart ϕ : D →
Rn. Thus, for every j ∈ {1, ..., n}, Fj |D is given by a submersion related with ϕ (that
is the projection of ϕ onto the coordinates i = 1, .., j− 1, j+1, .., n), whereas f(Fj |D)
is given by an analogical submersion related with ψ|f(D). On the basis of Theorem

2.2, all the considered foliations have extremal functions on D. Let vj and v
′

j be
extremal functions of Fj |D and f(Fj |D), respectively. Denote by Lj a leaf of Fj |D,

and by L
′

j - a leaf of f(Fj |D). From the assumption: modn(Fj |D) = modn(f(Fj |D))
and by the change of variables, we get:∫

D

(vj)
ndµM =

∫
f(D)

(v
′

j)
ndµN =

∫
D

(v
′

j)
n ◦ fJfdµM .
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Owing to this sequence equalities, we see that the function (v
′

j ◦ f) · J
1
n

f realizes the
n-module of Fj |D, so it would be an extremal function, if only it was n-admissible.
Since

(3.1) 1 ≤
∫
L

′
j

v
′

jdµL
′
j
=

∫
Lj

v
′

j ◦ fλjdµLj <

∫
Lj

v
′

j ◦ fJ
1
n

f dµLj ,

so (v
′

j ◦f)·J
1
n

f is n-admissible. On the other hand, we know that that the integral from
the extremal function (see: [3]) over almost every leaf is equal to 1. Thus, from (3.1),

the function (v
′

j ◦ f) · J
1
n

f cannot be extremal. Contradiction. �

Conclusions

We will see that the assumption of the existence of the foliations specified in Theorem
1.1 is not very restrictive.

Definition 3.3. Let M be a smooth, n-dimensional submanifold embedded in Rn+1.
Fix a smooth field N of unit normal vectors, defined in some neighborhood of p ∈M .
Recall that the shape operator at p is the operator Sp : TpM → TpM defined on
X ∈ TpM as Sp(X) = −(DXN)p We say that the point p is strongly unumbilical if
the shape operator Sp has n different eignevalues.

Proposition 3.2. Let M be a smooth n-dimensional Riemannian manifold isometri-
cally embedded in Rn+1, such that all its points are strongly unumbilical. Then there
exist n mutually orthogonal 1-dimensional foliations on M .

Proof. Take any p ∈M . Since p is strongly unumbilical, the shape operator in p has
n different eigenvalues, each of the multiplicity 1. Moreover, the eigenvalues can be
ordered globally. Thus they generate a system of smooth 1-dimensional distributions
that are defined globally and determine the desired system of foliations. �

Corollary 3.3. If M is a smooth n-dimensional Riemannian manifold that locally
can be isometrically embedded in Rn+1 in such a way that this imbedding consists only
of strongly unumbilical points, then around every point of M there exist n mutually
orthogonal foliations.
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