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Abstract. In this paper we obtain relationships between the Ricci cur-
vature, the scalar curvature, the squared mean curvature and the Rie-
mannian invariant of constant slant submanifolds in generalized Sasakian
space forms. We give an example of a constant slant submanifold in a
generalized Sasakian space form.
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1 Introduction

For a submanifold of a Riemannian manifold, there exist several extrinsic associate
invariants besides its intrinsic ones. The squared mean curvature is the most impor-
tant, among the extrinsic invariants of a submanifold, and the Ricci curvature, the
sectional curvature, δk-invariant and the scalar curvature are well-known among its
intrinsic invariants.

One of the most fundamental challenges in the submanifold theory is the following:

Problem. Establish a simple relationship between the main extrinsic invariants
and intrinsic invariants of a submanifold.

B. Y. Chen and I. Mihai gave some solutions to the above problem. They established
sharp relationships between the Ricci curvature and the squared mean curvature of
submanifolds in Riemannian space forms and in Sasakian space forms, such that the
obtained inequalities provide upper bounds for the Ricci curvature (see [4, 14]).

In [3], B. Y. Chen showed that the Chen’s invariant δM (= δ2) of a Riemannian
submanifold in a real space form M(c) and satisfies the inequality

δM ≤ n− 2

2
{ n2

n− 1
∥H∥2 + (n+ 1)c}.

In [16], T. Oprea showed that δk-invariant (k ≥ 3) satisfies the same inequality.
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In this way, D. Cioroboiu and C. Udrişte obtained sharp relationships between
some extrinsic invariants and intrinsic invariants (see[6, 7, 8, 9, 10, 11, 18]).

In[1], P.Alegre, D. E. Blair and A. Carriazo introduced the notion of generalized
Sasakian space form such that this kind of manifold appears as a natural generalization
of the well-known Sasakian space form M(c).

In [13], F. Malek and V. Nejadakbary gave other solutions to the above problem.
For instance, in the following theorem, they established a sharp relationship between
the Ricci curvature and the squared mean curvature of submanifolds in generalized
Sasakian space forms.

Theorem 1.1. Let Mn(n ≥ 3) be a submanifold tangent to the structure vector field

in a generalized Sasakian space form M
2m+1

(f1, f2, f3).
(i) If L is a k-plane section (2 ≤ k ≤ n − 1) in TpM normal to the structure vector
field at p, then for all unit vectors U ∈ L, we have

2

k − 1
RicL(U) ≥ 2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1 + 2(n− 1)f3

+3(
2

k − 1
∥PL,kU∥2 − ∥P∥2)f2.

where H and τ are the mean curvature vector and the scalar curvature of M , respec-
tively.
(ii) The equality case holds identically if and only if with respect to a suitable or-
thonormal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of TpM ,
the coefficients of the fundamental form h at p take the following form


0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


k×k

O

O O


n×n

r = n+ 1,

and
hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.

In [12], A. Lotta introduced the notion of slant submanifolds in almost contact
metric manifolds.

In this way, M. M. Tripathi, J. S. Kim and S. B. Kim established the following
relationship between the Ricci curvature and the squared mean curvature of slant
submanifolds in Sasakian space forms( see [17]).

Theorem 1.2. Let M be a (n + 1)-dimensional θ-slant submanifold isometrically

immersed in a (2m + 1)-dimensional Sasakian space form M
2m+1

(c) such that ξ ∈
TM . Then
(i) For each unit vector U ∈ TpM , we have

4Ric(U) ≤ (n+ 1)2∥H∥2 + n(c+ 3)

+

{
3 cos2 θ − (n− 1 + 3 cos2 θ)

(
η(U)

)2
− 1

}
(c− 1).
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(ii) If H(p) = 0, an unit vector U ∈ TpM satisfies the equality case if and only if U
belongs to the relative null space Np.
(iii) The equality case holds for all unit vectors U ∈ TpM if and only if M is a totally
geodesic submanifold.

In this paper,

a) We obtain other inequalities between the Ricci curvature, the scalar curvature,
and the squared mean curvature of constant slant submanifolds in generalized
Sasakian space forms such that each inequality defines a lower bound for the
Ricci curvature. Also, we obtain a sharp relationship between the scalar curva-
ture, the Riemannian invariant Θk, δk-invariant and the squared mean curvature
of constant slant submanifolds in generalized Sasakian space forms.

b) We obtain an equivalent condition for part (iii) of theorem 1.2

c) We give an example of a constant slant submanifold in a generalized Sasakian
space form.

