Integral formulae for codimension-one foliated Finsler manifolds

V. Rovenski, P. Walczak

Abstract

We study extrinsic geometry of a codimension-one foliation \mathcal{F} of a Finsler space (M, F), in particular, of a Randers space $(M, \alpha+\beta)$. Using a unit vector field ν orthogonal (in the Finsler sense) to the leaves of \mathcal{F}, we define a new Riemannian metric g on M, which for Randers case depends nicely on (α, β). For that g we derive several geometric invariants of \mathcal{F} (e.g. the Riemann curvature and the shape operator) in terms of F; then under natural assumptions on β which simplify derivations, we express them in terms of invariants arising from α and β. Using our approach of [13], we produce the integral formulae for \mathcal{F} of closed (M, F) and $(M, \alpha+\beta)$, which relate integrals of mean curvatures with those involving algebraic invariants obtained from the shape operator of \mathcal{F} and the Riemann curvature in the direction ν. They generalize formulae by Brito-Langevin-Rosenberg (that total mean curvatures of any order for a foliated closed Riemannian space of constant curvature don't depend on a choice of \mathcal{F}).

M.S.C. 2010: 53C12, 53C21.

Key words: Finsler space; Randers norm; foliation; Riemann curvature; integral formula; shape operator; Cartan torsion; variation formula.

1 Introduction

Two recent decades brought increasing interest in Finsler geometry (see [2, 4, 15] and the bibliographies therein), in particular, in extrinsic geometry of hypersurfaces of Finsler manifolds (see the items above and, for example, [14]). Among all the Finsler structures, Randers metrics (introduced in [9] and being the closest relatives of Riemannian ones) play an important role.

Extrinsic geometry of foliated Riemannian manifolds is also of definite interest since some time (see [11, 12] and, again, the bibliographies therein). Among other topics of interest, one can find a number of papers devoted to so called integral formulae (see surveys in $[12,1]$), which provide obstructions for existence of foliations

[^0](or compact leaves of them) with given geometric properties. A series of integral formulae has been provided in [13]. They include the formulae in [10] that the total mean curvature of the leaves is zero, and generalize the formulae in [3], which show that total mean curvatures (of arbitrary order k) for codimension-one foliations on a closed ($m+1$)-dimensional manifold of constant sectional curvature K depend only on K, k, m and the volume of the manifold, not on a foliation. One of such formulae was used in [7] to prove that codimension-one foliations of a closed Riemannian manifold of negative Ricci curvature are far (in a sense defined there) from being umbilical.

In this paper we study extrinsic geometry of a codimension-one transversely oriented foliation \mathcal{F} of a closed Finsler space (M, F), in particular, of a Randers space $(M, \alpha+\beta), \alpha$ being the norm of a Riemannian structure a and β a 1 -form of α-norm smaller than 1 everywhere on M. Using a unit normal ν (in the Finsler sense) to the leaves of \mathcal{F} we define a new Riemannian structure g on M, which in Randers case depends nicely on α and β. For that g, we derive several geometric invariants of \mathcal{F} (e.g. the Riemann curvature and the shape operator) in terms of F; under natural assumptions on β which simplify derivations, we express them in terms of corresponding invariants arising from α and some quantities related to β. Then, using the approach of [13], we produce the integral formulae for \mathcal{F} on (M, F) and $(M, \alpha+\beta)$; some of them generalize the formulae in [3].

Our formulae relate integrals of σ_{i} 's with those involving algebraic invariants (see Appendix) obtained from $A_{p}(p \in M)$ - the shape operator of a foliation \mathcal{F}, R_{p} - the Riemann curvature in the direction ν normal to \mathcal{F}, and their products of the form $\left(R_{p}\right)^{j} A_{p}, j=1,2, \ldots$ In fact, we get a bit more: we produce an infinite sequence of such formulae for a smooth unit vector field ν on M involving these algebraic invariants. To simplify calculations, we work on locally symmetric $(\nabla R=0$ with respect to g) Finsler manifolds, where our approach can be applied with the full force (Section 3). We show that our formulae reduce to these in [3] in the case of constant curvature and to those in [13] in the Riemannian case. Using Finsler geometry of Randers spaces we produce also (Section 4) integral formulae on codimension-one foliated Riemannian manifolds which involve not only A_{p} 's and R_{p} 's but also an auxiliary 1-form β.

We discuss a number of particular cases and provide consequences of our new formulae.

2 Preliminaries

Recall Euler's Theorem: If a function f on \mathbb{R}^{m+1} is smooth away from the origin of \mathbb{R}^{m+1} then the following two statements are equivalent:

- f is positively homogeneous of degree r, that is $f(\lambda y)=\lambda^{r} f(y)$ for all $\lambda>0$;
- the radial derivative of f is r times f, namely, $f_{y^{i}}(y) y^{i}=r f(y)$.

The obvious consequence of Euler's Theorem helps us to represent several formulae in what follows:

Corollary 2.1. If a smooth function f on $\mathbb{R}^{m+1} \backslash\{0\}$ obeys the 2-homogeneity condition $f(\lambda y)=\lambda^{2} f(y)$ for $\lambda>0$ then $f(y)=\frac{1}{2} f_{y^{i} y^{j}}(y) y^{i} y^{j}$ for smooth functions $f_{y^{i} y^{j}}$ on $\mathbb{R}^{m+1} \backslash\{0\}$.

Proof. By Euler's Theorem, $f_{y^{i}}(y) y^{i}=2 f(y)$. Since $f_{y^{i}}(\lambda y)=\lambda f_{y^{i}}(y)$, by Euler's Theorem, we have $f_{y^{i}}(y)=f_{y^{i} y^{j}}(y) y^{j}$.

2.1 The Minkowski and Randers norms

Definition 2.1 (see [15]). A Minkowski norm on a vector space \mathbb{R}^{m+1} is a function $F: \mathbb{R}^{m+1} \rightarrow[0, \infty)$ with the following properties (of regularity, positive 1-homogeneity and strong convexity):
$\mathrm{M}_{1}: F \in C^{\infty}\left(\mathbb{R}^{m+1} \backslash\{0\}\right), \quad \mathrm{M}_{2}: F(\lambda y)=\lambda F(y)$ for all $\lambda>0$ and $y \in \mathbb{R}^{m+1}$,
M_{3} : For any $y \in \mathbb{R}^{m+1} \backslash\{0\}$, the following symmetric bilinear form is positive definite on \mathbb{R}^{m+1} :

$$
\begin{equation*}
g_{y}(u, v)=\frac{1}{2} \frac{\partial^{2}}{\partial s \partial t}\left[F^{2}(y+s u+t v)\right]_{\mid s=t=0} \tag{2.1}
\end{equation*}
$$

By $\left(\mathrm{M}_{2}\right), g_{\lambda y}=g_{y}$ for all $\lambda>0$. By $\left(\mathrm{M}_{3}\right),\left\{y \in \mathbb{R}^{m+1}: F(y) \leq 1\right\}$ is a strictly convex set. Note that

$$
\begin{equation*}
g_{y}(y, v)=\frac{1}{2} \frac{\partial}{\partial t}\left[F^{2}(y+t v)\right]_{\mid t=0}, \quad g_{y}(y, y)=F^{2}(y) \tag{2.2}
\end{equation*}
$$

One can check that $F(u+v) \leq F(u)+F(v)$ (the triangle inequality) and $F_{y^{i}}(y) u^{i} \leq$ $F(u)$ (the fundamental inequality) for all $y \in \mathbb{R}^{m+1} \backslash\{0\}$ and $u, v \in \mathbb{R}^{m+1}$. By Corollary 2.1, we have $F^{2}(y)=g_{i j}(y) y^{i} y^{j}$, where $g_{i j}=\frac{1}{2}\left[F^{2}\right]_{y^{i} y^{j}}=F F_{y^{i} y^{j}}+F_{y^{i}} F_{y^{j}}$ are smooth functions in $\mathbb{R}^{m+1} \backslash\{0\}$ which, in general, cannot be extended continuously to all of \mathbb{R}^{m+1}. The following symmetric trilinear form C for Minkowski norms is called the Cartan torsion:

$$
\begin{equation*}
C_{y}(u, v, w)=\frac{1}{2} \frac{\partial}{\partial t}\left[g_{y+t w}(u, v)\right]_{\mid t=0} \quad \text { where } \quad y \in \mathbb{R}^{m+1} \backslash\{0\}, u, v, w \in \mathbb{R}^{m+1} \tag{2.3}
\end{equation*}
$$

The homogeneity of F implies the following:

$$
C_{y}(u, v, w)=\frac{1}{4} \frac{\partial^{3}}{\partial r \partial s \partial t}\left[F^{2}(y+r u+s v+t w)\right]_{\mid r=s=t=0}, \quad C_{\lambda y}=\lambda^{-1} C_{y} \quad(\lambda>0) .
$$

We have $C_{y}(y, \cdot, \cdot)=0$. The mean Cartan torsion is given by $I_{y}(u):=\operatorname{Tr} C_{y}(\cdot, \cdot, u)$. Observe that

$$
C_{i j k}:=C\left(\partial_{y^{i}}, \partial_{y^{j}}, \partial_{y^{k}}\right)=\frac{1}{2} \frac{\partial}{\partial y^{k}} g_{i j}=\frac{1}{4}\left[F^{2}\right]_{y^{i} y^{j} y^{k}}, \quad I_{k}=g^{i j} C_{i j k}
$$

Let $\left(b_{i}\right)$ be a basis for \mathbb{R}^{m+1} and $\left(\theta^{i}\right)$ the dual basis in $\left(\mathbb{R}^{m+1}\right)^{*}$. The BusemannHausdorff volume form is defined by $\mathrm{d} V_{F}=\sigma_{F}(x) \theta^{1} \wedge \cdots \wedge \theta^{m+1}$, where $\sigma_{F}=\frac{\mathrm{vol} \mathbb{B}^{m+1}}{\mathrm{vol} B^{m+1}}$. Here $\mathbb{B}^{m+1}:=\left\{y \in \mathbb{R}^{m+1}:\|y\|<1\right\}$ is a Euclidean unit ball, and vol B^{m+1} is the Euclidean volume of a strongly convex subset $B^{m+1}:=\left\{y \in \mathbb{R}^{m+1}: F\left(y^{i} b_{i}\right)<1\right\}$ (so that for the unit cubic $\left.\mathcal{U}=[0,1]^{m+1}, \operatorname{vol} \mathcal{U}=1\right)$.

The distortion of F is defined by $\tau(y)=\log \left(\sqrt{\operatorname{det} g_{i j}(y)} / \sigma_{F}\right)$. It has the 0 homogeneity property: $\tau(\lambda y)=\tau(y)(\lambda>0)$, and $\tau=0$ for Riemannian spaces.

The angular form is defined by $h_{y}(u, v)=g_{y}(u, v)-F(y)^{-2} g_{y}(y, u) g_{y}(y, v)$. Observe that $h_{y}(u, u) \geq g_{y}(u, u)-F(y)^{-2} g_{y}(y, y) g_{y}(u, u)=0$ and equality holds if and only if $u \| y$.

A vector $n \in \mathbb{R}^{m+1}$ is called a normal to a hyperplane $W \subset \mathbb{R}^{m+1}$ if $g_{n}(n, w)=$ $0(w \in W)$. There are exactly two normal directions to W, see [15], which are opposite when F is reversible (i.e., $F(-y)=F(y)$ for all $y \in \mathbb{R}^{m+1}$).
Definition 2.2. Let $a(\cdot, \cdot)=\langle\cdot, \cdot\rangle$ be a scalar product and $\alpha(y)=\|y\|_{\alpha}=\sqrt{\langle y, y\rangle}$ for $y \in \mathbb{R}^{m+1}$ the corresponding Euclidean norm on \mathbb{R}^{m+1}. If β is a linear form on \mathbb{R}^{m+1} with $\|\beta\|_{\alpha}<1$ then the following function F is called the Randers norm:

$$
\begin{equation*}
F(y)=\alpha(y)+\beta(y)=\sqrt{\langle y, y\rangle}+\beta(y) \tag{2.4}
\end{equation*}
$$

For Randers norm (2.4) on \mathbb{R}^{m+1}, the bilinear form g_{y} obeys, see [15],

$$
\begin{align*}
g_{y}(u, v) & =\alpha^{-2}(y)(1+\beta(y))\langle u, v\rangle+\beta(u) \beta(v) \\
& -\alpha^{-3}(y) \beta(y)\langle y, u\rangle\langle y, v\rangle+\alpha^{-1}(y)(\beta(u)\langle y, v\rangle+\beta(v)\langle y, u\rangle) \tag{2.5}\\
\operatorname{det} g_{y} & =(F(y) / \alpha(y))^{m+2} \operatorname{det} a . \tag{2.6}
\end{align*}
$$

Let $N \in \mathbb{R}^{m+1}$ be a unit normal to a hyperplane W in \mathbb{R}^{m+1} with respect to $\langle\cdot, \cdot\rangle$, i.e.,

$$
\langle N, w\rangle=0 \quad(w \in W), \quad \alpha(N)=\|N\|_{\alpha}=\sqrt{\langle N, N\rangle}=1
$$

Let n be a vector F-normal to W, lying in the same half-space with N and such that $\|n\|_{\alpha}=1$. Set

$$
g(u, v):=g_{n}(u, v), \quad u, v \in \mathbb{R}^{m+1}
$$

Then $g(n, n)=F^{2}(n)$, see (2.2), and $F(n)=1+\beta(n)$.
The 'musical isomorphisms' \sharp and b will be used for rank one tensors and symmetric rank 2 tensors on $\left(\mathbb{R}^{m+1}, a\right)$ and Riemannian manifolds. For example, if β is a 1 -form on \mathbb{R}^{m+1} and $v \in \mathbb{R}^{m+1}$ then $\left\langle\beta^{\sharp}, u\right\rangle=\beta(u)$ and $v^{b}(u)=\langle v, u\rangle$ for any $u \in \mathbb{R}^{m+1}$.
Lemma 2.2. If the Randers norm obeys $\beta(N)=0$ (i.e., $\beta^{\sharp} \in W$) then

$$
\begin{align*}
n & =c N-\beta^{\sharp} \tag{2.7}\\
g(u, v) & =c^{2}(\langle u, v\rangle-\beta(u) \beta(v)), \quad u, v \in W \tag{2.8}\\
g(n, n) & =c^{4}, \quad g(n, v)=0 \tag{2.9}
\end{align*}
$$

where $c:=\left(1-\|\beta\|_{\alpha}^{2}\right)^{1 / 2}>0$. The vector $\nu=c^{-2} n$ is an F-unit normal to W.
Proof. For arbitrary β and $y=n$ and $\alpha(n)=1$, the formula (2.5) reads

$$
\begin{equation*}
g(u, v)=(1+\beta(n))\langle u, v\rangle+\beta(u) \beta(v)-\beta(n)\langle n, u\rangle\langle n, v\rangle+\beta(u)\langle n, v\rangle+\beta(v)\langle n, u\rangle \tag{2.10}
\end{equation*}
$$

Assuming $u=n$, from (2.10) we find

$$
\begin{equation*}
g(n, v)=(1+\beta(n))\left\langle n+\beta^{\sharp}, v\right\rangle . \tag{2.11}
\end{equation*}
$$

Note that $|\beta(n)|=\left|\left\langle\beta^{\sharp}, n\right\rangle\right| \leq \alpha\left(\beta^{\sharp}\right) \alpha(n)<1$; hence, $1+\beta(n)>0$. We find from (2.11) with $v \in W$ that $n+\beta^{\sharp}=\hat{c} N$ for some $\hat{c}>0$. Using $1=\langle n, n\rangle=\hat{c}^{2}-$ $2 \hat{c} \beta(N)+\|\beta\|_{\alpha}^{2}$, we get two values

$$
\hat{c}=\beta(N) \pm\left(\beta(N)^{2}+c^{2}\right)^{1 / 2}
$$

By condition $\beta(N)=0$ we have $\beta^{\sharp} \in W$, this yields $\hat{c}=c$ and (2.7). Thus,

$$
\beta(n)=\beta\left(c N-\beta^{\sharp}\right)=-\|\beta\|_{\alpha}^{2}, \quad 1+\beta(n)=c^{2} .
$$

Finally, (2.8) follows from (2.10).
Lemma 2.3. Let the Randers norm obeys $\beta(N)=0$ (i.e., $\beta^{\sharp} \in W$). If $u, U \in W$ and

$$
\begin{equation*}
g(u, v)=\langle U, v\rangle \quad \text { for all } \quad v \in W \tag{2.12}
\end{equation*}
$$

then $\beta(u)=c^{-4} \beta(U)$ and

$$
\begin{equation*}
c^{2} u=U+c^{-2} \beta(U) \beta^{\sharp} . \tag{2.13}
\end{equation*}
$$

Proof. By (2.8), we have

$$
g(u, v)=c^{2}\left\langle u-\beta(u) \beta^{\sharp}, v\right\rangle .
$$

Then from (2.12), since u, U and β^{\sharp} belong to W, we obtain

$$
u-\beta(u) \beta^{\sharp}=c^{-2} U
$$

Applying β we get $\beta(u)-\beta(u)\|\beta\|_{\alpha}^{2}=c^{-2} \beta(U), \beta(u)=c^{-4} \beta(U)$ and then (2.13).

2.2 Finsler spaces

Let M^{m+1} be a connected smooth manifold and $T M$ its tangent bundle. The natural projection $\pi: T M_{0} \rightarrow M$, where $T M_{0}:=T M \backslash\{0\}$ is called the slit tangent bundle. A Finsler structure on M is a Minkowski norm F in tangent spaces $T_{p} M$, which smoothly depends on a point $p \in M$. Note that π_{*} maps the double tangent bundle $T^{2} M$ into $T M$ itself.

A spray on a manifold M is a smooth vector field \mathbb{G} on $T M_{0}$ such that

$$
\begin{equation*}
\pi_{*}\left(\mathbb{G}_{v}\right)=v, \quad \mathbb{G}_{\lambda v}=\lambda\left(h_{\lambda}\right)_{*}\left(\mathbb{G}_{v}\right) \quad\left(v \in T M_{0}, \lambda>0\right) \tag{2.14}
\end{equation*}
$$

where $h_{\lambda}: v \mapsto \lambda v$ is the homothety of $T M$. The meaning of $(2.14)_{1}$ is that \mathbb{G} is a second-order vector field over M, and $(2.14)_{2}$ is the homogeneous quadratic condition. In local coordinates $\left(x^{i}\right), \mathbb{G}$ is expressed as $\mathbb{G}(y)=y^{i} \partial_{x^{i}}-2 G^{i} \partial_{y^{i}}$, where $G^{i}(\lambda y)=$ $\lambda^{2} G^{i}(y)(\lambda>0)$.

Using \mathbb{G} we define the following notions: covariant derivative, parallel translation (and parallel vectors) along a curve, geodesics and curvature. A curve $\gamma(t)$ in $T M_{0}$ satisfying $\dot{\gamma}=\mathbb{G}_{\gamma}$ is an integral curve of \mathbb{G}; it is equal to the canonical lift of $c:=$ $\pi \circ \gamma$. The covariant derivative of a vector field $u(t)$ along a curve $c(t)$ in M is given by $D_{\dot{c}} u=\left\{\dot{u}^{i}+\Gamma_{k j}^{i}(\dot{c}) \dot{c}^{k} u^{j}\right\} \partial_{x^{i} \mid c}$. Here $G^{i}=\frac{1}{2} \Gamma_{k j}^{i} y^{k} y^{j}$ for smooth functions $\Gamma_{k j}^{i}=\left(G^{i}\right)_{y^{k} y^{j}}$ on $T M_{0}$, see Corollary 2.1. The following properties are obvious:

$$
D_{\dot{c}}(u+v)=D_{\dot{c}} u+D_{\dot{c}} v, \quad D_{\dot{c}}(f u)=\dot{c}(f) u+f D_{\dot{c}} u, \quad D_{\lambda \dot{c}} u=\lambda D_{\dot{c}} u
$$

for any $f \in C^{\infty}(M)$ and $\lambda>0$, see [15]. A vector field $u(t)$ along c is parallel if $D_{\dot{c}} u(t) \equiv 0$, i.e.,

$$
\dot{u}^{i}+\Gamma_{k j}^{i}(\dot{c}) \dot{c}^{k} u^{j}=0 \quad(i \geq 1)
$$

A curve $c(t)$ in M is called a geodesic of \mathbb{G} if it is a projection of an integral curve of \mathbb{G}; hence, $\ddot{c}=\mathbb{G}_{\dot{c}}$. A curve $c(t)$ is a geodesic if and only if the tangent vector $u=\dot{c}$ is parallel along itself: $D_{\dot{c}} \dot{c}=0$. For a geodesic $c(t)$ we have the following quasilinear system of second order ODEs

$$
\ddot{c}^{i}+2 G^{i}(\dot{c})=0, \quad i=1, \ldots, m+1 .
$$

A Finsler metric F on M induces a Finsler spray \mathbb{G} on $T M_{0}$, whose geodesics are locally shortest paths connecting endpoints and have constant speed. Its geodesic coefficients are given by

$$
G^{i}=\frac{1}{4} g^{i l}\left(\left[F^{2}\right]_{x^{k} y^{l}} y^{k}-\left[F^{2}\right]_{x^{l}}\right)=\frac{1}{4} g^{i l}\left(2 \frac{\partial g_{j l}}{\partial x^{k}}-\frac{\partial g_{j k}}{\partial x^{l}}\right) y^{j} y^{k},
$$

see [15]. Here $g_{i j}(y)=\frac{1}{2}\left[F^{2}\right]_{y^{i} y^{j}}(y)$, compare (2.1). Then $\Gamma_{k j}^{i}(y)=\frac{1}{2} g^{i l}\left(\frac{\partial g_{j l}}{\partial x^{k}}+\frac{\partial g_{k l}}{\partial x^{j}}-\right.$ $\left.\frac{\partial g_{j k}}{\partial x^{l}}\right)$ are homogeneous of 0-degree functions on $T M_{0}$.
Remark 2.3. A Finsler metric on a manifold M is called a Berwald metric if in any local coordinate system (x, y) in $T M_{0}$, the Christoffel symbols $\Gamma_{j k}^{i}$ are functions on M only, in which case the geodesic coefficients $G^{i}=\frac{1}{2} \Gamma_{k j}^{i}(x) y^{k} y^{j}$ are quadratic in $y=y^{i} \partial_{x^{i}}$. On a Berwald space, the parallel translation along any geodesic preserves the Minkowski functionals; thus, such spaces can be viewed as Finsler spaces modeled on a single Minkowski space. Berwald metrics are characterized among Randers ones, $F=\alpha+\beta$, by the following criterion: β is parallel with respect to α, see $[15$, Theorem 2.4.1]. If β is a closed 1 -form, then Finslerian geodesics are the same (as sets) as the geodesics of the metric a.

A Finsler manifold is positively (resp. negatively) complete if every geodesic $c(t)$ on $\left(0, t_{0}\right)$ can be extended for $(0, \infty)$ (resp. $(-\infty, 0)$), and F is complete if it is both positively and negatively complete. This property is satisfied by all closed Finsler manifolds. Let (M, F) be positively complete; hence, for any $p, q \in M$ there exists a globally minimizing geodesic from p to q, see also Hopf-Rinov theorem [15, p. 178]. Let c_{y} be a geodesic with $c_{y}(0)=p$ and $\dot{c}_{y}(0)=y \in T_{p} M$. The exponential map is defined by $\exp _{p}(y)=c_{y}(1)$. By homogeneity of \mathbb{G} one has $c_{y}(t)=c_{t y}(1)$ for $t>0$; hence, $\exp _{p}(t y)=c_{y}(t)$. Recall [14] that $\exp _{p}$ is smooth on $T M_{0}$ and C^{1} at the origin with $d\left(\exp _{p}\right)_{\mid 0}=\operatorname{id}_{T_{p} M}$.

Consider a geodesic $c(t), 0 \leq t \leq 1$. A C^{∞} map $\mathcal{H}:(-\varepsilon, \varepsilon) \times[0,1] \rightarrow M$ is called a geodesic variation of c if $\mathcal{H}(0, t)=c(t)$ and for each $s \in(-\varepsilon, \varepsilon)$, the curve $c_{s}(t):=\mathcal{H}(s, t)$ is a geodesic. For a geodesic variation \mathcal{H} of c, the variation field $Y(t):=\frac{\partial \mathcal{H}}{\partial s}(0, t)$ along c satisfies the Jacobi equation:

$$
\begin{equation*}
D_{\dot{c}} D_{\dot{c}} Y+R_{\dot{c}}(Y)=0 \tag{2.15}
\end{equation*}
$$

for some $(y \in T M)$-dependent (1,1)-tensor R_{y}. Jacobi equation (2.15) serves as the definition of curvature. A vector field $Y(t)$ satisfying (2.15) along a geodesic $c(t)$ is called Jacobi field. We have $g_{\dot{c}}(Y(t), \dot{c}(t))=\lambda^{2}(a+b t)$ and $g_{\dot{c}}\left(D_{\dot{c}} Y(t), \dot{c}(t)\right)=\lambda^{2} b$ for some constants a, b and $\lambda=F(\dot{c})$. The orthogonal component $Y^{\perp}(t)=Y(t)-(a+$ $b t) \dot{c}(t)$ of the Jacobi field $Y(t)$ along $c(t)$ is also a Jacobi field such that $Y^{\perp}(t)$ and $D_{\dot{c}} Y^{\perp}(t)$ are $g_{\dot{c}}$-orthogonal to $\dot{c}(t)$. Define $R_{\dot{c}(t)}^{(1)}: T_{c(t)} M \rightarrow T_{c(t)} M$ by $R_{\dot{c}(t)}^{(1)}(u(t))=$
$D_{\dot{c}(t)}\left[R_{\dot{c}(t)}(u(t))\right]$, where $u(t)$ is a parallel vector field along c. Similarly, we define $R_{\dot{c}(t)}^{(2)}, R_{\dot{c}(t)}^{(3)}$ etc. Thus, by (2.15), a spray defines transformations $R_{y}: T_{p} M \rightarrow T_{p} M$ called the Riemann curvature in a direction $y \in T_{p} M \backslash\{0\}$, and we have $R_{y}(y)=0$ and $R_{\lambda y}=\lambda^{2} R_{y}(\lambda>0)$. In coordinates, $R_{y}=R^{i}{ }_{k} d x^{k} \partial_{x_{i}}$ and $R^{i}{ }_{k}(y) y^{k}=0$, where R_{k}^{i} 's depend on the Finsler spray only [14]:

$$
R_{k}^{i}=2\left(G^{i}\right)_{x^{k}}-y^{j}\left(G^{i}\right)_{x^{j} y^{k}}+2 G^{j}\left(G^{i}\right)_{y^{j} y^{k}}-\left(G^{i}\right)_{y^{j}}\left(G^{j}\right)_{y^{k}}
$$

Moreover, $R^{i}{ }_{k}=R_{j}{ }^{i}{ }_{k l} y^{j} y^{l}$ for local functions $\left\{R_{j}{ }^{i}{ }_{k l}\right\}=\frac{1}{2}\left(R^{i}{ }_{k}\right)_{y^{j} y^{l}}$ on $T M_{0}$ (see Corollary 2.1) and

$$
R_{j}{ }^{i}{ }_{k l}=\left(\Gamma_{j l}^{i}\right)_{x^{k}}-\left(\Gamma_{j k}^{i}\right)_{x^{l}}+\Gamma_{j l}^{m} \Gamma_{m k}^{i}-\Gamma_{j k}^{m} \Gamma_{m l}^{i} .
$$

For the Finsler spray, R_{y} is g_{y}-self-adjoint: $g_{y}\left(R_{y}(u), v\right)=g_{y}\left(u, R_{y}(v)\right), u, v \in T_{p} M$.
For a plane $P \subset T_{p} M$ tangent to M and a vector $y \in P \backslash\{0\}$, the flag curvature $K(P, y)$ is given by

$$
K(P, y)=\frac{g_{y}\left(R_{y}(u), u\right)}{g_{y}(y, y) g_{y}(u, u)-g_{y}(y, u) g_{y}(y, u)},
$$

where $u \in P$ is such that $P=\operatorname{span}\{y, u\}$; certainly, the value of $K(P, y)$ is independent of the choice of $u \in P$. If $K(P, y)$ is a scalar function on $T M_{0}$ (that holds in dimension two) then F is said to be of scalar (flag) curvature, in this case, $R_{y}(u)=K(\pi(y))\left\{g_{y}(y, y) u-g_{y}(y, y) y\right\}\left(y, u \in T M_{0}\right)$. If $K=K(\pi(y))$ (i.e., the flag curvature is isotropic) and $m \geq 2$ then $K=$ const, see [5, Lemma 7.1.1]. For each $K \in \mathbb{R}$ there exist many non-isometric Finsler metrics of constant scalar curvature K.

Let $\left\{e_{i}\right\}_{1 \leq i \leq m+1}$ be a g_{y}-orthonormal basis for $T_{p} M$ such that $e_{m+1}=y / F(y)$, and let $P_{i}=\operatorname{span}\left\{e_{i}, y\right\}$ for some $y \in T_{p} M$. Then $K\left(P_{i}, y\right)=F^{-2}(y) g_{y}\left(R_{y}\left(e_{i}\right), e_{i}\right)$. The Ricci curvature is a function on $T M_{0}$ defined as the trace of the Riemann curvature,

$$
\operatorname{Ric}(y)=\sum_{i=1}^{m} g_{y}\left(R_{y}\left(e_{i}\right), e_{i}\right)=F^{2}(y) \sum_{i=1}^{m} K\left(P_{i}, y\right)
$$

with the homogeneity property $\operatorname{Ric}(\lambda y)=\lambda^{2} \operatorname{Ric}(y)(\lambda>0)$. In a coordinate system, by Corollary 2.1 we have $\operatorname{Ric}(y)=R_{j}{ }_{j}{ }_{i k} y^{j} y^{k}=\operatorname{Ric}_{j k} y^{j} y^{k}$. A Finsler space $\left(M^{m+1}, F\right)$ is said to be of constant Ricci curvature λ (or, Einstein) if $\operatorname{Ric}(y)=$ $m \lambda F^{2}(y)\left(y \in T M_{0}\right)$, or $\operatorname{Ric}_{j k}=m \lambda g_{j k}$ in coordinates.

3 Codimension-one foliated Finsler spaces

Given a transversally oriented codimension-one foliation \mathcal{F} of a Finsler manifold $\left(M^{m+1}, F\right)$, there exists a globally defined F-normal (to the leaves) smooth vector field n which defines a Riemannian metric $g:=g_{n}$ with the Levi-Civita connection ∇. We have $g(n, u)=0(u \in T \mathcal{F})$ and $g(n, n)=F^{2}(n)$, see (2.9). Then $\nu=n / F(n)$ is an F-unit normal.

3.1 The Riemann curvature and the shape operator

In this section we apply the variational approach to find a relationship between the Riemann curvature of F and g. It generalizes the following.

Proposition 3.1 (see [15]). Let Y be a geodesic field on an open subset \mathcal{U} in a Finsler space (M, F) and $\hat{g}:=g_{Y}$ the induced metric on \mathcal{U}. Then the Riemann curvature of F and $\hat{F}:=\sqrt{\hat{g}}$ obey $R_{Y}=\hat{R}_{Y}$. Moreover, Y is a geodesic field of \hat{F} and for the Levi-Civita connection we have $D_{Y} X=\hat{D}_{Y} X$.

For a codimension-one Riemannian foliation, a unit normal ν is a geodesic vector field; hence, by Proposition 3.1, transformations R_{ν} defined for F by (2.15) coincide with the Jacobi operator $R(\cdot, \nu) \nu$ of the metric g. Recall that the second differential is defined by $\nabla_{u, v}^{2}=\nabla_{u} \nabla_{v}-\nabla_{\nabla_{u} v}$ for any u, v.

Let $Y_{t}(|t| \leq \varepsilon)$ be a smooth family of F-unit vector fields on an open subset \mathcal{U} in (M, F). Put $\dot{Y}_{t}=\partial_{t} Y_{t}$ and $\dot{g}_{t}=\partial_{t} g_{t}$, where $g_{t}:=g_{Y_{t}}$ is a family of metrics on \mathcal{U}. By definition (2.3) of the Cartan torsion, we have

$$
\begin{equation*}
\dot{g}_{t}=2 C_{Y_{t}}\left(\cdot, \cdot,, \dot{Y}_{t}\right) \tag{3.1}
\end{equation*}
$$

Note that $\dot{g}_{t}\left(Y_{t}, \cdot\right)=2 C_{Y_{t}}\left(Y_{t}, \cdot, \dot{Y}_{t}\right)=0$.
Proposition 3.2. Let $Y_{t}(|t| \leq \varepsilon)$ doesn't depend on t at a point $p \in \mathcal{U}$ and $u, v \in$ $T_{p} M$. Then

$$
\begin{align*}
-\partial_{t} R_{t}\left(u, Y_{t}, Y_{t}, v\right) & =C_{Y}\left(u, \nabla_{v}^{t} Y_{t}, \nabla_{Y}^{t} \dot{Y}_{t}\right)+C_{Y}\left(\nabla_{u}^{t} Y_{t}, v, \nabla_{Y}^{t} \dot{Y}_{t}\right) \\
& +C_{Y}\left(\nabla_{Y}^{t} Y_{t}, v, \nabla_{u}^{t} \dot{Y}_{t}\right)+C_{Y}\left(u, \nabla_{Y}^{t} Y_{t}, \nabla_{v}^{t} \dot{Y}_{t}\right) \\
& +C_{Y}\left(u, v,\left(\nabla^{t}\right)_{Y, Y}^{2} \dot{Y}_{t}\right)+2\left(\nabla_{Y}^{t} C_{Y_{t}}\right)\left(u, v, \nabla_{Y}^{t} \dot{Y}_{t}\right) \tag{3.2}
\end{align*}
$$

The shape operators A_{t} (when $Y_{p}=\nu_{p}$) of \mathcal{F} with respect to g_{t} and the volume forms $\mathrm{d} V_{t}$ at p obey

$$
\begin{equation*}
g_{t}\left(\partial_{t} A_{t}(u), v\right)=-C_{\nu}\left(u, v, \nabla_{\nu}^{t} \dot{Y}_{t}\right), \quad \partial_{t}\left(\mathrm{~d} V_{t}\right)=0 \tag{3.3}
\end{equation*}
$$

Proof. Put $\Pi(u, v)=\partial_{t} \nabla_{u}^{t} v$ for t-independent vector fields u, v. Then, see [16],

$$
\begin{equation*}
2 g_{t}(\Pi(u, v), w)=\left(\nabla_{v}^{t} \dot{g}_{t}\right)(u, w)+\left(\nabla_{u}^{t} \dot{g}_{t}\right)(v, w)-\left(\nabla_{w}^{t} \dot{g}_{t}\right)(u, v) \tag{3.4}
\end{equation*}
$$

and for arbitrary t-dependent vector fields X_{t} and Z_{t} we obtain

$$
\partial_{t} \nabla_{X_{t}}^{t} Z_{t}=\Pi\left(X_{t}, Z_{t}\right)+\nabla_{X_{t}}^{t}\left(\partial_{t} Z_{t}\right)+\nabla_{\partial_{t} X_{t}}^{t} Z_{t}
$$