2 Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.

Let (Mn, g) be a Riemannian manifold and L ⊆ TpM be a k-plane section (2 ≤
k ≤ n) and U ∈ L be an unit vector. If we choose local orthonormal basis {e1, . . . , ek}
for L such that e1 = U , then the Ricci curvature of L at U is defined by

RicL(U) :=
k∑

i=1

K(U, ei),

in which K(U, ei) is the sectional curvature of the 2-plane section spanned by {U, ei}.
If k = n, then RicL(U) denoted by Ric(U). For each integer 2 ≤ k ≤ n, the Rieman-
nian invariant Θk on M is defined by:

Θk :=
1

k − 1
inf
L,U

RicL(U),

where L runs over all k-plane section fields in TM and U runs over all unit vector
fields in L. The scalar curvature τ at p ∈ M is given by

τ(p) =
∑

1≤i<j≤n

K(ei, ej),

where K(ei, ej) is the sectional curvature of the 2-plane section is spanned by ei and
ej . Since K(ei, ei) = 0 and K(ei, ej) = K(ej , ei), therefore

2τ(p) =
∑

1≤i ̸=j≤n

K(ei, ej) =

n∑
i,j=1

K(ei, ej).
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For an integer k ≥ 0, let S(n, k) denote the set consisting of unordered k-tuples

(n1, n2, · · · , nk) of integers ≥ 2 such that
∑k

i=1 ni ≤ n. Denote by S(n) the set of all
S(n, k) with k ≥ 0 for a fixed n. In [3], Chen defined the following invariant

δ(n1, n2, · · · , nk)(p) = τ(p)− inf{τ(L1) + τ(L2) + · · ·+ τ(Lk)}, p ∈ M,

where (n1, n2, · · · , nk) ∈ S(n) and L1, L2, · · · , Lk run over all k mutually orthogonal
subspace of TpM such that dimLi = ni. In [16], T. Oprea extended δM = δ(2) =

τ − inf
(
τ(L)

)
to

δk = τ −Θk,

where Θk is the Riemannian invariant of M .
A (2n+1)-dimensional Riemannian manifold (M, g) is said to be an almost contact

metric manifold if there exist on M a (1,1)-tensor field ϕ, a vector field ξ(is called
the structure vector field) and a 1-form η such that η(ξ) = 1, ϕ2(X) = −X + η(X)ξ
and g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ) for any vector fields X,Y on M . Also in an
almost contact metric manifold we have ϕξ = 0 and η ◦ϕ = 0 and for any X ∈ τ(M),
η(X) = g(X, ξ)(see for instance [2]).We denote an almost contact metric manifold by
(M,ϕ, ξ, η, g). An almost contact metric manifold is called a contact metric manifold
if

g(X,ϕY ) = dη(X,Y ) X,Y ∈ TM.

A (2n)-dimensional smooth manifold M is said to be an almost complex manifold
if there exist on M a (1,1)-tensor field J such that for any vector field X ∈ TM ,

J2X = −X.

(1,1)-tensor field J is called almost complex structure.
Let M be a submanifold of an almost contact metric manifold (M,ϕ, ξ, η, g). For

any vector field X tangent to M , we put

ϕX = PX + FX,

in which PX and FX are tangent and normal components of ϕX, respectively. A
submanifold M of an almost contact metric manifold is called an anti-invariant sub-
manifold if

ϕp(TpM) ⊂ T⊥
p M p ∈ M.

In other words, for all X ∈ TpM , PX = 0. If a submanifold M in a contact metric
manifold is normal to the structure vector field ξ, then it is anti-invariant. Also,
submanifold M is called an invariant submanifold if

ϕp(TpM) ⊂ TpM p ∈ M.

In other words, for all X ∈ TpM , FX = 0.
M is called a constant slant submanifold (or θ-slant submanifold) in an almost

contact metric manifold if for any 0 ̸= X ∈ TpM , linearly independent of ξp, the
angle between ϕX and TpM is a constant θ ∈ [0, π

2 ]. The angle θ is called the slant
angle of M . It is obvious that invariant and anti-invariant submanifolds are θ-slant
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submanifold with θ = 0 and θ = π
2 , respectively. In a θ-slant submanifold M tangent

to ξ, for any vector field X and Y tangent to M , we have

g(PX,PY ) = cos2 θg(ϕX, ϕY ), g(FX,FY ) = sin2 θg(ϕX, ϕY ),

and therefore for unit vector field U tangent to M , we have

∥PU∥2 = g(PU,PU) = cos2 θ
(
1− η(U)2

)
.