By definition,

$$
R_{t}\left(u, Z_{t}\right) Y_{t}=\nabla_{u}^{t}\left(\nabla_{Z_{t}}^{t} Y_{t}\right)-\nabla_{Z_{t}}^{t}\left(\nabla_{u}^{t} Y_{t}\right)-\nabla_{\left[u, Z_{t}\right]}^{t} Y_{t}
$$

So,

$$
\partial_{t} R_{t}\left(u, Z_{t}\right) Y_{t}=\partial_{t}\left(\nabla_{u}^{t}\left(\nabla_{Z_{t}}^{t} Y_{t}\right)\right)-\partial_{t}\left(\nabla_{Z_{t}}^{t}\left(\nabla_{u}^{t} Y_{t}\right)\right)-\partial_{t}\left(\nabla_{\left[u, Z_{t}\right]}^{t} Y_{t}\right)
$$

Deriving the terms of the above,

$$
\begin{aligned}
\partial_{t}\left(\nabla_{Z_{t}}^{t}\left(\nabla_{u}^{t} Y_{t}\right)\right) & =\Pi\left(Z_{t}, \nabla_{u}^{t} Y_{t}\right)+\nabla_{Z_{t}}^{t}\left(\Pi\left(u, Y_{t}\right)\right)+\nabla_{Z_{t}}^{t}\left(\nabla_{u}^{t} \dot{Y}_{t}\right)+\nabla_{\dot{Z}_{t}}^{t}\left(\nabla_{u}^{t} Y_{t}\right), \\
\partial_{t}\left(\nabla_{u}^{t}\left(\nabla_{Z_{t}}^{t} Y_{t}\right)\right) & =\Pi\left(u, \nabla_{Z_{t}}^{t} Y_{t}\right)+\nabla_{u}^{t}\left(\Pi\left(Z_{t}, Y_{t}\right)\right)+\nabla_{u}^{t}\left(\nabla_{\dot{Z}_{t}}^{t} Y_{t}\right)+\nabla_{u}^{t}\left(\nabla_{Z_{t}}^{t} \dot{Y}_{t}\right), \\
\partial_{t}\left(\nabla_{\left[u, Z_{t}\right]}^{t} Y_{t}\right) & =\Pi\left(\left[u, Z_{t}\right], Y_{t}\right)+\nabla_{\left[u, Z_{t}\right]}^{t} \dot{Y}_{t}+\nabla_{\left[u, \dot{Z}_{t}\right]}^{t} Y_{t}
\end{aligned}
$$

with $\dot{Z}_{t}=\partial_{t} Z_{t}$, we obtain a 'time-dependent' version of [16, Proposition 2.3.4],

$$
\partial_{t} R_{t}\left(u, Z_{t}\right) Y_{t}=\left(\nabla_{u}^{t} \Pi\right)\left(Z_{t}, Y_{t}\right)-\left(\nabla_{Z_{t}}^{t} \Pi\right)\left(u, Y_{t}\right)+R_{t}\left(u, Z_{t}\right) \dot{Y}_{t}+R_{t}\left(u, \dot{Z}_{t}\right) Y_{t}
$$

We shall compute $\partial_{t} R_{t}\left(u, Y_{t}, Y_{t}, v\right):=\partial_{t} g_{t}\left(R_{t}\left(u, Y_{t}\right) Y_{t}, v\right)$ at p; thus, terms with \dot{Y} will be canceled at the final stage. Assume at a 'time' t of our choice, $\nabla=\nabla^{t}$ and $\nabla u=\nabla v=0$ at p. Then perform the following preparatory calculations at p :

$$
\begin{aligned}
\frac{1}{2} Y\left(\left(\nabla_{u}^{t} \dot{g}_{t}\right)\left(Y_{t}, v\right)\right)= & Y\left(u\left(C_{Y_{t}}\left(Y_{t}, v, \dot{Y}_{t}\right)\right)-C_{Y_{t}}\left(\nabla_{u}^{t} Y_{t}, v, \dot{Y}_{t}\right)\right) \\
= & -C_{Y}\left(\nabla_{u} Y_{t}, v, \nabla_{Y} \dot{Y}_{t}\right) \\
\frac{1}{2} Y\left(\left(\nabla_{Y_{t}}^{t} \dot{g}_{t}\right)(u, v)\right)= & Y\left(Y_{t}\left(C_{Y_{t}}\left(u, v, \dot{Y}_{t}\right)\right)\right)-Y\left(C_{Y_{t}}\left(\nabla_{Y_{t}}^{t} u, v, \dot{Y}_{t}\right)\right) \\
& -Y\left(C_{Y_{t}}\left(u, \nabla_{Y_{t}}^{t} v, \dot{Y}_{t}\right)\right) \\
= & C_{Y}\left(u, v, \nabla_{Y} \nabla_{Y_{t}} \dot{Y}_{t}\right)+2\left(\nabla_{Y} C_{Y}\right)\left(u, v, \nabla_{Y} \dot{Y}_{t}\right), \\
\frac{1}{2} Y\left(\left(\nabla_{v}^{t} \dot{g}_{t}\right)\left(u, Y_{t}\right)\right)= & Y\left(v\left(C_{Y_{t}}\left(u, Y_{t}, \dot{Y}_{t}\right)\right)-C_{Y_{t}}\left(u, \nabla_{v} Y_{t}, \dot{Y}_{t}\right)\right) \\
= & -C_{Y}\left(u, \nabla_{v} Y_{t}, \nabla_{Y} \dot{Y}_{t}\right) \\
\left(\nabla_{\nabla_{Y} Y_{t}} \dot{g}_{t}\right)(u, v)= & 2 C_{Y}\left(u, v, \nabla_{\left.\nabla_{Y} Y_{t} \dot{Y}_{t}\right)}\right. \\
\left(\nabla_{u} \dot{g}_{t}\right)\left(\nabla_{Y} Y_{t}, v\right)= & 2 C_{Y}\left(\nabla_{Y} Y_{t}, v, \nabla_{u} \dot{Y}_{t}\right) \\
\left(\nabla_{v} \dot{g}_{t}\right)\left(u, \nabla_{Y} Y_{t}\right)= & 2 C_{Y}\left(u, \nabla_{Y} Y_{t}, \nabla_{v} \dot{Y}_{t}\right)
\end{aligned}
$$

Using all of that and (3.1) we obtain at p :

$$
\begin{aligned}
&\left\langle\left(\nabla_{Y} \Pi\right)\left(u, Y_{t}\right), v\right\rangle=\left\langle\nabla_{Y}\left(\Pi\left(u, Y_{t}\right)\right)-\Pi\left(u, \nabla_{Y} Y_{t}\right), v\right\rangle \\
&= Y\left\langle\Pi\left(u, Y_{t}\right), v\right\rangle-\left\langle\Pi\left(u, \nabla_{Y} Y_{t}\right), v\right\rangle \\
&= \frac{1}{2} Y\left[\left(\nabla_{u}^{t} \dot{g}_{t}\right)\left(Y_{t}, v\right)+\left(\nabla_{Y_{t}}^{t} \dot{g}_{t}\right)(u, v)-\left(\nabla_{v}^{t} \dot{g}_{t}\right)\left(u, Y_{t}\right)\right] \\
& \quad-\frac{1}{2}\left[\left(\nabla_{\nabla_{Y} Y_{t}} \dot{g}_{t}\right)(u, v)+\left(\nabla_{u} \dot{g}_{t}\right)\left(\nabla_{Y} Y_{t}, v\right)-\left(\nabla_{v} \dot{g}_{t}\right)\left(u, \nabla_{Y} Y_{t}\right)\right] \\
&= C_{Y}\left(u, \nabla_{v} Y_{t}, \nabla_{Y} \dot{Y}_{t}\right)-C_{Y}\left(\nabla_{u} Y_{t}, v, \nabla_{Y} \dot{Y}_{t}\right) \\
& \quad+2\left(\nabla_{Y} C_{Y_{t}}\right)\left(u, v, \nabla_{Y} \dot{Y}_{t}\right)+C_{Y}\left(u, v, \nabla_{Y} \nabla_{Y_{t}}^{t} \dot{Y}_{t}\right)-C_{Y}\left(u, v, \nabla_{\nabla_{Y} Y_{t}} \dot{Y}_{t}\right) \\
& \quad-C_{Y}\left(\nabla_{Y} Y_{t}, v, \nabla_{u} \dot{Y}_{t}\right)+C_{Y}\left(u, \nabla_{Y} Y_{t}, \nabla_{v} \dot{Y}_{t}\right) .
\end{aligned}
$$

Here the terms with $C_{Y}(Y, \cdot, \cdot)$ were canceled on \mathcal{U}, and the identity $\left[Y_{t}, v\right]^{\top}=$ $-\left(\nabla_{v}^{t} Y_{t}\right)^{\top}$ at p (where ${ }^{\top}$ is the orthogonal to Y at p component of a vector) was applied. Similarly, we use at p

$$
\begin{aligned}
& u\left[\left(\nabla_{Y_{t}}^{t} \dot{g}_{t}\right)\left(Y_{t}, v\right)\right]=-2 C_{Y}\left(\nabla_{Y} Y_{t}, v, \nabla_{u} \dot{Y}_{t}\right), \quad u\left[\left(\nabla_{v}^{t} \dot{g}_{t}\right)\left(Y_{t}, Y_{t}\right)\right]=0, \\
& \left(\nabla_{\nabla_{u} Y_{t}} \dot{g}\right)(Y, v)=0, \quad\left(\nabla_{v} \dot{g}\right)\left(Y, \nabla_{u} Y_{t}\right)=0, \\
& \left(\nabla_{Y} \dot{g}\right)\left(\nabla_{u} Y_{t}, v\right)=2 C_{Y}\left(\nabla_{u} Y_{t}, v, \nabla_{Y} \dot{Y}_{t}\right)
\end{aligned}
$$

to find

$$
\begin{aligned}
& \left\langle\left(\nabla_{u} \Pi\right)\left(Y_{t}, Y_{t}\right), v\right\rangle=\left\langle\nabla_{u}\left(\Pi\left(Y_{t}, Y_{t}\right)\right)-2 \Pi\left(Y_{t}, \nabla_{u} Y_{t}\right), v\right\rangle \\
= & u\left\langle\Pi\left(Y_{t}, Y_{t}\right), v\right\rangle-2\left\langle\Pi\left(Y_{t}, \nabla_{u} Y_{t}\right), v\right\rangle \\
= & u\left[\left(\nabla_{Y_{t}}^{t} \dot{g}_{t}\right)\left(Y_{t}, v\right)-\frac{1}{2}\left(\nabla_{v}^{t} \dot{g}_{t}\right)\left(Y_{t}, Y_{t}\right)\right] \\
& -\left(\nabla_{\nabla_{u} Y_{t}} \dot{g}\right)\left(Y_{t}, v\right)-\left(\nabla_{Y} \dot{g}\right)\left(\nabla_{u} Y_{t}, v\right)+\left(\nabla_{v} \dot{g}\right)\left(Y, \nabla_{u} Y_{t}\right) \\
= & -2 C_{Y}\left(\nabla_{Y} Y_{t}, v, \nabla_{u} \dot{Y}_{t}\right)-2 C_{Y}\left(\nabla_{u} Y_{t}, v, \nabla_{Y} \dot{Y}_{t}\right) .
\end{aligned}
$$

Since $\dot{Y}=0$ at p, we have

$$
\begin{aligned}
& \partial_{t} R_{t}\left(u, Y_{t}, Y_{t}, v\right)=\left(\partial_{t} g\right)\left(R_{t}\left(u, Y_{t}\right) Y_{t}, v\right)+g\left(\partial_{t} R_{t}\left(u, Y_{t}\right) Y_{t}, v\right) \\
& =2 C_{Y}\left(R_{t}\left(u, Y_{t}\right) Y_{t}, v, \dot{Y}\right)+g\left(\partial_{t} R_{t}\left(u, Y_{t}\right) Y_{t}, v\right)=g\left(\partial_{t} R_{t}\left(u, Y_{t}\right) Y_{t}, v\right)
\end{aligned}
$$

Finally, we have (3.2) at p for all $t \geq 0$. For the second fundamental form b_{t} of \mathcal{F} (with respect to g_{t}), as in the proof of [12, Lemma 2.9], using (3.1), (3.4), $\dot{g}(p)=0$ and $\dot{Y}(p)=0$, we get at a point p :

$$
\begin{aligned}
\partial_{t} b_{t}(u, v) & =\dot{g}\left(\nabla_{u} v, Y\right)+g\left(\partial_{t} \nabla_{u} v, Y\right)+g\left(\nabla_{u} v, \partial_{t} Y\right) \\
& =\frac{1}{2}\left(\left(\nabla_{u} \dot{g}\right)(v, Y)+\left(\nabla_{v} \dot{g}\right)(u, Y)-\left(\nabla_{Y} \dot{g}\right)(u, v)\right)+g\left(\nabla_{u} v, \dot{Y}\right) \\
& =-\nabla_{Y}\left(C_{Y}(u, v, \dot{Y})\right)=-C_{Y}\left(u, v, \nabla_{Y} \dot{Y}\right)
\end{aligned}
$$

From this, using $b_{t}(u, v)=g_{t}\left(A_{t}(u), v\right)$, we get $(3.3)_{1}$:

$$
g_{t}\left(A_{t}(u), v\right)=\partial_{t} b_{t}(u, v)-\dot{g}(A(u), v)=-C_{\nu}\left(u, v, \nabla_{\nu} \dot{Y}\right)
$$

By the formula for the volume form of a t-dependent metric, $\partial_{t}\left(\mathrm{~d} V_{t}\right)=\frac{1}{2}(\operatorname{Tr} \dot{g}) \mathrm{d} V_{t}$, see [16], and definition of the mean Cartan torsion, we get

$$
\begin{equation*}
\partial_{t}\left(\mathrm{~d} V_{t}\right)=I_{Y_{t}}\left(\dot{Y}_{t}\right) \mathrm{d} V_{t} \tag{3.5}
\end{equation*}
$$

Next, $(3.3)_{2}$ follows from (3.5) and $\dot{Y}(p)=0$.
Let L be a leaf through a point $p \in M$, and ρ the local distance function to L in a neighborhood of p. Denote by $\hat{\nabla}$ the Levi-Civita connection of the (local again) Riemannian metric $\hat{g}:=g_{\nabla \rho}$. Note that $\nabla \rho=\nu$ on L. The shape operator $A: T \mathcal{F} \rightarrow T \mathcal{F}$ (self-adjoint for g) is defined at $p \in M$ by (compare [15] with the opposite sign)

$$
A(u)=-\hat{\nabla}_{u} \nu \quad\left(u \in T_{p} \mathcal{F}\right)
$$

The shape operator $A^{g}: T \mathcal{F} \rightarrow T \mathcal{F}$ with respect to the metric g is defined at $p \in M$ by

$$
A^{g}(u)=-\nabla_{u} \nu \quad\left(u \in T_{p} \mathcal{F}\right)
$$

Note that $2 g\left(\nabla_{u} \nu, \nu\right)=u(g(\nu, \nu))=0(u \in T \mathcal{F})$; hence, $\nabla_{u} \nu \in T \mathcal{F}$. The mean curvature function (of the leaves with respect to g) is defined by $H^{g}=\operatorname{Tr} A^{g}$. Recall that \mathcal{F} is g-totally umbilical if $A^{g}=H^{g} I_{m}$, and is g-totally geodesic if $A^{g} \equiv 0$.

Corollary 3.3. Let L be a hypersurface in an open set $\mathcal{U} \subset M$. If an F-unit vector field $Y_{t}(0 \leq t \leq \varepsilon)$ is given in \mathcal{U} and orthogonal to L then for the metric $g_{t}:=g_{Y_{t}}$ for all $u, v \in T_{p} L(p \in L)$ we have

$$
\begin{align*}
\partial_{t} R_{t}\left(u, Y_{t}, Y_{t}, v\right)= & C_{Y}\left(A_{t}(u), v, \nabla_{Y}^{t} \dot{Y}_{t}\right)+C_{Y}\left(u, A_{t}(v), \nabla_{Y}^{t} \dot{Y}_{t}\right) \\
& -C_{Y}\left(u, v,\left(\nabla^{t}\right)_{Y, Y}^{2} \dot{Y}_{t}\right)-2\left(\nabla_{Y}^{t} C_{Y_{t}}\right)\left(u, v, \nabla_{Y}^{t} \dot{Y}_{t}\right) \tag{3.6}\\
g\left(\partial_{t} A_{t}(u), v\right)= & -C_{Y}\left(u, v, \nabla_{Y}^{t} \dot{Y}_{t}\right), \quad \partial_{t}\left(\mathrm{~d} V_{t}\right)=0 \tag{3.7}
\end{align*}
$$

Proof. This follows from $\dot{Y}_{t}=0$ on L, the definition of A_{t} (for g_{t}) and (3.2)-(3.3).
Definition 3.1. A vector field \widehat{Y} defined in some neighborhood $\mathcal{U} \subset M$ of a point $p \in \mathcal{U}$ is called a geodesic extension of a vector $Y_{p} \in T_{p} M$ if $\widehat{Y}(p)=Y_{p}$ and the integral curves of \widehat{Y} are geodesics of the Finsler metric. Similarly, we define a geodesic extension of a (e.g. normal) vector field along a hypersurface $L \subset \mathcal{U}$. In both cases, $\hat{g}:=g_{\widehat{Y}}$ is called the osculating Riemannian metric of F on \mathcal{U}.

We will use osculating metric (given locally) to express the Riemannian curvature of $g=g_{\nu}$ (for an unit F-normal ν to \mathcal{F}) in terms of Riemannian curvature and the Cartan torsion of F.

Given a vector field Y, let C_{Y}^{\sharp} be a $(1,1)$-tensor g_{Y}-dual to the symmetric bilinear form $C_{Y}\left(\cdot, \cdot, \nabla_{Y} Y\right)$. Note that $C_{n}\left(\cdot, \cdot, \nabla_{n} n\right)=C_{c^{2} \nu}\left(\cdot, \cdot, c^{4} \nabla_{\nu} \nu\right)=c^{2} C_{\nu}\left(\cdot, \cdot, \nabla_{\nu} \nu\right)$.
Theorem 3.4. Let ν be a unit normal to a codimension-one foliation of a Finsler space $\left(M^{m+1}, F\right)$. The Riemann curvatures (in the ν-direction) of F and $g=g_{\nu}$ are related by

$$
\begin{align*}
g\left(\left(R_{\nu}\right.\right. & \left.\left.-R_{\nu}^{g}\right)(u), v\right)=-C_{\nu}\left(A^{g}(u)+\frac{1}{2} C_{\nu}^{\sharp}(u), v, \nabla_{\nu} \nu\right) \\
& -C_{\nu}\left(u, A^{g}(v)+\frac{1}{2} C_{\nu}^{\sharp}(v), \nabla_{\nu} \nu\right) \\
& +C_{\nu}\left(u, v, \nabla_{\nu, \nu}^{2} \nu-C_{\nu}^{\sharp}\left(\nabla_{\nu} \nu\right)\right)+2\left(\nabla_{\nu} C_{\nu}\right)\left(u, v, \nabla_{\nu} \nu\right) \quad\left(u, v \in T_{p} L\right) . \tag{3.8}
\end{align*}
$$

The shape operators and volume forms are related by

$$
\begin{equation*}
A-A^{g}=C_{\nu}^{\sharp}, \quad \mathrm{d} V_{g}=e^{\tau(\nu)} \mathrm{d} V_{F} . \tag{3.9}
\end{equation*}
$$

In particular, the traces are related by

$$
\begin{align*}
\operatorname{Ric}_{\nu}-\operatorname{Ric}_{\nu}^{g}= & I_{\nu}\left(\nabla_{\nu, \nu}^{2} \nu-C_{\nu}^{\sharp}\left(\nabla_{\nu} \nu\right)\right)+2\left(\nabla_{\nu} I_{\nu}\right)\left(\nabla_{\nu} \nu\right) \\
& -\operatorname{Tr}\left(C_{\nu}^{\sharp}\left(C_{\nu}^{\sharp}+2 A^{g}\right)\right), \tag{3.10}\\
\operatorname{Tr} A-\operatorname{Tr} A^{g}= & I_{\nu}\left(\nabla_{\nu} \nu\right) .
\end{align*}
$$

Proof. Let \mathcal{U} be a "small" neighborhood of $p \in L$ such that any two geodesics starting from $L \cap \mathcal{U}$ in the ν-direction do not intersect in \mathcal{U}. Then for any $q \in \mathcal{U}$ there is a unique geodesic γ starting from L in the ν-direction such that $\gamma(s)=q$ for some $s \geq 0$, in other words, $q=\exp _{\gamma(0)}(s \dot{\gamma}(0))$. Thus, $\widehat{Y}: q \rightarrow \dot{\gamma}(s)(q \in \mathcal{U})$ is an F-unit geodesic vector field $\left(\nabla_{\widehat{Y}} \widehat{Y}=0\right)$ - a geodesic extension of $\nu_{\mid L}$.

Consider a family of vector fields $Y_{t}=t \widehat{Y}+(1-t) \nu(0 \leq t \leq 1)$ on \mathcal{U}, define the Riemannian metrics $g_{t}:=g_{Y_{t}}, g_{1}$ being osculating, and denote by R_{t} their Riemann
curvatures. Since $\dot{Y}_{t}=\widehat{Y}-\nu$ and $Y_{t \mid L}=\nu_{\mid L}=\widehat{Y}_{\mid L}$ for all t, we have $\dot{Y}_{t \mid L}=0$ and $g_{t \mid L} \equiv g_{\mid L}$. By (3.1) and (3.4), we get $\Pi_{t}(\nu, \nu)=\Pi_{t}(\nu, \widehat{Y})=0$ on L; hence, $\nabla_{\nu}^{t} \nu$ and $\nabla_{\nu}^{t} \widehat{Y}$ restricted on L don't depend on t. Next, we find

$$
g(\Pi(\nu, \nu), v)=C_{\nu}\left(u, v, \nabla_{\nu}(\widehat{Y}-\nu)\right)=-C_{\nu}\left(u, v, \nabla_{\nu} \nu\right), \quad u, v \in T M_{\mid L}
$$

i.e., $\Pi(\nu, u)=-C_{\nu}^{\sharp}(u)$. We calculate on L :

$$
\begin{aligned}
g\left(\partial_{t}\left(\nabla_{\nu}^{t} u\right), v\right) & =\nabla_{\nu}^{t}\left(C_{Y}(u, v, \widehat{Y}-\nu)\right)+\nabla_{u}^{t}\left(C_{Y}(\nu, v, \widehat{Y}-\nu)\right)-\nabla_{v}^{t}\left(C_{Y}(u, \nu, \widehat{Y}-\nu)\right) \\
& =\left(\nabla_{\nu}^{t} C_{Y}\right)(u, v, \widehat{Y}-\nu)+C_{Y}\left(u, v, \nabla_{\nu}^{t}(\widehat{Y}-\nu)\right) \\
& +\left(\nabla_{u}^{t} C_{\nu}\right)(n, v, \widehat{Y}-\nu)+C_{\nu}\left(\nabla_{u}^{t} \nu, v, \widehat{Y}-\nu\right)+C_{\nu}\left(\nu, v, \nabla_{u}^{t}(\widehat{Y}-\nu)\right) \\
& -\left(\nabla_{v}^{t} C_{\nu}\right)(u, \nu, \widehat{Y}-\nu)-C_{\nu}\left(u, \nabla_{v}^{t} \nu, \widehat{Y}-\nu\right)-C_{\nu}\left(u, \nu, \nabla_{v}^{t}(\widehat{Y}-\nu)\right) \\
& =C_{\nu}\left(u, v, \nabla_{\nu}^{t}(\widehat{Y}-\nu)\right)=-C_{\nu}\left(u, v, \nabla_{\nu} \nu\right) .
\end{aligned}
$$

Since, $\partial_{t}\left(g\left(\nabla_{\nu}^{t} u, v\right)\right)=g\left(\partial_{t} \nabla_{\nu}^{t} u, v\right)$ and $\partial_{t}\left(g\left(\nabla_{u}^{t} \nu, v\right)\right)=g\left(\partial_{t} \nabla_{u}^{t} \nu, v\right)$ on L, we obtain

$$
\begin{gathered}
g\left(\nabla_{\nu}^{t} u, v\right)=g\left(\nabla_{\nu} u, v\right)-t C_{\nu}\left(u, v, \nabla_{\nu} \nu\right), \\
g\left(\nabla_{u}^{t} \nu, v\right)=g\left(\nabla_{u} \nu, v\right)-t C_{\nu}\left(u, v, \nabla_{\nu} \nu\right) .
\end{gathered}
$$

Recall that $\nabla_{u, v}^{2}$ is tensorial in u, v. We show that $\left(\nabla^{t}\right)_{\nu, \nu}^{2} \widehat{Y}$ is t-independent on L :

$$
\begin{aligned}
\left(\nabla^{t}\right)_{\widehat{Y}, \widehat{Y}}^{2} \widehat{Y} & =\nabla_{n}^{t}\left(\nabla_{\widehat{Y}}^{t} \widehat{Y}\right)=\nabla_{\nu}\left(\nabla_{\widehat{Y}}^{t} \widehat{Y}\right)-t C_{\nu}^{\sharp}\left(\nabla_{\nu}^{t} \widehat{Y}\right) \\
& =\nabla_{\nu}\left(\nabla_{\widehat{Y}}^{t} \widehat{Y}\right)=\nabla_{\nu}\left(\nabla_{\widehat{Y}} \widehat{Y}-t C_{\nu}^{\sharp}(\widehat{Y})\right) \\
& =\nabla_{\nu, \nu}^{2} \widehat{Y}-t\left(\nabla_{\nu} C_{\nu}^{\sharp}\right)(\widehat{Y})-t C_{\nu}^{\sharp}\left(\nabla_{\nu} \widehat{Y}\right)=\nabla_{\nu, \nu}^{2} \widehat{Y} .
\end{aligned}
$$

Thus, $\left(\nabla_{\nu, \nu}^{2} \widehat{Y}\right)_{\mid L}=\left(\widehat{\nabla}_{\nu, \nu}^{2} \widehat{Y}\right)_{\mid L}=0$. Using this and $\left(\nabla_{\nu} \widehat{Y}\right)_{\mid L}=0$, we find on L :

$$
\begin{aligned}
\nabla_{Y_{t}}^{t} \dot{Y}_{t} & =-\nabla_{\nu} \nu \\
\left(\nabla^{t}\right)_{Y_{t}, Y_{t}}^{2} \dot{Y}_{t} & =\left(\nabla^{t}\right)_{\nu, \nu}^{2}(\widehat{Y}-\nu)=\nabla_{\nu}^{t}\left(\nabla_{\nu}(\widehat{Y}-\nu)-t C_{\nu}^{\sharp}(\widehat{Y}-\nu)\right) \\
& =\nabla_{\nu, \nu}^{2}(\widehat{Y}-\nu)-t \nabla_{\nu}\left(C_{\nu}^{\sharp}(\widehat{Y}-\nu)\right)-t C_{\nu}^{\sharp}\left(\nabla_{\nu}(\widehat{Y}-\nu)\right) \\
& =-\nabla_{\nu, \nu}^{2} \nu+2 t C_{\nu}^{\sharp}\left(\nabla_{\nu} \nu\right) .
\end{aligned}
$$

Then we obtain on L :

$$
\begin{aligned}
C_{Y_{t}}\left(\cdot, \cdot, \nabla_{Y_{t}} \dot{Y}_{t}\right) & =C_{\nu}\left(\cdot, \cdot, \nabla_{\nu}(\widehat{Y}-\nu)\right)=-C_{\nu}\left(\cdot, \cdot, \nabla_{\nu} \nu\right) \\
C_{Y_{t}}\left(\cdot, \cdot,, \nabla_{Y_{t}, Y_{t}}^{2} \dot{Y}_{t}\right) & =C_{\nu}\left(\cdot, \cdot,, \nabla_{\nu, \nu}^{2}(\widehat{Y}-\nu)\right)=-C_{\nu}\left(\cdot, \cdot, \nabla_{\nu, \nu}^{2} \nu\right) .
\end{aligned}
$$

Next, we calculate on L, using $C_{Z}(Z, \cdot, \cdot)=0$ for $Z=\nabla_{\nu} \nu$,

$$
\begin{aligned}
& \left(\nabla_{Y_{t}} C_{Y_{t}}\right)\left(\cdot, \cdot, \nabla_{Y_{t}} \dot{Y}_{t}\right)=\left(\nabla_{\nu} C_{t \widehat{Y}+(1-t) \nu}\right)\left(\cdot, \cdot,-\nabla_{\nu} \nu\right) \\
& =\left(\nabla_{\nu} C\right)_{\nu}\left(\cdot, \cdot,-\nabla_{\nu} \nu\right)+C_{(1-t) \nabla_{\nu} \nu}\left(\cdot, \cdot,-\nabla_{\nu} \nu\right)=-\left(\nabla_{\nu} C_{\nu}\right)\left(\cdot, \cdot, \nabla_{\nu} \nu\right) .
\end{aligned}
$$

By the above and $(3.3)_{1}$, we obtain $(3.9)_{1}$. By Corollary 3.3, for all $t \in[0,1]$, and using $A_{t}=A^{g}+t C_{\nu}^{\sharp}$, see $(3.9)_{1}$, and $\left(\nabla^{t}\right)_{\nu, \nu}^{2} \nu=-\nabla_{\nu, \nu}^{2} \nu+2 t C_{\nu}^{\sharp}\left(\nabla_{\nu} \nu\right)$, we obtain

$$
\begin{aligned}
\partial_{t} R_{t}(u, \nu, \nu, v)= & -C_{\nu}\left(A_{t}(u), v, \nabla_{\nu} \nu\right)-C_{\nu}\left(u, A_{t}(v), \nabla_{\nu} \nu\right) \\
& +C_{\nu}\left(u, v,\left(\nabla^{t}\right)_{\nu, \nu}^{2} \nu\right)+2\left(\nabla_{\nu} C_{\nu}\right)\left(u, v, \nabla_{\nu} \nu\right) \\
= & -C_{\nu}\left(A^{g}(u)+t C_{\nu}^{\sharp}(u), v, \nabla_{\nu} \nu\right)-C_{\nu}\left(u, A^{g}(u)+t C_{\nu}^{\sharp}(v), \nabla_{\nu} \nu\right) \\
& +C_{\nu}\left(u, v,-\nabla_{\nu, \nu}^{2} \nu+2 t C_{\nu}^{\sharp}\left(\nabla_{\nu} \nu\right)\right)+2\left(\nabla_{\nu} C_{\nu}\right)\left(u, v, \nabla_{\nu} \nu\right)
\end{aligned}
$$

for $u, v \in T_{p} L$, where the right hand side becomes linear in t. Integrating this by $t \in[0,1]$ yields (3.8). Finally, using the equality for volume forms, $\mathrm{d} \widehat{V}=\mathrm{d} V_{g}$, and definition of τ (see Section 2.1), we get $(3.9)_{2}$.

Since any geodesic vector field Y satisfies conditions

$$
\begin{equation*}
C_{Y}\left(u, v, \nabla_{Y} Y\right)=0, \quad C_{Y}\left(u, v, \nabla_{Y, Y}^{2} Y\right)=0 \quad(\forall u, v) \tag{3.11}
\end{equation*}
$$

the following corollary generalizes Proposition 3.1.
Corollary 3.5. If Y is a unit vector field on a Finsler space (M, F) and $g:=g_{Y} a$ Riemannian metric on M with the Levi-Civita connection ∇ and conditions (3.11), then $R_{Y}=R_{Y}^{g}$.

Proof. By (3.11), we have $C_{Y}^{\sharp}=0$ and

$$
\left(\nabla_{Y} C_{Y}\right)\left(u, v, \nabla_{Y} Y\right)=\nabla_{Y}\left(C_{Y}\left(u, v, \nabla_{Y} Y\right)\right)-C_{Y}\left(u, v, \nabla_{Y, Y}^{2} Y\right)=0
$$

If a vector field \widehat{Y} is a local geodesic extension of $Y(p)$ then $R_{Y}^{g}=\hat{R}_{Y}\left(\right.$ and $\left.A^{g}=\hat{A}\right)$ at p, see (3.8) and (3.9). Thus, the claim follows from Proposition 3.1.

3.2 Integral formulae

Let \mathcal{F} is a codimension-one foliation of a closed Finsler space $\left(M^{m+1}, F\right)$ with the Busemann-Hausdorff volume form $\mathrm{d} V_{F}$. Define a family of diffeomorphisms $\left\{\phi_{t}\right.$: $M \rightarrow M, 0 \leq t<\varepsilon\}(\varepsilon>0$ being small enough) by

$$
\phi_{t}(p)=\exp _{p}(t \nu), \quad \text { where } \quad \nu \in T_{p} M \quad \text { is an } F \text {-unit normal to } \mathcal{F} \text { at } p \in M
$$

Let $c(t)(t \geq 0)$ be an F-geodesic with $c(0)=p$ and $\dot{c}(0)=\nu(p)$. Any geodesic variation built of ϕ_{t}-trajectories determines an F-Jacobi field $Y(t)$ on c, and $A_{p}(Y(0))=$ $-\left[D_{\dot{c}(t)} Y(t)\right]_{\mid t=0}$, see $[15, \mathrm{p} .225]$. Recall that if vectors $u(t)$ and $v(t)$ are D-parallel along $c(t)$ then $g_{\dot{c}(t)}(u(t), v(t))$ is constant. Choose a positively oriented $g_{\nu(p)}$-orthonormal frame $\left(e^{1}, \ldots, e^{m}\right)$ of $T_{p} \mathcal{F}$ and extend it by parallel translation to the frame
 $E_{t}^{m+1}=\dot{c}(t)$ the tangent vector field along $c(t)$. Denote by $Y^{i}(t)(i \leq m)$ the Jacobi field along $c(t)$ satisfying $Y^{i}(0)=e^{i}$ and $D_{\dot{c}} Y^{i}(0)=A_{p}\left(e^{i}\right)$. Let $R(t)$ be the matrix with entries $g_{\dot{c}}\left(R_{\dot{c}}\left(E_{t}^{i}\right), E_{t}^{j}\right)$. Denote by $\mathbf{Y}(t)$ the $m \times m$ matrix consisting of the scalar products $g_{\dot{c}}\left(Y^{i}(t), E_{t}^{j}\right)$ (" F-Jacobi tensor"). Then $\mathbf{Y}(0)=I_{m}$ and $\mathbf{Y}^{\prime}(0)=A_{p}$. It is known (see, for instance, [15, Sections 2.1 and 2.2]) that

$$
\left|d \phi_{t}(p)\right|=\operatorname{det} \mathbf{Y}(t)
$$

where $\left|d \phi_{t}(p)\right|$ is the Jacobian of ϕ_{t} at p. Assume that $R_{\dot{c}(t)}^{(1)} \equiv 0$ for any F-geodesic $c(t)(t \geq 0)$ (e.g. (M, F) is locally symmetric with respect to $F)$. For $t=0$, we have $R_{\dot{c}(0)}^{(2)} \equiv R_{\dot{c}(t)}^{(3)} \equiv \ldots \equiv 0$. For short, write $R_{p}:=R(0)$. Note that $\operatorname{Tr} R_{p}=\operatorname{Ric}(\nu(p))$. The F-Jacobi equation $\mathbf{Y}^{\prime \prime}=-R(t) \mathbf{Y}$ implies that

$$
\mathbf{Y}^{(2 k)}(0)=\left(-R_{p}\right)^{k}, \quad \mathbf{Y}^{(2 k+1)}(0)=\left(-R_{p}\right)^{k} A_{p}, \quad k=0,1,2, \ldots
$$

Hence, our Jacobi tensor has the form

$$
\mathbf{Y}(t)=\sum_{k=0}^{\infty} \mathbf{Y}^{(k)}(0) \frac{t^{k}}{k!}=I_{m}+t A_{p}-\frac{t^{2}}{2!} R_{p}-\frac{t^{3}}{3!} R_{p} A_{p}+\frac{t^{4}}{4!} R_{p}^{2}+\ldots
$$

Certainly, the radius of convergence of the series is uniformly bounded from below on M (by $1 /\|R\|_{F}>0$). The volume of M is defined by $\operatorname{Vol}_{F}(M)=\int_{M} \mathrm{~d} V_{F}$. Therefore - by Dominated Convergence Theorem - its integration together with Change of Variables Theorem yield the equality for any $t \geq 0$ small enough

$$
\begin{equation*}
\operatorname{Vol}_{F}(M)=\int_{M} \operatorname{det}\left(I_{m}+t A_{p}-\frac{t^{2}}{2!} R_{p}-\frac{t^{3}}{3!} R_{p} A_{p}+\frac{t^{4}}{4!} R_{p}^{2}+\ldots\right) \mathrm{d} V_{F} \tag{3.12}
\end{equation*}
$$

where $\mathrm{d} V_{F}$ is the volume form of F. Formula (3.12) together with Lemma 5.2 of Appendix imply our main result (which generalizes that of [13] valid for the Riemannian case). Note that the invariants $\sigma_{\lambda}\left(A_{1}, \ldots, A_{k}\right)$ of a set of real $m \times m$ matrices A_{i} are defined and discussed in Appendix.