An almost contact metric manifold is called a Sasakian manifold if(
∇Xϕ

)
(Y ) = η(Y )X − g(X,Y )ξ,

where∇ is the Riemannian connection ofM . It is easy to see that a Sasakian manifold
is a contact metric manifold (see [2]).

Let (M,ϕ, ξ, η, g) be an almost contact metric manifold. The plane πp ⊂ TpM
spanned by {X,ϕX}, where 0 ̸= X ∈ TpM is normal to ξp, is called a ϕ-section of
M at p and the sectional curvature K(πp) is called the ϕ-sectional curvature of πp.
The Sasakian manifold M is called the Sasakian space form, if there exists constant
c such that for any p ∈ M and for any ϕ-section πp of M , K(πp) = c, and denote it
by M(c). The submanifold M of Sasakian space form M(c) is called C-totally real,
if the structure vector field of M(c) be normal to M . It is proved that in a Sasakian
space form M(c), the curvature tensor satisfies the following equality([15])

R(X,Y, )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }

+
c− 1

4
{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}

+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ}.

An almost contact manifold is called generalized Sasakian space form if

R(X,Y, )Z = f1{g(Y, Z)X − g(X,Z)Y }
+f2{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ(2.1)

−g(Y,Z)η(X)ξ},

where f1, f2, f3 are differentiable functions on M . We denote this kind of manifolds
by M(f1, f2, f3)(see [1]). It is clear that every Sasakian space form is a generalized
Sasakian space form, but the converse is not necessarily true.

Let Mn be a submanifold of M
2m+1

and h is the second fundamental form of M ,
R and R are the curvature tensors of M and M , respectively. The Gauss equation is
given by

(2.2) R(X,Y, Z,W ) = R(X,Y, Z,W )−g
(
h(X,W ), h(Y,Z)

)
+g
(
h(X,Z), h(Y,W )

)
,
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for any vector fields X, Y , Z, W on M . Let {e1, · · · , en, · · · , e2m+1} be a local
orthonormal basis of TpM such that {e1, · · · , en} is a local orthonormal basis of
TpM . The mean curvature vector H(p) is

H =
1

n

n∑
i=1

h(ei, ei),

and thus

(2.3) n2∥H∥2 =
n∑

i,j=1

g
(
h(ei, ei), h(ej , ej)

)
.

The submanifold M is called totally geodesic if h = 0, and is called minimal if H
vanishes identically. We set

hr
ij = g

(
h(ei, ej), er

)
, i, j ∈ {1, · · · , n}, r ∈ {n+ 1, · · · , 2m+ 1},

the coefficients of the second fundamental form h with respect to {e1, · · · , en,
· · · , e2m+1}, and

(2.4) ∥h∥2 =

n∑
i,j=1

g
(
h(ei, ej), h(ei, ej)

)
=

m∑
r=n+1

n∑
i,j=1

(hr
ij)

2.

Now by (2.3), (2.4) and the Gauss equation (2.2), we have

(2.5)
∑

1≤i,j≤n

R(ej , ei, ei, ej) = 2τ − n2∥H∥2 + ∥h∥2.

Let Mn be a submanifold of an almost contact metric manifold (M
2m+1

, ϕ, ξ, η, g).
For any local orthonormal frame {e1, . . . , e2m+1} such that e1, . . . , en are tangent to
M , we have g(ei, ϕej) = g(ei, P ej) for any i, j ∈ {1, . . . , n} . Therefore the squared
norm of P is given by

∥P∥2 =

n∑
i,j=1

(
g(ei, P ej)

)2
=

n∑
i,j=1

(
g(ei, ϕej)

)2
.

Let L ⊆ TpM be a k-plane section. For any unit vector U ∈ L, we choose a local
orthonormal basis {e1, . . . , e2m+1} of TpM such that e1, . . . , ek are tangent to L and
e1 = U . We define

∥Pk,LU∥2 :=
k∑

j=1

(
g(U,Pej)

)2
.

If L = TpM , we denote ∥Pk,LU∥ by ∥PnU∥.
We recall the following result of B.Y.Chen for later use.