Theorem 3.6. If \mathcal{F} is a codimension-one foliation on a closed Finsler manifold $\left(M^{m+1}, F\right)$, which is F-locally symmetric, then for any $0 \leq k \leq m$ one has

$$
\begin{equation*}
\int_{M} \sum_{\|\lambda\|=k} \sigma_{\lambda}\left(B_{1}(p), \ldots B_{k}(p)\right) \mathrm{d} V_{F}=0 \tag{3.13}
\end{equation*}
$$

where $B_{2 k}(p)=\frac{(-1)^{k}}{(2 k)!}\left(R_{p}\right)^{k}, B_{2 k+1}(p)=\frac{(-1)^{k}}{(2 k+1)!}\left(R_{p}\right)^{k} A_{p}$ for $p \in M$.
The formulae (3.13) for few initial values of $k, k=1, \ldots 3$, read as follows:

$$
\begin{align*}
\int_{M} \sigma_{1}\left(A_{p}\right) \mathrm{d} V_{F} & =0 \tag{3.14}\\
\int_{M}\left(\sigma_{2}\left(A_{p}\right)-\frac{1}{2} \operatorname{Tr} R_{p}\right) \mathrm{d} V_{F} & =0 \tag{3.15}\\
\int_{M}\left(\sigma_{3}\left(A_{p}\right)-\frac{1}{2} \operatorname{Tr}\left(A_{p}\right) \operatorname{Tr} R_{p}+\frac{1}{3} \operatorname{Tr}\left(R_{p} A_{p}\right)\right) \mathrm{d} V_{F} & =0 . \tag{3.16}
\end{align*}
$$

The formulae (3.14) and (3.15) are well known for arbitrary foliated Riemannian manifolds, see the Introduction. For $m=1$, (3.15) reduces to the integral of flag (Gauss) curvature, $\int_{M} K \mathrm{~d} V_{F}=0$.
Remark 3.2. 1. The compactness of M in Theorem 3.6 can be replaced by weaker conditions: M is positively complete of finite F-volume, and has 'bounded geometry' in the following sense:

$$
\begin{equation*}
\sup _{p \in M}\left\|R_{p}\right\|_{F}<\infty, \quad \sup _{p \in M}\left\|A_{p}\right\|_{F}<\infty \tag{3.17}
\end{equation*}
$$

2. Similar formulae exist for codimension-one foliations of on arbitrary (non-locally symmetric with respect to F) Finsler manifolds. They are more complicated since they contain terms which depend on covariant derivatives of R_{p}. More precisely, they contain just terms of the form $R_{p}^{(k)}$, where $R_{p}^{(1)}=D_{\nu(p)} R_{p}, R_{p}^{(2)}=D_{\nu(p)} D_{\nu(p)} R_{p}$ and so on. For the F-Jacobi tensor $\mathbf{Y}(t)$ we get

$$
\mathbf{Y}(t)=I_{m}+t A_{p}-\frac{t^{2}}{2!} R_{p}-\frac{t^{3}}{3!}\left(R_{p} A_{p}+R_{p}^{(1)}\right)+\frac{t^{4}}{4!}\left(R_{p}^{2}-R_{p}^{(2)}-2 R_{p}^{(1)} A_{p}\right)+\ldots
$$

The t^{3} term of (3.12) becomes, compare (3.16),

$$
\int_{M}\left(\sigma_{3}\left(A_{p}\right)-\frac{1}{2} \operatorname{Tr}\left(R_{p}\right) \operatorname{Tr}\left(A_{p}\right)+\frac{1}{3} \operatorname{Tr}\left(R_{p} A_{p}\right)-\frac{1}{6} \operatorname{Tr} R_{p}^{(1)}\right) \mathrm{d} V_{F}=0 .
$$

In general, the t^{k} term in (3.12) contains $R_{p}^{(j)}$,s with $j \leq k-2$.
Corollary 3.7. Let \mathcal{F} be a codimension-one foliation on a F-locally symmetric complete Finsler manifold (M, F) of finite F-volume and bounded (in the sense of (3.17)) geometry. If $\operatorname{rank}\left(A_{p}\right) \leq 1$ for all $p \in M$ (for example, \mathcal{F} is F-totally geodesic) then the Riemannian curvature R_{p} vanishes identically provided that M has everywhere non-negative (or, non-positive) Ricci curvature $\operatorname{Ric}_{p}=\operatorname{Tr} R_{p}$.
Proof. Since in this case $\sigma_{2}\left(A_{p}\right)=0$, integral formula (3.15) implies the claim.
Given a unit normal ν to \mathcal{F}, denote by Q_{R} the symmetric (0,2)-tensor in the rhs of (3.8). Then, see (3.10),

$$
\operatorname{Tr} Q_{R}=I_{\nu}\left(\nabla_{\nu, \nu}^{2} \nu+C_{\nu}^{\sharp}\left(\nabla_{\nu} \nu\right)\right)+2\left(\nabla_{\nu} I_{\nu}\right)\left(\nabla_{\nu} \nu\right)-\operatorname{Tr}\left(C_{\nu}^{\sharp}\left(C_{\nu}^{\sharp}+2 A^{g}\right)\right) .
$$

Define the 1 -form θ_{g} by the equality

$$
\theta_{g}(X)=g([X, \nu], \nu) \quad(X \in T M)
$$

Note that $\nabla_{\nu} \nu=\theta_{g}^{\sharp}$ is the mean curvature of ν-curves with respect to g. Comparing (3.13) for F and g, we obtain a series of integral formulas, the first two of which are given in the following.

Theorem 3.8. Let $\tau(\nu)=$ const on a codimension-one foliated Finsler space ($M, F)$. Then

$$
\begin{align*}
\int_{M} I_{\nu}\left(\nabla_{\nu} \nu\right) \mathrm{d} V_{F} & =0, \tag{3.18}\\
\int_{M}\left(\sigma_{2}\left(C_{\nu}^{\sharp}\right)+\left(\operatorname{Tr} A^{g}\right)\left(\operatorname{Tr} C_{\nu}^{\sharp}\right)-\operatorname{Tr}\left(A^{g} C_{\nu}^{\sharp}\right)-\frac{1}{2} \operatorname{Tr} Q_{R}\right) \mathrm{d} V_{F} & =0 . \tag{3.19}
\end{align*}
$$

Proof. By (3.9),$A=A^{g}+C_{\nu}^{\sharp}$, where $A=A_{p}$. Thus, (3.18) follows from (3.14), using (3.9) $)_{2}$ and Theorem 3.4. Note that by (5.4) with $k=1$ and (5.6) (of Appendix), and by (3.10), we have

$$
\begin{aligned}
\sigma_{2}\left(A_{p}\right) & =\sigma_{2}\left(A^{g}\right)+\operatorname{Tr}\left(A^{g}\right) \operatorname{Tr} C_{\nu}^{\sharp}-\operatorname{Tr}\left(A^{g} C_{\nu}^{\sharp}\right), \\
\operatorname{Ric}_{\nu} & =\operatorname{Tr} R_{p}=\operatorname{Ric}_{\nu}^{g}+\operatorname{Tr} Q_{R} .
\end{aligned}
$$

Thus, (3.19) follows from (3.15), using (3.9) ${ }_{2}$ and (5.6) with $k=2$ (of Appendix).

3.3 Examples

Finsler manifolds of constant flag curvature. We provide examples, these of (M, F) with constant flag curvature $K(\nu, P)$ on M, i.e., such that $R_{p}=K I_{m}$ for some $K \in \mathbb{R}$.
a) For (M, F) with zero flag curvature, $R_{p}=0$, and we obtain the Jacobi tensor of a simple form, linear in $t: \mathbf{Y}(t)=I_{m}+t A_{p}(t \geq 0)$. Then (3.12) reduces to
$\operatorname{Vol}_{F}(M)=\int_{M} \operatorname{det}\left(I_{m}+t A_{p}\right) \mathrm{d} V_{F}$. From this we obtain the Finsler generalization of the case $K=0$ of [3, Theorem 1.1], i.e.,

$$
\begin{equation*}
\int_{M} \sigma_{k}\left(A_{p}\right) \mathrm{d} V_{F}=0, \quad k>0 \tag{3.20}
\end{equation*}
$$

b) Assume now that the flag curvature $K(\nu, P)$ of (M, F) is constant and positive, say $K=1$. Then $R_{p}=I_{m}$ and one can rewrite the Taylor series for $\mathbf{Y}(t)(t \geq 0)$ in the form $\mathbf{Y}(t)=\cos t\left(I_{m}+(\tan t) A_{p}\right)$. Change of Variables Theorem for integration implies that the equality

$$
\operatorname{Vol}_{F}(M)=(\cos t)^{m} \int_{M} \operatorname{det}\left(I_{m}+(\tan t) A_{p}\right) \mathrm{d} V_{F}
$$

holds for arbitrary $t \geq 0$ small enough. One can use the substitution $\tan t \rightarrow \tilde{t}$ and the identity $\cos ^{2} t=\left(1+\tilde{t}^{2}\right)^{-1}$ for further derivations.
c) The case of negative constant flag curvature $K(\nu, P)$ of M, say $K=-1$, is similar to the case (b). One can use the substitution $\tanh (t) \rightarrow \tilde{t}$ and the identity $\cosh ^{2} t=\left(1-\tilde{t}^{2}\right)^{-1}$ for derivations.

The above yields the following extension of Theorem 1.1 in [3].
Corollary 3.9. Let \mathcal{F} be a transversally oriented codimension-one foliation on a Finsler manifold $\left(M^{m+1}, F\right)$ of finite F-volume and $\sup _{p \in M}\left\|A_{p}\right\|_{F}<\infty$ (e.g. closed) with a unit normal ν and condition $R_{p}=K I_{m}$. Then, for any $0 \leq k \leq m$,

$$
\int_{M} \sigma_{k}\left(A_{p}\right) \mathrm{d} V_{F}=\left\{\begin{array}{cc}
K^{k / 2}\binom{m / 2}{k / 2} \operatorname{Vol}_{F}(M), & m, k \text { even } \tag{3.21}\\
0, & m \text { or } k \text { odd }
\end{array}\right.
$$

Remark 3.3. By Theorem 8.2.4 in [8], if a Finsler manifold M is closed and has constant negative curvature then it is Randers.

If (M, F) is F-locally symmetric and the leaves of \mathcal{F} are F-totally geodesic (i.e., $A_{p}=0$) then

$$
\mathbf{Y}^{(2 k+1)}(0)=0, \quad \mathbf{Y}^{(2 k)}(0)=\left(-R_{p}\right)^{k}
$$

Finally we get the F-Jacobi tensor $\mathbf{Y}(t)=I_{m}-\frac{t^{2}}{2!} R_{p}+\frac{t^{4}}{4!} R_{p}^{2}-\frac{t^{6}}{6!} R_{p}^{3}+\ldots$, and (3.13) reduces to

$$
\int_{M} \sum_{\|\lambda\|=k} \sigma_{\lambda}\left(-\frac{1}{2!} R_{p}, \frac{1}{4!} R_{p}^{2}, \ldots, \frac{(-1)^{k}}{(2 k)!} R_{p}^{k}\right) \mathrm{d} V_{F}=0
$$

For codimension-one F-totally geodesic foliations on arbitrary positively complete (or closed) Finsler manifolds of finite F-volume, we get

$$
\begin{gather*}
\int_{M} \operatorname{Tr} R_{p} \mathrm{~d} V_{F}=0, \quad \int_{M} \operatorname{Tr} R_{p}^{(1)} \mathrm{d} V_{F}=0 \\
\int_{M}\left(\sigma_{2}\left(R_{p}\right)+\frac{1}{6} \operatorname{Tr} R_{p}^{2}-\frac{1}{6} \operatorname{Tr} R_{p}^{(2)}\right) \mathrm{d} V_{F}=0 \tag{3.22}
\end{gather*}
$$

and so on. Equalities (3.22) imply directly the following statement (see also Corollary 3.7).

Corollary 3.10. Let \mathcal{F} be a codimension-one F-totally geodesic foliation on a F locally symmetric positively complete Finsler manifold (M, F) of finite F-volume and with condition $(3.17)_{1}$. Then R_{p} vanishes identically provided that either M has everywhere non-negative (or, non-positive) Ricci curvature Ric, or $\sigma_{2}\left(R_{p}\right)$ is nonnegative.

It has been observed in [7] that codimension-one foliations of compact negativelyRicci curved Riemannian spaces are far (in a sense) from being totally umbilical. In the case of an F-totally umbilical foliation, $A_{p}=H I_{m}$, therefore on a locally symmetric Finsler space (M, F) the following can be derived from (3.15)-(3.16) etc. with the use of Lemma 5.1 of Appendix:

$$
\begin{align*}
& \int_{M}\left((m-1)(m-2) H^{2}-\operatorname{Tr} R_{p}\right) \mathrm{d} V_{F}=0 \tag{3.23}\\
& \int_{M} H\left(\frac{m(m-1)(m-2)}{3 m-2} H^{2}-\operatorname{Tr} R_{p}\right) \mathrm{d} V_{F}=0 \tag{3.24}
\end{align*}
$$

These integrals for k even $\left((3.23),(3.24)\right.$, etc.) contain polynomials depending on H^{2} only. If all the coefficients of such polynomials are positive, then the polynomials are positive for all values of H and one may easily get obstructions for existence of totally umbilical foliations on some Finsler manifolds.

4 Codimension-one foliated Randers spaces

Let \mathcal{F} be a transversally oriented codimension-one foliation of M^{m+1} equipped with a Randers metric

$$
F(y)=\sqrt{a(y, y)}+\beta(y), \quad\|\beta\|_{\alpha}<1, \quad \beta^{\sharp} \in \Gamma(T \mathcal{F}) .
$$

As before, let us write $a(\cdot, \cdot)=\langle\cdot, \cdot\rangle$. Let N be a unit a-normal vector field to \mathcal{F}, i.e., $\langle N, N\rangle=1$ and $\langle N, v\rangle=0$ for $v \in T \mathcal{F}$, and n an F-normal vector field to \mathcal{F} with the property $\langle n, n\rangle=1$. Denote by $\bar{\nabla}$ the Levi-Civita connection of the Riemannian metric a and by ∇ the Levi-Civita connection of the Riemannian metric $g=g_{n}$ on M. According to [4, (1.15) and (1.19)] we have

$$
\begin{align*}
\tau(y) & =(m+2) \log \sqrt{(1+\beta(y) / \alpha(y)) c^{-2}} \tag{4.1}\\
I_{y}(v) & =\frac{m+2}{2 F(y)}\left(\beta(v)-\frac{\langle v, y\rangle \beta(y)}{\alpha^{2}(y)}\right) . \tag{4.2}
\end{align*}
$$

In particular, $\tau(n)=0$ and $I_{n}(v)=\frac{m+2}{2 c^{4}}\left\langle\beta^{\sharp}-\left(c^{2}-1\right) n, v\right\rangle$. Remark that for Randers spaces

$$
C_{n}(u, v, w)=\frac{1}{m+2}\left(I_{n}(u) h_{n}(v, w)+I_{n}(v) h_{n}(u, w)+I_{n}(w) h_{n}(u, v)\right)
$$

where the angular form h_{n} is given by

$$
\begin{equation*}
h_{n}(u, v)=c^{2}(\langle u, v\rangle-\langle u, n\rangle\langle v, n\rangle), \tag{4.3}
\end{equation*}
$$

see $\left[4,(1.11)\right.$ and (1.20)]. Since $\sigma_{F}=c^{m+2} \sqrt{\operatorname{det} a_{i j}}$, see [4, p. 6] , and $\sqrt{\operatorname{det} g_{i j}(n)}=$ $c^{m+2} \sqrt{\operatorname{det} a_{i j}}$, see (2.6), the volume form of F and canonical volume forms of Riemannian metrics g and a obey

$$
\begin{equation*}
\mathrm{d} V_{F}=c^{m+2} \mathrm{~d} V_{a}, \quad \mathrm{~d} V_{g}=c^{m+2} \mathrm{~d} V_{a}, \quad \mathrm{~d} V_{F}=\mathrm{d} V_{g} \tag{4.4}
\end{equation*}
$$

Let $Z=\nabla_{\nu} \nu$ (which is dual of θ_{g} in Sect. 3.2) and $\bar{Z}=\bar{\nabla}_{N} N$ be the curvature vectors of ν-curves and N-curves for Riemannian metrics g and a, respectively.