Lemma 2.1. ([5]). Let n ≥ 2 and a1, · · · , an and b are real numbers such that( n∑
i=1

ai

)2
= (n− 1)

( n∑
i=1

a2i + b
)
.

Then 2a1a2 ≥ b,with equality holding if and only if

a1 + a2 = a3 = · · · = an.
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3 The Ricci curvature of constant slant submanifolds tangent
to the structure vector field in generalized Sasakian space
forms

In this section, we prove sharp relationships between the Ricci curvature, the squared
mean curvature, the scalar curvature, the Riemannian invariant Θk and δk-invariant
of (n ≥ 3)-dimensional constant slant submanifolds M in generalized Sasakian space
forms M(f1, f2, f3).

Theorem 3.1. Let Mn(n ≥ 3) be a θ-slant submanifold tangent to the structure

vector field in generalized Sasakian space form M
2m+1

(f1, f2, f3).
a) If L ⊆ TpM be a k-plane section (k ≥ 2) tangent to ξp and unit vector U ∈ L

is linearly independent of ξp, then

2RicL(U) ≥ (k − 1)A+

(
2(n− 2)(k − 1)

(
1− sec2 θ∥PU∥2

)
+2λ2

(
(k − 1)(n− 1)− 1

)
sec4 θ∥PU∥4

)
f3 + 6∥Pk,LU∥2f2.(3.1)

b) If L ⊂ TpM be a k-plane section (k ≥ 2) such that ξp ∈ TpM \ L and U ∈ L
be an unit vector, then

2RicL(U) ≥ (k − 1)A+ (k − 1)

(
2(n− 2)

(
1− sec2 θ∥PU∥2

)
(3.2)

+2λ2(n− 1) sec4 θ∥PU∥4
)
f3 + 6∥Pk,LU∥2f2,

in which

A := 2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1 − 3∥P∥2f2,

λ :=
1

∥ξ − η(U)U∥
,

H and τ are the mean curvature vector and the scalar curvature of M at p, respec-
tively.
c)The equality case of (3.1) and (3.2) holds identically if and only if respect to a suit-
able orthonormal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of
TpM , the coefficients of the fundamental form h at p take the following form


0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


k×k

O

O O


n×n

r = n+ 1,

and hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.
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Proof. a) We choose a local orthonormal basis {e1, . . . , e2m+1} of TpM such that

{e1, . . . , en} ⊂ TpM , L spanned by {e1, . . . , ek}, e1 = U , e2 = λ
(
ξ − η(U)U

)
and

en+1 parallel to H at p. For k ≥ 3, from (2.3), with respect to this basis we have

(3.3) n2∥H∥2 =
n∑

i,j=1

g
(
h(ei, ei), h(ej , ej)

)
=
( n∑

i=1

hn+1
ii

)2
.

Also, from (2.1) and (2.5), we have

(3.4) n2∥H∥2 = 2τ + ∥h∥2 − n(n− 1)f1 − 3∥P∥2f2 + 2(n− 1)
(
η(e1)

2 + η(e2)
2
)
f3.

Set

δ := 2τ − n2(n−2)
n−1 ∥H∥2 − (n+ 1)(n− 2)f1 − 3∥P∥2f2(3.5)

+2(n− 2)
(
η(e1)

2 + η(e2)
2
)
f3.

Therefore from (3.4) and (3.5), we have

n2∥H∥2 = (n− 1)

(
∥h∥2 + δ − 2f1 + 2

(
η(e1)

2 + η(e2)
2
)
f3

)
.

From (2.4), (3.4) and the above equality, we have

( n∑
i=1

hn+1
ii

)2
= (n− 1)

(∑n
i=1(h

n+1
ii )2 +

∑
1≤i ̸=j≤n(h

n+1
ij )2 +

∑2m+1
r=n+2

∑n
i,j=1(h

r
ij)

2

+δ − 2f1 + 2
(
η(e1)

2 + η(e2)
2
)
f3

)
.

We set

b := δ − 2f1 + 2
(
η(e1)

2 + η(e2)
2
)
f3 +

∑
1≤i ̸=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2,

and a1 = hn+1
11 and a2 = hn+1

αα , for α ∈ {2, . . . , n}, then from lemma 2.1, we have
a1a2 ≥ b

2 . Therefore

hn+1
11 hn+1

αα ≥ δ
2 −

(
f1 −

(
η(e1)

2 + η(e2)
2
)
f3

)
+
∑

1≤i<j≤n(h
n+1
ij )2(3.6)

+ 1
2

∑2m+1
r=n+2

∑n
i=1(h

r
ii)

2 +
∑2m+1

r=n+2

∑
1≤i<j≤n(h

r
ij)

2.