4.1 The shape operators of g and a

The shape operators of \mathcal{F} with respect to the metrics a and g are defined as follows:

$$
\bar{A}(u)=-\bar{\nabla}_{u} N, \quad A^{g}(u)=-\nabla_{u} \nu
$$

where $u \in T \mathcal{F}$ and $\nu=c^{-2} n=c^{-1}\left(N-c^{-1} \beta^{\sharp}\right)$ with $c=\sqrt{1-\|\beta\|_{\alpha}^{2}}>0$.
The derivative $\bar{\nabla} u: T M \rightarrow T M$ is defined by $(\bar{\nabla} u)(v)=\bar{\nabla}_{v} u=\bar{\nabla}_{v} u$, where $v \in T M$. The conjugate derivative $(\bar{\nabla} u)^{t}: T M \rightarrow T M$ is defined by $\left\langle(\bar{\nabla} u)^{t}(v), w\right\rangle=$ $\langle v,(\bar{\nabla} u)(w)\rangle$ for all $v, w \in T M$. The deformation tensor $\overline{\mathrm{Def}}$,

$$
2 \overline{\mathrm{Def}}_{u}=\bar{\nabla} u+(\bar{\nabla} u)^{t}
$$

measures the degree to which the flow of a vector field $u \in \Gamma(T M)$ distorts the metric a. The same notation $\overline{\operatorname{Def}}_{u}$ will be used for its dual (with respect to a) (1,1)-tensor. Set $\overline{\operatorname{Def}}_{u}^{\top}(v)=\left(\overline{\operatorname{Def}}_{u}(v)\right)^{\top}$. For $\beta \neq 0$, let

$$
\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}=\bar{A}\left(\beta^{\sharp}\right)-\left\langle\bar{A}\left(\beta^{\sharp}\right), \beta^{\sharp}\right\rangle \beta^{\sharp} \cdot\left\|\beta^{\sharp}\right\|_{\alpha}^{-2}
$$

be the projection of $\bar{A}\left(\beta^{\sharp}\right)$ on $\left(\beta^{\sharp}\right)^{\perp}$. Note that $\lim _{\beta \rightarrow 0} \bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}=0$.
Proposition 4.1. Let $\beta(N)=0$ on M. Then on $T \mathcal{F}$ we have

$$
\begin{equation*}
c A^{g}=\bar{A}-c^{-2}\left(c N-\beta^{\sharp}\right)(c) I_{m}+c^{-1}\left(\overline{\operatorname{Def}}_{\beta^{\sharp}}\right)_{\mid T \mathcal{F}}^{\top}+U_{1}^{b} \otimes \beta^{\sharp}+U_{2} \otimes \beta, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{align*}
U_{1}= & -\frac{1}{2} c^{-2}\left(\left(c N-\beta^{\sharp}\right)(c) \beta^{\sharp}-2 c^{-1}\left(\overline{\operatorname{Def}}_{\beta^{\sharp}} \beta^{\sharp}\right)^{\top}-\bar{\nabla}_{N-c^{-1} \beta^{\sharp}}^{\top} \beta^{\sharp}\right. \\
& \left.+c \bar{Z}+c \beta(\bar{Z}) \beta^{\sharp}-\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}\right), \\
U_{2}= & \frac{1}{2}\left(\bar{\nabla}_{N-c^{-1} \beta^{\sharp}}^{\top} \beta^{\sharp}-c \bar{Z}-\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}\right) . \tag{4.6}
\end{align*}
$$

Proof. By the well-known formula for Levi-Civita connection of g, using equalities $g(u, n)=0=g(v, n)$ and $g([u, v], n)=0$, we have

$$
\begin{equation*}
2 g\left(\nabla_{u} n, v\right)=n(g(u, v))+g([u, n], v)+g([v, n], u) \quad(u, v \in T \mathcal{F}) . \tag{4.7}
\end{equation*}
$$

One may assume $\bar{\nabla}_{X}^{\top} u=\bar{\nabla}_{X}^{\top} v=0$ for all $X \in T_{p} M$ at a given point $p \in M$. Using (2.11) with $u=[u, n]$ and $v=v$, we obtain

$$
\begin{aligned}
n(g(u, v)) & =n\left(c^{2}(\langle u, v\rangle-\beta(u) \beta(v))\right) \\
& =n\left(c^{2}\right)(\langle u, v\rangle-\beta(u) \beta(v))-c^{2} \beta(u)\left(\bar{\nabla}_{n} \beta\right)(v)-c^{2}\left(\bar{\nabla}_{n} \beta\right)(u) \beta(v), \\
g([u, n], v) & \left.=c^{2}(\langle[u, n], v\rangle+\beta(v)\langle[u, n]), n\rangle\right) \\
& =-c^{2}\left\langle c \bar{A}(u)+\bar{\nabla}_{u} \beta^{\sharp}, v\right\rangle+c^{3}\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, u\right\rangle \beta(v), \\
g([v, n], u) & \left.=c^{2}(\langle[v, n], u\rangle+\beta(u)\langle[v, n]), n\rangle\right) \\
& =-c^{2}\left\langle c \bar{A}(v)+\bar{\nabla}_{v} \beta^{\sharp}, u\right\rangle+c^{3}\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, v\right\rangle \beta(u) .
\end{aligned}
$$

Substituting the above into (4.7), we find

$$
\begin{align*}
& 2 g\left(\nabla_{u} n, v\right)=n\left(c^{2}\right)(\langle u, v\rangle-\beta(u) \beta(v))-2 c^{3}\langle\bar{A}(u), v\rangle-2 c^{2}\left\langle\overline{\operatorname{Def}}_{\beta^{\sharp}}(u), v\right\rangle \\
& -c^{2}\left(\bar{\nabla}_{n} \beta\right)(u) \beta(v)-c^{2} \beta(u)\left(\bar{\nabla}_{n} \beta\right)(v)+c^{3}\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, u\right\rangle \beta(v) \\
& \quad+c^{3} \beta(u)\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, v\right\rangle . \tag{4.8}
\end{align*}
$$

From (4.8), assuming $g\left(\nabla_{u} n, v\right)=\langle\mathfrak{D}(u), v\rangle$ and using Lemma 2.3, we get

$$
\begin{equation*}
-2 c^{4} A^{g}(u)=2 \mathfrak{D}(u)+c^{-2}\left\langle 2 \mathfrak{D}(u), \beta^{\sharp}\right\rangle \beta^{\sharp}, \tag{4.9}
\end{equation*}
$$

where $\mathfrak{D}: T \mathcal{F} \rightarrow T \mathcal{F}$ is a linear operator, and

$$
\begin{align*}
2 \mathfrak{D}(u) & =n\left(c^{2}\right)\left(u-\beta(u) \beta^{\sharp}\right)-2 c^{3} \bar{A}(u)-2 c^{2}\left(\overline{\operatorname{Def}}_{\beta^{\sharp}}(u)\right)^{\top} \\
& -c^{2}\left(\bar{\nabla}_{n}^{\top} \beta\right)(u) \beta^{\sharp}-c^{2} \beta(u) \bar{\nabla}_{n}^{\top} \beta^{\sharp}+c^{3}\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, u\right\rangle \beta^{\sharp} \\
& +c^{3} \beta(u)\left(\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}\right) . \tag{4.10}
\end{align*}
$$

From (4.10) we get

$$
\begin{align*}
2\left\langle\mathfrak{D}(u), \beta^{\sharp}\right\rangle & =n\left(c^{2}\right) c^{2} \beta(u)-2 c^{3}\left\langle\bar{A}\left(\beta^{\sharp}\right), u\right\rangle-2 c^{2}\left\langle\overline{\operatorname{Def}}_{\beta^{\sharp}}\left(\beta^{\sharp}\right), u\right\rangle \\
& -c^{2}\left(1-c^{2}\right)\left(\bar{\nabla}_{n}^{\top} \beta\right)(u)+c^{3} n(c) \beta(u)+c^{3}\left(1-c^{2}\right)\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, u\right\rangle \\
& +c^{3}\left\langle\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}, \beta^{\sharp}\right\rangle \beta(u) . \tag{4.11}
\end{align*}
$$

From (4.9) - (4.11) we obtain

$$
\begin{aligned}
& c A^{g}=\bar{A}-c^{-1}\left(N-c^{-1} \beta^{\sharp}\right)(c) I_{m} c^{-1}\left(\overline{\operatorname{Def}}_{\beta^{\sharp}}\right)_{\mid T \mathcal{F}}^{\top} \\
& -\frac{1}{2} c^{-2}\left(\left(c N-\beta^{\sharp}\right)(c) \beta^{\sharp}-2 c^{-1}\left(\overline{\operatorname{Def}}_{\beta^{\sharp}} \beta^{\sharp}\right)^{\top}-\bar{\nabla}_{N-c^{-1} \beta^{\sharp}}^{\top} \beta^{\sharp}+c \bar{Z}+c\left\langle\bar{Z}, \beta^{\sharp}\right\rangle \beta^{\sharp}\right. \\
& \left.-\bar{A}\left(\beta^{\sharp}\right)+\left\langle\bar{A}\left(\beta^{\sharp}\right), \beta^{\sharp}\right\rangle \beta^{\sharp}\right)^{b} \otimes \beta^{\sharp}+\frac{1}{2}\left(\bar{\nabla}_{N-c^{-1} \beta^{\sharp}}^{\top} \beta^{\sharp}-c \bar{Z}-\bar{A}\left(\beta^{\sharp}\right)\right) \otimes \beta .
\end{aligned}
$$

From the above the expected (4.5) - (4.6) follow.
Corollary 4.2. Let $\beta(N)=0$. If $\|\beta\|_{\alpha}=$ const then on $T \mathcal{F}$ we have

$$
\begin{align*}
& c A^{g}=\bar{A}+c^{-1}\left(\overline{\operatorname{Def}}_{\beta^{\sharp}}\right)_{\mid T \mathcal{F}}^{\top}+\frac{1}{2}\left(\bar{\nabla}_{N-c^{-1} \beta^{\sharp}}^{\top} \beta^{\sharp}-c \bar{Z}-\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}\right) \otimes \beta \\
& +\frac{1}{2} c^{-2}\left(2 c^{-1} \overline{\operatorname{Def}}_{\beta^{\sharp}}^{\top}\left(\beta^{\sharp}\right)+\bar{\nabla}_{N-c^{-1} \beta^{\sharp}}^{\top} \beta^{\sharp}+\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}\right. \\
& \left.-c \bar{Z}-c\left\langle\bar{Z}, \beta^{\sharp}\right\rangle \beta^{\sharp}\right)^{b} \otimes \beta^{\sharp} . \tag{4.12}
\end{align*}
$$

If, in particular, $\bar{\nabla} \beta=0$ (i.e., F is a Berwald structure) then
(4.13) $c A^{g}=\bar{A}-\frac{1}{2}\left(\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}+c \bar{Z}\right) \otimes \beta+\frac{1}{2} c^{-2}\left(\bar{A}\left(\beta^{\sharp}\right)^{\perp \beta}-c \bar{Z}-c\left\langle\bar{Z}, \beta^{\sharp}\right\rangle \beta^{\sharp}\right)^{b} \otimes \beta^{\sharp}$.

4.2 The Riemann curvature of g and a

In this section we study relationship between Riemann curvature of two metrics, g and a, on a Randers space.

Proposition 4.3. For a codimension-one foliation of M with Riemannian metrics g and a we have

$$
\begin{align*}
Z & =c^{-2} \bar{Z}-c^{-3} \bar{\nabla}^{\top} c+c^{-4} \beta\left(\bar{Z}-c^{-1} \bar{\nabla}^{\top} c\right) \beta^{\sharp}, \tag{4.14}\\
C_{n}^{\sharp} & =c^{-2} \bar{C}+c^{-4}(\beta \circ \bar{C}) \otimes \beta^{\sharp}, \tag{4.15}
\end{align*}
$$

where

$$
\begin{aligned}
2 \bar{C} & =\operatorname{Sym}(\beta \otimes \bar{Z})+c^{-3}\left(c \beta(\bar{Z})-2 \beta^{\sharp}(c)-n(c)\right)\left(I_{m}-\beta \otimes \beta^{\sharp}\right) \\
& -c^{-1} \operatorname{Sym}\left(\beta \otimes \bar{\nabla}^{\top} c\right)+c^{-1}\left(\beta^{\sharp}(c)+n(c)\right)\left(I_{m}-3 \beta \otimes \beta^{\sharp}\right) .
\end{aligned}
$$

We also have
(4.16) $\left\langle\bar{\nabla}_{u} \bar{Z}, v\right\rangle=\left\langle\bar{\nabla}_{v} \bar{Z}, u\right\rangle, \quad g\left(\nabla_{u} Z, v\right)=g\left(\nabla_{v} Z, u\right) \quad(u, v \in T \mathcal{F})$,
(4.17) $\bar{R}_{N}=\left(\overline{\operatorname{Def}}_{\bar{Z}}\right)_{\mid T \mathcal{F}}^{\top}+\bar{\nabla}_{N} \bar{A}-\bar{A}^{2}-\bar{Z}^{b} \otimes \bar{Z}, \quad R_{\nu}^{g}=\left(\operatorname{Def}_{Z}\right)_{\mid T \mathcal{F}}^{\top}+\nabla_{\nu} A-A^{2}-Z^{b} \otimes Z$.

Proof. Extend $X \in T_{p} \mathcal{F}$ at a point $p \in M$ onto a neighborhood of p with the property $\left(\nabla_{Y} X\right)^{\top}=0$ for any $Y \in T_{p} M$. By the well known formula for the Levi-Civita connection, we obtain at p :

$$
g(Z, X)=g([X, \nu], \nu)
$$

Then, using the equalities $\nu=c^{-1} N-c^{-2} \beta^{\sharp}$ and $[X, f Y]=X(f) Y+f[X, Y]$, we calculate

$$
\begin{aligned}
g([X, \nu], \nu) & =c^{-4} X(c) g\left(N, \beta^{\sharp}\right)-c^{-3} X(c) g(N, N) \\
& +c^{-2} g([X, N], N)-c^{-3} g\left([X, N], \beta^{\sharp}\right) .
\end{aligned}
$$

Note that

$$
[X, N]=\bar{\nabla}_{X} N-\bar{\nabla}_{N} X=-\bar{A}(X)-\left\langle\bar{\nabla}_{N} X, N\right\rangle N=-\bar{A}(X)+\langle\bar{Z}, X\rangle N
$$

and $N=c \nu+c^{-1} \beta^{\sharp}$. Then, by Lemma 2.2 and the equalities

$$
\begin{aligned}
g\left(\beta^{\sharp}, \beta^{\sharp}\right) & =c^{2}\left(\left\langle\beta^{\sharp}, \beta^{\sharp}\right\rangle-\beta\left(\beta^{\sharp}\right)^{2}\right)=c^{4}\left(1-c^{2}\right), \\
g\left(N, \beta^{\sharp}\right) & =g\left(c \nu+c^{-1} \beta^{\sharp}, \beta^{\sharp}\right)=c^{-1} g\left(\beta^{\sharp}, \beta^{\sharp}\right)=c^{3}\left(1-c^{2}\right), \\
g(N, N) & =g\left(c \nu+c^{-1} \beta^{\sharp}, c \nu+c^{-1} \beta^{\sharp}\right)=c^{2}+c^{-2} g\left(\beta^{\sharp}, \beta^{\sharp}\right)=c^{2}\left(2-c^{2}\right),
\end{aligned}
$$

we obtain

$$
\begin{aligned}
g([X, N], N) & =-\left\langle\bar{A}\left(\beta^{\sharp}\right), X\right\rangle+\langle\bar{Z}, X\rangle g(N, N)=c^{2}\left\langle\left(2-c^{2}\right) \bar{Z}-c \bar{A}\left(\beta^{\sharp}\right), X\right\rangle, \\
g\left([X, N], \beta^{\sharp}\right) & =-\left\langle\bar{A}\left(\beta^{\sharp}\right), X\right\rangle+\langle\bar{Z}, X\rangle g\left(N, \beta^{\sharp}\right)=c^{3}\left\langle\left(1-c^{2}\right) \bar{Z}-c \bar{A}\left(\beta^{\sharp}\right), X\right\rangle .
\end{aligned}
$$

Hence,

$$
g(Z, X)=-c^{-1} X(c)+\langle\bar{Z}, X\rangle=\left\langle\bar{Z}-c^{-1} \bar{\nabla} c, X\right\rangle
$$

By Lemma 2.3, we get (4.14). From (4.2) - (4.3), (4.14) and a bit of help from Maple program we find

$$
\begin{aligned}
2 C_{n}(u, v, Z) & =\langle\bar{Z}, u\rangle \beta(v)+\langle\bar{Z}, v\rangle \beta(u) \\
& +c^{-3}\left(c \beta(\bar{Z})-2 \beta^{\sharp}(c)-n(c)\right)(\langle u, v\rangle-\beta(u) \beta(v)) \\
& -c^{-1}(u(c) \beta(v)+v(c) \beta(u))+c^{-1}\left(\beta^{\sharp}(c)+n(c)\right)(\langle u, v\rangle-3 \beta(u) \beta(v)) .
\end{aligned}
$$

Using $g\left(C_{n}^{\sharp}(u), v\right)=\langle\bar{C}(u), v\rangle$, where C_{n}^{\sharp} is g-dual to $C_{n}\left(\cdot, \cdot, \nabla_{n} n\right)$, and

$$
\begin{aligned}
2 \bar{C}(u) & =\langle\bar{Z}, u\rangle \beta^{\sharp}+\beta(u) \bar{Z}+c^{-3}\left(c \beta(\bar{Z})-2 \beta^{\sharp}(c)-n(c)\right)\left(u-\beta(u) \beta^{\sharp}\right) \\
& -c^{-1}\left(u(c) \beta^{\sharp}+\beta(u) \bar{\nabla}^{\top} c\right)+c^{-1}\left(\beta^{\sharp}(c)+n(c)\right)\left(u-3 \beta(u) \beta^{\sharp}\right),
\end{aligned}
$$

we apply Lemma 2.3 to get (4.15).
We shall prove (4.16) and (4.17) for a. It is sufficient to show that
(4.18) $\langle\bar{R}(u, N) N, v\rangle=\left\langle\left(\bar{\nabla}_{N} \bar{A}-\bar{A}^{2}\right)(u), v\right\rangle-\langle\bar{Z}, u\rangle\langle\bar{Z}, v\rangle+\left\langle\bar{\nabla}_{u} \bar{Z}, v\right\rangle, \quad u, v \in T \mathcal{F}$.

Since the left hand side of (4.18) is symmetric, we obtain $\left\langle\bar{\nabla}_{u} \bar{Z}, v\right\rangle=\left\langle\bar{\nabla}{ }_{v} \bar{Z}, u\right\rangle$, see $(4.17)_{1}$ and $(4.16)_{1}$. Indeed,

$$
\begin{aligned}
& \langle\bar{R}(u, N) N, v\rangle=\left\langle\bar{\nabla}_{u} \bar{\nabla}_{N} N, v\right\rangle-\left\langle\bar{\nabla}_{N} \bar{\nabla}_{u} N, v\right\rangle-\left\langle\bar{\nabla}_{\bar{\nabla}_{u} N-\bar{\nabla}_{N} u} N, v\right\rangle \\
& =\left\langle\bar{\nabla}_{u} \bar{Z}, v\right\rangle+\left\langle\bar{\nabla}_{N}(\bar{A}(u)), v\right\rangle-\left\langle\bar{A}^{2}(u), v\right\rangle+\left\langle\bar{\nabla}_{\left\langle\bar{\nabla}_{N} u, N\right\rangle N} N, v\right\rangle-\left\langle\bar{A}\left(\bar{\nabla}_{N}^{\top} u\right), v\right\rangle \\
& =\left\langle\left(\bar{\nabla}_{N} \bar{A}-\bar{A}^{2}\right)(u), v\right\rangle-\langle\bar{Z}, u\rangle\langle\bar{Z}, v\rangle+\left\langle\bar{\nabla}_{u} \bar{Z}, v\right\rangle,
\end{aligned}
$$

that completes the proof of (4.18). The proof of $(4.16)_{2}$ and $(4.17)_{2}$ (for the metric $g)$ is similar.

By (4.15), the equality $C_{n}^{\sharp}=0$ is independent of the condition $\bar{\nabla} \beta=0$. Moreover, we have the following.

Corollary 4.4. Let $m>3$ and $c=$ const. Then $C_{n}^{\sharp}=0$ if and only if $\bar{Z}=0$.
Proof. By our assumptions, $\bar{C}=\frac{1}{2} \operatorname{Sym}(\beta \otimes \bar{Z})+\frac{1}{2} c^{-2} \beta(\bar{Z})\left(I_{m}-\beta \otimes \beta^{\sharp}\right)$. Hence, $C_{n}^{\sharp}=0$ reads

$$
\beta(\bar{Z}) I_{m}=\beta(\bar{Z}) \beta \otimes \beta^{\sharp}-c^{2} \operatorname{Sym}(\beta \otimes \bar{Z})-2(\beta \circ \bar{C}) \otimes \beta^{\sharp} .
$$

Since the matrix $\beta(\bar{Z}) I_{m}$ is conformal, while the matrix in the right hand side of above equality has the form $\omega \otimes \beta^{\sharp}-c^{2} \bar{Z}^{\perp \beta} \otimes \beta$ and rank ≤ 3, for $m>3$ we obtain

$$
\beta(\bar{Z})=0, \quad \operatorname{Sym}(\beta \otimes \bar{Z})+2 c^{-2}(\beta \circ \bar{C}) \otimes \beta^{\sharp}=0 .
$$

By the first condition, $\bar{Z} \perp \beta^{\sharp}$; thus, the second condition yields $\bar{Z}=0$ (that is, \mathcal{F} is a Riemannian foliation for the metric a) and $\bar{C}=0$. The converse claim follows directly from (4.15) and the definition of \bar{C}.
Remark 4.1. In [15] and [5] one may find coordinate presentations of R_{y} through \bar{R}_{y} for all $y \in T M$. For example, if $\bar{\nabla} \beta=0$ (i.e., F is a Berwald structure) then $R_{y}(u)=$ $\bar{R}_{y}(u)$ for all u. Alternative formulas with relationship between R_{ν} and \bar{R}_{ν} follow from (4.17), where A^{g} and Z are expressed using \bar{A} and \bar{Z} given in Propositions 4.1 and 4.3.

4.3 Around the Reeb and Brito-Langevin-Rosenberg formula

Based on (3.13) and (3.21), one may produce a sequence of similar formulae for Randers spaces. We will discuss first two of them (i.e., $k=1,2$).
Remark 4.2. In [10], G. Reeb proved that the total mean curvature of the leaves of a codimension-one foliation on a closed Riemannian manifold equals zero. Note that $\operatorname{Tr} \overline{\operatorname{Def}}_{\beta^{\sharp}}^{\top}=\overline{\operatorname{div}} \beta^{\sharp}+\beta(\bar{Z})$, where $\bar{Z}=\bar{\nabla}_{N} N$ is the curvature vector of N-curves for the metric a. Using notations of Appendix, we find from (4.6),
$\beta\left(U_{1}\right)=-\frac{2-c^{2}}{2 c} N(c)-\frac{1}{2} \beta^{\sharp}(c)-\frac{2-c^{2}}{2 c} \beta(\bar{Z}), \quad \beta\left(U_{2}\right)=-\frac{1}{2}\left(c N-\beta^{\sharp}\right)(c)-\frac{1}{2} c \beta(\bar{Z})$.
Hence,

$$
\beta\left(U_{1}\right)+\beta\left(U_{2}\right)=-c^{-1}(N(c)+\beta(\bar{Z})) .
$$

Tracing (4.5), we get

$$
c \sigma_{1}\left(A^{g}\right)=\sigma_{1}(\bar{A})-(m+1) c^{-1} N(c)+m c^{-2} \beta^{\sharp}(c)+c^{-1} \overline{\operatorname{div}} \beta^{\sharp} .
$$

The volume forms of g and a obey $\mathrm{d} V_{g}=c^{m+2} \mathrm{~d} V_{a}$, see (4.4). Using the Reeb formula for metric g,

$$
\int_{M} \sigma_{1}\left(A^{g}\right) \mathrm{d} V_{g}=0
$$

the equality $\overline{\operatorname{div}}\left(c^{m} \beta^{\sharp}\right)=c^{m} \overline{\operatorname{div}} \beta^{\sharp}+\beta^{\sharp}\left(c^{m}\right)$ and the Divergence Theorem, we get

$$
\begin{equation*}
\int_{M}\left(c^{m+1} \sigma_{1}(\bar{A})-N\left(c^{m+1}\right)\right) \mathrm{d} V_{a}=0 \tag{4.19}
\end{equation*}
$$

which for $\beta=0$ is the Reeb formula for metric a. Remark that (4.19) is a particular case of a general formula for any $f \in C^{2}(M)$, see [12, Lemma 2.5]:

$$
\int_{M}\left(f \sigma_{1}(\bar{A})-N(f)\right) \mathrm{d} V_{a}=0
$$

The next results concern Brito-Langevin-Rosenberg type formulas for foliated Randers spaces.

The Newton transformations $T_{k}(A)(0 \leq k \leq m)$ of an $m \times m$ matrix A (see [12]) are defined either inductively by $T_{0}(A)=I_{m}, T_{k}(A)=\sigma_{k}(A) I_{m}-A T_{k-1}(A)(k \geq 1)$ or explicitly as

$$
T_{k}(A)=\sigma_{k}(A) I_{m}-\sigma_{k-1}(A) A+\ldots+(-1)^{k} A^{k}, \quad 0 \leq k \leq m
$$

and we have $T_{k}(\lambda A)=\lambda^{k} T_{k}(A)$ for $\lambda \neq 0$. Observe that if a rank-one matrix $A:=U \otimes \beta$ (and similarly for $A:=\omega \otimes \beta^{\sharp}$) has zero trace, i.e., $\beta(U)=0$, then

$$
A^{2}=U\left(\beta^{\sharp}\right)^{t} \cdot U\left(\beta^{\sharp}\right)^{t}=U \beta(U)\left(\beta^{\sharp}\right)^{t}=\beta(U) A=0 .
$$

Note that for $c=$ const we have, see (4.15), $C_{n}^{\sharp}=c^{-2} \bar{C}+c^{-4}(\beta \circ \bar{C}) \otimes \beta^{\sharp}$, where $C_{n}^{\sharp}=c^{2} C_{\nu}^{\sharp}$ and

$$
2 \bar{C}=\operatorname{Sym}(\beta \otimes \bar{Z})+c^{-2} \beta(\bar{Z})\left(I_{m}-\beta \otimes \beta^{\sharp}\right)
$$

Theorem 4.5. Let $\left(M^{m+1}, \alpha+\beta\right)$ be a codimension-one foliated closed Randers space with constant sectional curvature \bar{K} of a. If a nonzero vector field $\beta^{\sharp} \in \Gamma(T \mathcal{F})$ obeys $\bar{\nabla} \beta=0$, then $\bar{K}=0$ and for $1 \leq k \leq m$ we have

$$
\begin{align*}
& \int_{M}\left(\sum_{j>0} \sigma_{k-j, j}\left(\bar{A}, c C_{\nu}^{\sharp}\right)+\left\langle T_{k-1}\left(\bar{A}+c C_{\nu}^{\sharp}\right)\left(\beta^{\sharp}\right), U_{1}\right\rangle\right. \\
& \left.\quad+\left\langle T_{k-1}\left(\bar{A}+c C_{\nu}^{\sharp}+U_{1}^{b} \otimes \beta^{\sharp}\right)\left(U_{2}\right), \beta^{\sharp}\right\rangle\right) \mathrm{d} V_{a}=0, \tag{4.20}
\end{align*}
$$

where $U_{1}=\frac{1}{2} c^{-2}\left(\bar{A}\left(\beta^{\sharp}\right)-c \bar{Z}\right), U_{2}=-\frac{1}{2}\left(\bar{A}\left(\beta^{\sharp}\right)+c \bar{Z}\right)$. Moreover, if $m>3$ and $\bar{Z}=0$ then

$$
\begin{equation*}
\int_{M}\left\langle\left(c^{-2} T_{k-1}(\bar{A})-T_{k-1}\left(\bar{A}+\frac{1}{2} c^{-2} \bar{A}\left(\beta^{\sharp}\right)^{b} \otimes \beta^{\sharp}\right)\right)\left(\bar{A}\left(\beta^{\sharp}\right)\right), \beta^{\sharp}\right\rangle \mathrm{d} V_{a}=0 . \tag{4.21}
\end{equation*}
$$

Proof. By our assumptions, $c=$ const and $\bar{R}(x, y) z=\bar{K}(\langle y, z\rangle x-\langle x, z\rangle y)$. Hence, on $T \mathcal{F}$

$$
\bar{R}_{N}=\bar{K} I_{m}, \quad \bar{R}_{\beta^{\sharp}}=\left(1-c^{2}\right) \bar{K} I_{m}, \quad \bar{R}(\cdot, N) \beta^{\sharp}=0 .
$$

If $\bar{\nabla} \beta=0$ then $\bar{R}\left(U, \beta^{\sharp}, \beta^{\sharp}, U\right)=0$ and $\bar{K}\left(U \wedge \beta^{\sharp}\right)=0$ for all $U \perp \beta^{\sharp}$; hence, in our case, $\bar{K}=0$. By Remark 4.1, $R_{y}=\bar{R}_{y}$ for all $y \in T M_{0}$; hence, $R_{y}=0$. Since $\bar{\nabla} \beta^{\sharp}=0$, we obtain $\beta(\bar{Z})=0$ and $\left\langle\bar{A}\left(\beta^{\sharp}\right), \beta^{\sharp}\right\rangle=0$:

$$
\begin{aligned}
& \left\langle\beta^{\sharp}, \bar{Z}\right\rangle=\left\langle\beta^{\sharp}, \bar{\nabla}_{N} N\right\rangle=-\left\langle\bar{\nabla}_{N} \beta^{\sharp}, N\right\rangle=0, \\
& \left\langle\bar{A}\left(\beta^{\sharp}\right), \beta^{\sharp}\right\rangle=-\left\langle\beta^{\sharp}, \bar{\nabla}_{\beta^{\sharp}} N\right\rangle=\left\langle\bar{\nabla}_{\beta^{\sharp}} \beta^{\sharp}, N\right\rangle=0 .
\end{aligned}
$$

By (3.9) and Corollary 4.2,

$$
c A=c A^{g}+c C_{\nu}^{\sharp}=\bar{A}+c C_{\nu}^{\sharp}+A_{1}+A_{2},
$$

where $A_{1}=U_{1}^{b} \otimes \beta^{\sharp}$ and $A_{2}=U_{2} \otimes \beta$ are rank ≤ 1 matrices (since $\left\langle U_{i}, \beta^{\sharp}\right\rangle=0$). By Corollary 5.5 of Appendix, we have

$$
\begin{align*}
c^{k} \sigma_{k}(A) & =\sigma_{k}(\bar{A})+\sum_{j>0} \sigma_{k-j, j}\left(\bar{A}, c C_{\nu}^{\sharp}\right)+U_{1}\left(T_{k-1}\left(\bar{A}+c C_{\nu}^{\sharp}\right)\left(\beta^{\sharp}\right)\right) \\
& +\beta\left(T_{k-1}\left(\bar{A}+c C_{\nu}^{\sharp}+A_{1}\right)\left(U_{2}\right)\right) . \tag{4.22}
\end{align*}
$$

Recall that $\mathrm{d} V_{F}=c^{m+2} \mathrm{~d} V_{a}$, see (4.4). Comparing (3.21) (when $K=0$) with

$$
\int_{M} \sigma_{k}\left(\bar{A}_{p}\right) \mathrm{d} V_{a}=0
$$

we find (4.20). By Corollary 4.4, if $m>3, \bar{Z}=0$ then $C_{\nu}^{\sharp}=0$; hence, (4.20) yields (4.21).
Example 4.3. For $k=1$, (4.20) yields the Reeb type formula

$$
\int_{M} \sigma_{1}\left(C_{\nu}^{\sharp}\right) \mathrm{d} V_{a}=0 .
$$

Corollary 4.6. Let $\left(M^{m+1}, \alpha+\beta\right), m>3$, be a codimension-one foliated closed Randers space with constant sectional curvature \bar{K} of a. If $\bar{Z}=0$ and a nonzero vector field $\beta^{\sharp} \in \Gamma(T \mathcal{F})$ obeys $\bar{\nabla} \beta=0$ then $\bar{K}=0$ and $\bar{A}\left(\beta^{\sharp}\right)=0$ at any point of M. If, in addition, \mathcal{F} is totally umbilical $\left(\bar{A}=\bar{H} \cdot I_{m}\right)$ then \mathcal{F} is totally geodesic.

Proof. For $k=2$, the integrand in (4.21) reduces to $\frac{c^{2}-1}{4 c^{2}}\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|^{2}$. Thus, when $c \neq 1$, the claim follows.

Nevertheless, we will give alternative proof with use of integral formula (3.15). Our Randers space $(M, \alpha+\beta)$ is now Berwald. For the rank 1 matrices $A_{1}=U_{1}^{\mathrm{b}} \otimes \beta^{\sharp}$ and $A_{2}=U_{2} \otimes \beta$, where $U_{1}=\frac{1}{2} c^{-2} \bar{A}\left(\beta^{\sharp}\right)$ and $U_{2}=-\frac{1}{2} \bar{A}\left(\beta^{\sharp}\right)$ and $\left\langle\bar{A}\left(\beta^{\sharp}\right), \beta^{\sharp}\right\rangle=0$, see (4.13) with $\bar{Z}=0$, we have

$$
\begin{aligned}
& \operatorname{Tr}\left(A_{1} A_{2}\right)=\left\langle U_{1}, U_{2}\right\rangle \beta\left(\beta^{\sharp}\right)=\frac{c^{2}-1}{4 c^{2}}\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|_{\alpha}^{2}, \\
& \operatorname{Tr}\left(\bar{A} A_{1}\right)=\left\langle U_{1}, \bar{A}\left(\beta^{\sharp}\right)\right\rangle=\frac{1}{2 c^{2}}\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|_{\alpha}^{2}, \\
& \operatorname{Tr}\left(\bar{A} A_{2}\right)=\left\langle U_{2}, \bar{A}\left(\beta^{\sharp}\right)\right\rangle=-\frac{1}{2}\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|_{\alpha}^{2} .
\end{aligned}
$$

Thus, $\operatorname{Tr}\left(A_{1} A_{2}+\bar{A} A_{1}+\bar{A} A_{2}\right)=\frac{1-c^{2}}{4 c^{2}}\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|^{2}$. By the identity for square matrices

$$
\begin{aligned}
\sigma_{2}\left(\sum_{i} A_{i}\right) & =\frac{1}{2} \operatorname{Tr}^{2}\left(\sum_{i} A_{i}\right)-\frac{1}{2} \operatorname{Tr}\left(\left(\sum_{i} A_{i}\right)^{2}\right) \\
& =\sum_{i} \sigma_{2}\left(A_{i}\right)+\sum_{i<j}\left(\left(\operatorname{Tr} A_{i}\right)\left(\operatorname{Tr} A_{j}\right)-\operatorname{Tr}\left(A_{i} A_{j}\right)\right)
\end{aligned}
$$

and $\sigma_{2}\left(A_{1}\right)=\sigma_{2}\left(A_{2}\right)=0$, by the above and since $c A=c A^{g}=\bar{A}+A_{1}+A_{2}$, we get

$$
c^{2} \sigma_{2}(A)=c^{2} \sigma_{2}\left(A^{g}\right)=\sigma_{2}(\bar{A})+\frac{1}{4}\left(c^{-2}-1\right)\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|_{\alpha}^{2} .
$$

From the integral formulae, (3.20), for F and for Riemannian metric a,

$$
\int_{M} \sigma_{2}(\bar{A}) \mathrm{d} V_{a}=0, \quad \int_{M} \sigma_{2}(A) \mathrm{d} V_{F}=0
$$

where the volume forms are related by $\mathrm{d} V_{F}=c^{m+2} \mathrm{~d} V_{a}$, see (2.6), we find that $\left(c^{-2}-1\right) \int_{M}\left\|\bar{A}\left(\beta^{\sharp}\right)\right\|_{\alpha}^{2} \mathrm{~d} V_{a}=0$. Since $c \neq 1$ (for $\beta \neq 0$), we obtain $\bar{A}\left(\beta^{\sharp}\right)=0$.