On the other hand by setting X = W = e1 and Y = Z = e2 in (2.2) and using (2.1),
we have

f1 + 3
(
g(e2, ϕe1)

)2
f2 −

(
η(e1)

2 + η(e2)
2
)
f3 = K(e1, e2)−

∑2m+1
r=n+1 h

r
11h

r
22

+
∑2m+1

r=n+1(h
r
12)

2,
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therefore

f1 −
(
η(e1)

2 + η(e2)
2
)
f3 + hn+1

11 hn+1
22 = K(e1, e2)− 3

(
g(e2, ϕe1)

)2
f2

−
2m+1∑
r=n+2

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2.

From (3.6) and the above equality, we have

K(e1, e2) − 3
(
g(e2, ϕe1)

)2
f2 −

2m+1∑
r=n+2

hr
11h

r
22 +

2m+1∑
r=n+1

(hr
12)

2

≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1

2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +

2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.(3.7)

On the other hand

(3.8)
2m+1∑
r=n+2

hr
11h

r
αα =

1

2

2m+1∑
r=n+2

(hr
11 + hr

αα)
2 − 1

2

2m+1∑
r=n+2

(hr
11)

2 − 1

2

2m+1∑
r=n+2

(hr
αα)

2.

Now by substituting (3.8) ( for α = 2) in (3.7) after simplification we get

K(e1, e2) ≥ δ

2
+ 3
(
g(e2, ϕe1)

)2
f2 +

∑
1≤i<j≤n
i ̸=1∨j ̸=2

(hn+1
ij )2 +

1

2

2m+1∑
r=n+2

n∑
i=3

(hr
ii)

2

+
2m+1∑
r=n+2

∑
1≤i<j≤n
i ̸=1∨j ̸=2

(hr
ij)

2 +
1

2

2m+1∑
r=n+2

(hr
11 + hr

22)
2(3.9)

≥ δ

2
+ 3
(
g(e2, ϕe1)

)2
f2.

For α ≥ 3 from Gauss equation (2.2) and (2.1), we have

f1 − η(e1)
2f3 + hn+1

11 hn+1
αα = K(e1, eα)− 3

(
g(eα, ϕe1)

)2
f2

−
2m+1∑
r=n+2

hr
11h

r
αα +

2m+1∑
r=n+1

(hr
1α)

2.

From (3.6), (3.8) and the above equality with similar computation as above, we get

K(e1, eα) ≥ δ

2
+ η(e2)

2f3 + 3
(
g(eα, ϕe1)

)2
f2 +

∑
1≤i<j≤n
i ̸=1∨j ̸=α

(hn+1
ij )2

+
1

2

2m+1∑
r=n+2

n∑
i=2
i ̸=α

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n
i̸=1∨j ̸=α

(hr
ij)

2 +
1

2

2m+1∑
r=n+2

(hr
11 + hr

αα)
2

≥ δ

2
+ 3
(
g(eα, ϕe1)

)2
f2 + η(e2)

2f3.(3.10)
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Therefore from (3.7) and the above inequality and by substituting δ from (3.5), we
have

2RicL(U) = 2

k∑
α=2

K(e1, eα) = 2

{
K(e1, e2) +

k∑
α=3

K(e1, eα)

}
.

≥ (k − 1)A+ 6∥Pk,LU∥2f2
+
{
2(n− 2)(k − 1)η(e1)

2 + 2
(
(k − 1)(n− 1)− 1

)
η(e2)

2
}
f3.(3.11)

Since

(3.12) η(e1)
2 = 1− (1− η(e1)

2), η(e2) = λ(1− η(e1)
2), sec2 θ∥PU∥2 = 1− η(e1)

2,

therefore from (3.10), (3.11) and (3.12), we get (3.1).
For k = 2, with similar computation, we get (3.9). Since

RicL(U) = K(e1, e2),

from (3.9) and by substituting δ from (3.5), we get (3.1).
b) Let L′ ⊆ TpM be a (k+1)-plane section such that L ⊂ L′ and ξp be tangent to

L′. We choose local orthogonal basis {e1, . . . , e2m+1} of TpM such that {e1, . . . , en} ⊂
TpM , L′ spanned by {e1, . . . , ek+1}, L spanned by {e1, . . . , ek}, e1 = U , ek+1 =

λ
(
ξ − η(U)U

)
and en+1 is parallel to H at p. For α ∈ {2, . . . , k}, with similar

computation, we have

K(e1, eα) ≥ δ

2
+ η(ek+1)

2f3 + 3
(
g(eα, ϕe1)

)2
f2 +

∑
1≤i<j≤n
i ̸=1∨j ̸=α

(hn+1
ij )2

+
1

2

2m+1∑
r=n+2

n∑
i=2
i ̸=α

(hr
ii)

2 +
2m+1∑
r=n+2

∑
1≤i<j≤n
i̸=1∨j ̸=α

(hr
ij)

2 +
1

2

2m+1∑
r=n+2

(hr
11 + hr

αα)
2

≥ δ

2
+ 3
(
g(eα, ϕe1)

)2
f2 + η(ek+1)

2f3.

Therefore from (3.5) and the above inequality, we have

2RicL(U) = 2
k∑

α=2

K(e1, eα) ≥ (k − 1)A+ 6∥Pk,LU∥2f2

+(k − 1)
{
2(n− 2)η(e1)

2 + 2(n− 1)η(ek+1)
2
}
f3.

From (3.12) and the above inequality, we get (3.2).
c) Assume that the equality case of (3.1) for all unit vectors U ∈ L is true. From

2RicL(U) = 2
k∑

α=2

K(e1, eα) = 2

{
K(e1, e2) +

k∑
α=3

K(e1, eα)

}
.

= (k − 1)A+ 6∥Pk,LU∥2f2
+
{
2(n− 2)(k − 1)η(e1)

2 + 2
(
(k − 1)(n− 1)− 1

)
η(e2)

2
}
f3,
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(3.9) and (3.10), we have

hr
ii = 0 r ≥ n+ 2, 1 ≤ i ≤ n,

hr
ij = 0 r ≥ n+ 1, 1 ≤ i < j ≤ n,

therefore
k∑

α=2

hn+1
11 hn+1

αα =
k∑

β=2

b

2
.

Since hn+1
11 hn+1

αα ≥ b
2 , from the above equality, we have

hn+1
11 hn+1

αα =
b

2
,

in which α ∈ {2, · · · , k}. Therefore by lemma 2.1, we can complete the proof. The
converse statement is straightforward. The proof of equality case of (3.2) is similar.
�

Theorem 3.2. Let Mn(n ≥ 3) be a θ-slant submanifold tangent to ξ in a generalized

Sasakian space form M
2m+1

(f1, f2, f3).
a) If L ⊆ TpM be a k-plane section(k ≥ 2) such that ξp ∈ L, then

2RicL(ξ) ≥ (k − 1)

(
2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1(3.13)

−3∥P∥2f2 + 2(n− 2)f3

)
,

in which H and τ are the mean curvature vector and the scalar curvature of M at p,
respectively.
b)The equality case holds identically if and only if respect to a suitable orthonor-
mal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of TpM , the
coefficients of the fundamental form h at p take the following form


0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


k×k

O

O O


n×n

r = n+ 1,

and
hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.

Proof. We choose local orthonormal basis {e1, . . . , e2m+1} of TpM such that {e1, . . . , en} ⊂
TpM , L spanned by {e1, . . . , ek}, e1 = ξ and en+1 is parallel to H at p. From (2.1),
(2.2) and (2.5), we have

(3.14) n2∥H∥2 = 2τ − n(n− 1)f1 − 3∥P∥2f2 + 2(n− 1)f3 + ∥h∥2,
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Set

(3.15) δ := 2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1 − 3∥P∥2f2 + 2(n− 2)f3.

Then from (3.14) we have

(3.16) n2∥H∥2 = (n− 1)(∥h∥2 + δ − 2f1 + 2f3),

and substituting (2.3) and (2.4) in the above equality, we get( n∑
i=1

hn+1
ii

)2

= (n− 1)
( n∑

i=1

(hn+1
ii )2 +

∑
1≤i ̸=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2 +δ − 2f1 + 2f3
)
.

Now set

b := δ − 2f1 + 2f3 +
∑

1≤i ̸=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2,

a1 = hn+1
αα and a2 = hn+1

11 for α ∈ {2, . . . , n}, then from lemma 2.1, we have a1a2 ≥ b
2 .