Similar integral formulae exist for codimension one totally umbilical (i.e., $\bar{A}=$ $\bar{H} I_{m}$, where $\bar{H}=\frac{1}{m} \operatorname{Tr} \bar{A}$) and totally geodesic foliations. Notice that non-flat closed Riemannian manifolds of constant curvature do not admit such foliations.
Corollary 4.7. Let \mathcal{F} be a codimension-one totally umbilical (for the metric a) foliation of a closed Randers space $\left(M^{m+1}, \alpha+\beta\right)$ with constant sectional curvature \bar{K} of a. If a nonzero vector field $\beta^{\sharp} \in \Gamma(T \mathcal{F})$ obeys $\bar{\nabla} \beta^{\sharp}=0$ then $\bar{K}=0, \mathcal{F}$ is totally geodesic and for $1 \leq k \leq m$ (for $k=1$, see also Example 4.3) we have

$$
\begin{align*}
& \int_{M}\left(c^{k} \sigma_{k}\left(C_{\nu}^{\sharp}\right)-\frac{1}{2} c^{-1}\left\langle T_{k-1}\left(c C_{\nu}^{\sharp}\right)\left(\beta^{\sharp}\right), \bar{Z}\right\rangle\right. \\
& \left.-\frac{c}{2}\left\langle T_{k-1}\left(c C_{\nu}^{\sharp}-\frac{1}{2} c^{-1} \bar{Z}^{b} \otimes \beta^{\sharp}\right)(\bar{Z}), \beta^{\sharp}\right\rangle\right) \mathrm{d} V_{a}=0 . \tag{4.23}
\end{align*}
$$

Proof. Since $\left\langle\bar{A}\left(\beta^{\sharp}\right), \beta^{\sharp}\right\rangle=0$ (see the proof of Theorem 4.5), we obtain $\bar{H}=0$. Thus, (4.23) follows from (4.20) with $\bar{A}=0$ and $\beta(\bar{Z})=0$.

Remark 4.4. In results of this section, a closed manifold can be replaced by a complete manifold of finite volume with bounded geometry, see conditions (3.17).

5 Appendix: Invariants of a set of matrices

Here, we collect the properties of the invariants $\sigma_{\lambda}\left(A_{1}, \ldots, A_{k}\right)$ of real matrices A_{i} that generalize the elementary symmetric functions of a single symmetric matrix A. Let S_{k} be the group of all permutations of k elements. Given arbitrary quadratic $m \times m$ real matrices $A_{1}, \ldots A_{k}$ and the unit matrix I_{m}, one can consider the determinant $\operatorname{det}\left(I_{m}+\right.$ $\left.t_{1} A_{1}+\ldots+t_{k} A_{k}\right)$ and express it as a polynomial of real variables $\mathbf{t}=\left(t_{1}, \ldots t_{k}\right)$. Given $\lambda=\left(\lambda_{1}, \ldots \lambda_{k}\right)$, a sequence of nonnegative integers with $|\lambda|:=\lambda_{1}+\ldots+\lambda_{k} \leq m$, we shall denote by $\sigma_{\lambda}\left(A_{1}, \ldots, A_{k}\right)$ its coefficient at $\mathbf{t}^{\lambda}=t_{1}^{\lambda_{1}} \cdot \ldots t_{k}^{\lambda_{k}}$:

$$
\begin{equation*}
\operatorname{det}\left(I_{m}+t_{1} A_{1}+\ldots+t_{k} A_{k}\right)=\sum_{|\lambda| \leq m} \sigma_{\lambda}\left(A_{1}, \ldots A_{k}\right) \mathbf{t}^{\lambda} \tag{5.1}
\end{equation*}
$$

Evidently, the quantities σ_{λ} are invariants of conjugation by $G L(m)$-matrices:

$$
\begin{equation*}
\sigma_{\lambda}\left(A_{1}, \ldots A_{k}\right)=\sigma_{\lambda}\left(Q A_{1} Q^{-1}, \ldots Q A_{k} Q^{-1}\right) \tag{5.2}
\end{equation*}
$$

for all A_{i} 's, λ 's and nonsingular $m \times m$ matrices Q. Certainly, $\sigma_{i}(A)$ (for a single symmetric matrix A) coincides with the i-th elementary symmetric polynomial of the eigenvalues $\left\{k_{j}\right\}$ of A.

In the next lemma, we collect properties of these invariants.
Lemma 5.1 (see [13]). For any $\lambda=\left(\lambda_{1}, \ldots \lambda_{k}\right)$ and any $m \times m$ matrices A_{i}, A and B one has
(I) $\sigma_{\lambda}\left(0, A_{2}, \ldots A_{k}\right)=0$ if $\lambda_{1}>0$ and $\sigma_{0, \hat{\lambda}}\left(A_{1}, \ldots A_{k}\right)=\sigma_{\hat{\lambda}}\left(A_{2}, \ldots A_{k}\right)$ where $\hat{\lambda}=\left(\lambda_{2}, \ldots \lambda_{k}\right)$,
(II) $\sigma_{\lambda}\left(A_{s(1)}, \ldots A_{s(k)}\right)=\sigma_{\lambda \circ s}\left(A_{1}, \ldots A_{k}\right)$, where $s \in S_{k}$ and $\lambda \circ s=\left(\lambda_{s(1)}, \ldots \lambda_{s(k)}\right)$,
(III) $\sigma_{\lambda}\left(I_{m}, A_{2}, \ldots A_{k}\right)=\binom{m-|\hat{\lambda}|}{\lambda_{1}} \sigma_{\hat{\lambda}}\left(A_{2}, \ldots A_{k}\right)$,
(IV) $\sigma_{\lambda_{1}, \lambda_{2}, \hat{\lambda}}\left(A, A, A_{3}, \ldots A_{k}\right)=\binom{\lambda_{1}+\lambda_{2}}{\lambda_{1}} \sigma_{\lambda_{1}+\lambda_{2}, \hat{\lambda}}\left(A, A_{3}, \ldots A_{k}\right)$,
(V) $\sigma_{1, \hat{\lambda}}\left(A+B, A_{2}, \ldots A_{k}\right)=\sigma_{1, \hat{\lambda}}\left(A, A_{2}, \ldots A_{k}\right)+\sigma_{1, \hat{\lambda}}\left(B, A_{2}, \ldots A_{k}\right)$ and $\sigma_{\lambda}\left(a A_{1}, A_{2}, \ldots A_{k}\right)=a^{\lambda_{1}} \sigma_{\lambda}\left(A_{1}, A_{2}, \ldots A_{k}\right)$ if $a \in \mathbb{R} \backslash\{0\}$.

The invariants defined above can be used in calculation of the determinant of a matrix $B(t)$ expressed as a power series $B(t)=\sum_{i=0}^{\infty} t^{i} B_{i}$. Indeed, if one wants to express $\operatorname{det}(B(t))$ as a power series in t, then the coefficient at t^{j} depends only on the part $\sum_{i \leq j} t^{i} B_{i}$ of $B(t)$.

Lemma 5.2 ([13]). If $B(t), t \in \mathbb{R}$, is the $m \times m$ matrix given by $B(t)=\sum_{i=0}^{\infty} t^{i} B_{i}$, $B_{0}=I_{m}$ then

$$
\begin{equation*}
\operatorname{det}(B(t))=1+\sum_{k=1}^{\infty}\left(\sum_{\lambda,\|\lambda\|=k} \sigma_{\lambda}\left(B_{1}, \ldots B_{k}\right)\right) t^{k} \tag{5.3}
\end{equation*}
$$

where $\|\lambda\|=\lambda_{1}+2 \lambda_{2}+\ldots+k \lambda_{k}$ for $\lambda=\left(\lambda_{1}, \ldots \lambda_{k}\right)$.
Since det : $\mathcal{M}(m) \rightarrow \mathbb{R}, \mathcal{M}(m) \approx \mathbb{R}^{m^{2}}$ being the space of all $m \times m$-matrices, is a polynomial function, the series in (5.3) is convergent for all $t \in\left(-r_{0}, r_{0}\right)$, where $r_{0}=1 / \lim \sup _{k \rightarrow \infty}\left\|B_{k}\right\|^{1 / k}$ is the radius of convergence of the series $B(t)$.

By the First Fundamental Theorem of Matrix Invariants, see [6], all the invariants σ_{λ} can be expressed in terms of the traces of the matrices involved and their products.

Lemma 5.3 ([13]). For arbitrary matrices B, C and $k, l>0$ we have

$$
\sigma_{k, l}(B, C)=\sigma_{k}(B) \sigma_{l}(C)-\sum_{i=1}^{\min (k, l)} \sigma_{k-i, l-i, i}(B, C, B C)
$$

In particular, for $l=1$, it follows that

$$
\begin{equation*}
\sigma_{k, 1}(B, C)=\sum_{i=0}^{k}(-1)^{i} \sigma_{k-i}(B) \operatorname{Tr}\left(B^{i} C\right)=\operatorname{Tr}\left(T_{k}(B) C\right) \tag{5.4}
\end{equation*}
$$

Lemma 5.4. Let A, C be $m \times m$ matrices and $\operatorname{rank} A=1$. Then

$$
\begin{equation*}
\sigma_{k}(C+A)=\sigma_{k}(C)+\operatorname{Tr}\left(T_{k-1}(C) A\right) \tag{5.5}
\end{equation*}
$$

Proof. There exists a nonsingular matrix Q such that $\tilde{A}=Q A Q^{-1}$ has one nonzero element, $\tilde{a}_{1 i} \neq 0$ for some i (the simplest rank one matrix). By (5.2), $\sigma_{k, l}(\tilde{C}, \tilde{A})=$ $\sigma_{k, l}(C, A)$ where $\tilde{C}=Q C Q^{-1}$. By Laplace's formula (which expresses the determinant of a matrix in terms of its minors), $\operatorname{det}\left(I_{m}+t \tilde{C}+s \tilde{A}\right)$ is a linear function in $s \in \mathbb{R}$; hence, see (5.1), $\sigma_{k, l}(\tilde{C}, \tilde{A})=0$ for $l>1$. By the above, $\sigma_{k, l}(C, A)=0$ for $l>1$ and all k. Using the identity, see [13],

$$
\begin{equation*}
\sigma_{k}\left(C_{1}+C_{2}\right)=\sum_{i=0}^{k} \sigma_{k-i, i}\left(C_{1}, C_{2}\right) \tag{5.6}
\end{equation*}
$$

we find that

$$
\sigma_{k}(C+A)=\sigma_{k}(C)+\sigma_{k-1,1}(C, A)
$$

By (5.4), $\sigma_{k-1,1}(C, A)=\operatorname{Tr}\left(T_{k-1}(C) A\right)$ and (5.5) follows.
Corollary 5.5. Let C, D, A_{i} be $m \times m$ matrices and rank $A_{i}=1(1 \leq i \leq s)$. Then

$$
\begin{align*}
& \sigma_{k}\left(C+D+A_{1}+\ldots A_{s}\right)=\sigma_{k}(C)+\sum_{j>0} \sigma_{k-j, j}(C, D) \\
&+\operatorname{Tr}\left(T_{k-1}(C+D) A_{1}\right)+\ldots+\operatorname{Tr}\left(T_{k-1}\left(C+D+A_{1}+\ldots+A_{s-1}\right) A_{s}\right) \tag{5.7}
\end{align*}
$$

Proof. This follows from Lemma 5.4 and (5.4). For $s=1$, we obtain

$$
\begin{aligned}
& \sigma_{k}\left(C+D+A_{1}\right) \stackrel{(5.5)}{=} \sigma_{k}(C+D)+\operatorname{Tr}\left(T_{k-1}(C+D) A_{1}\right) \\
& \stackrel{(5.6)}{=} \sigma_{k}(C)+\sum_{j>0} \sigma_{k-j, j}(C, D)+\operatorname{Tr}\left(T_{k-1}(C+D) A_{1}\right)
\end{aligned}
$$

Then, by induction for $s,(5.7)$ follows.
Let C_{i} and P_{i} be m-vectors (columns) and I_{m} the identity m-matrix and $1 \leq i \leq$ $j \leq m$. Note that $C_{i} P_{j}^{t}$ are $m \times m$-matrices of rank 1 with

$$
\begin{gathered}
\sigma_{1}\left(C_{i} P_{j}^{t}\right)=C_{i}^{t} P_{j}=P_{j}^{t} C_{i}, \quad \sigma_{2}\left(C_{i} P_{j}^{t}\right)=0 \\
\left(I_{m}+C_{i} P_{j}^{t}\right)^{-1}=I_{m}-\left(1+C_{i}^{t} P_{j}\right)^{-1} C_{i} P_{j}^{t}
\end{gathered}
$$

Lemma 5.6. We have $\operatorname{det}\left(I_{m}+\sum_{i=1}^{k} C_{i} P_{i}^{t}\right)=1+\operatorname{det}\left(\left\{C_{i}^{t} P_{j}\right\}_{1 \leq i, j \leq k}\right)$. For example,

$$
\begin{aligned}
& \operatorname{det}\left(I_{m}+C_{1} P_{1}^{t}\right)=1+C_{1}^{t} P_{1} \\
& \operatorname{det}\left(I_{m}+C_{1} P_{1}^{t}+C_{2} P_{2}^{t}\right)=1+C_{1}^{t} P_{1}+C_{2}^{t} P_{2}+C_{1}^{t} P_{1} \cdot C_{2}^{t} P_{2}-C_{1}^{t} P_{2} \cdot C_{2}^{t} P_{1}
\end{aligned}
$$

and so on.

References

[1] K. Andrzejewski, V. Rovenski and P. Walczak, Integral formulas in foliation theory, 73-82, in "Geometry and its Applications", Springer Proc. in Math. and Statistics, 72, Springer, 2014.
[2] D. Bao, S.S. Chern, Z. Shen, An Introduction to Riemann-Finsler geometry, Springer, 2000.
[3] F. Brito, R. Langevin, H. Rosenberg, Intégrales de courbure sur des variétés feuilletées. J. Diff. Geom. 16 (1981), 19-50.
[4] X. Cheng, Z. Shen, Finsler geometry. An approach via Randers spaces, Springer, 2012.
[5] S.S. Chern, Z. Shen, Riemann-Finsler geometry, World Scientific, 2005.
[6] G.G. Gurevich, Foundations of the theory of algebraic invariants, Noordhof, Groningen, 1964.
[7] R. Langevin, P. Walczak, Conformal geometry of foliations, Geom. Dedic. 132 (2008), 135-178.
[8] X. Mo, An introduction to Finsler geometry, World Scientific, 2006.
[9] G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys. Rev. 59, (1941) 195-199.
[10] G. Reeb, Sur la courbure moyenne des variétés intégrales d'une équation de Pfaff $\omega=0$. C. R. Acad. Sci. Paris, 231, (1950) 101-102.
[11] V. Rovenski, Foliations on Riemannian manifolds and submanifolds, Birkhäuser, Boston 1998.
[12] V. Rovenski, P. Walczak, Topics in extrinsic geometry of codimension-one foliations, Springer 2011.
[13] V. Rovenski, P. Walczak, Integral formulae on foliated symmetric spaces, Math. Ann. 352, (2012) 223-237.
[14] Z. Shen, On Finsler geometry of submanifolds, Math. Ann. 311, (1998) 549-576.
[15] Z. Shen, Lectures on Finsler geometry, World Scientific Publishers, 2001.
[16] P. Topping, Lectures on the Ricci flow, LMS Lecture Notes 325, Cambridge Univ. Press, 2006.

Authors' addresses:
Vladimir Rovenski
Faculty of Natural Sciences, Department of Mathematics, University of Haifa, Mount Carmel, 31905 Haifa, Israel.
E-mail: vrovenski@univ.haifa.ac.il
Paweł Walczak
Faculty of Mathematics and Computer Science,
Department of Geometry, University of Łódź,
22 Banach Str., 90-238 Łódź, Poland.
E-mail: pawelwal@math.uni.lodz.pl

[^0]: Balkan Journal of Geometry and Its Applications, Vol.21, No.1, 2016, pp. 76-102.
 (c) Balkan Society of Geometers, Geometry Balkan Press 2016.