Therefore

hn+1
αα hn+1

11 + f1 − f3 ≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2

+
1

2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +

2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.(3.17)

On the other hand from (2.1) and the Gauss equation, for α ∈ {2, . . . , n}, we have

f1 − f3 = K(e1, eα)−
2m+1∑
r=n+1

hr
11h

r
αα +

2m+1∑
r=n+1

(hr
1α)

2.

Therefore

f1 − f3 + hn+1
11 hn+1

αα = K(e1, eα)−
2m+1∑
r=n+2

hr
11h

r
αα +

2m+1∑
r=n+1

(hr
1α)

2.

By comparing the above equality and (3.17), we obtain

K(e1, eα) −
2m+1∑
r=n+2

hr
11h

r
αα +

2m+1∑
r=n+1

(hr
1α)

2

≥ δ

2
+

∑
1≤i<j≤n

(hn+1
ij )2 +

1

2

2m+1∑
r=n+2

n∑
i=1

(hr
ii)

2 +

2m+1∑
r=n+2

∑
1≤i<j≤n

(hr
ij)

2.

By using (3.8), we have

K(e1, eα) ≥ δ

2
+

∑
1≤i<j≤n
i ̸=1∨j ̸=α

(hn+1
ij )2 +

1

2

2m+1∑
r=n+2

n∑
i=2
i ̸=α

(hr
ii)

2

+

2m+1∑
r=n+2

∑
1≤i<j≤n
i ̸=1∨j ̸=α

(hr
ij)

2 +
1

2

2m+1∑
r=n+2

(hr
11 + hr

αα)
2 ≥ δ

2
.
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Therefore

RicL(ξ) =
k∑

α=2

K(e1, eα) ≥ (k − 1)
δ

2
.

By substituting δ from (3.15) in the above equality, we get (3.13). �

Corollary 3.3. Let Mn(n ≥ 3) be a θ-slant submanifold tangent to ξ in a generalized

Sasakian space form M
2m+1

(f1, f2, f3).

a) For any integer 2 ≤ k ≤ n, we have

2Θk ≥ 2τ − B + inf
L,U

{B1, B2, B3} ,

in which L runs over all k-plane section in TpM and U runs over all unit vectors in
L and

B := n2(n−2)
n−1 ∥H∥2 + (n+ 1)(n− 2)f1 + 3∥P∥2f2,

B1 := 1
k−1

{(
2(n− 2)(k − 1)

(
1− sec2 θ∥PU∥2

)
+2λ2

(
(k − 1)(n− 1)− 1

)
sec4 θ∥PU∥4

)
f3 + 6∥Pk,LU∥2f2

}
,

B2 :=

(
2(n− 2)

(
1− sec2 θ∥PU∥2

)
+ 2λ2(n− 1) sec4 θ∥PU∥4

)
f3 +

6
k−1∥Pk,LU∥2f2,

B3 := 2(n− 2)f3, λ := 1
∥ξ−η(U)U∥ ,

where Θk, H and τ are the Riemannian invariant, the mean curvature vector and the
scalar curvature of M at p, respectively.

b) For any integer 2 ≤ k ≤ n, we have

2δk ≤ B − inf
L,U

{B1, B2, B3} ,

where δk = τ −Θk.
c) The equality case of (a) and (b) holds identically if and only if respect to a suitable
orthonormal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of TpM ,
the coefficients of the fundamental form h at p take the following form


0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


k×k

O

O O


n×n

r = n+ 1,

and hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.
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Corollary 3.4. Let Mn(n ≥ 3) be a θ-slant submanifold tangent to ξ in a generalized

Sasakian space form M
2m+1

(f1, f2, f3).

a) If U ∈ TpM be an unit vector, linearly independent of ξp, then

2Ric(U) ≥ (n− 1)A+ 2(n− 2)

(
(n− 1)

(
1− sec2 θ∥PU∥2

)
(3.18)

+λ2n sec4 θ∥PU∥4
)
f3 + 6∥PnU∥2f2.

in which

A := 2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1 − 3∥P∥2f2,

λ :=
1

∥ξ − η(U)U∥
,

H and τ are the Riemannian invariant, the mean curvature vector and the scalar
curvature of M at p, respectively.

b) The equality case holds identically if and only if respect to a suitable orthonor-
mal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of TpM , the
coefficients of the fundamental form h at p take the following form

0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


n×n

r = n+ 1,

and hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.

Proof. In theorem 3.1, let L = TpM . We get (3.18) from (3.1) with k = n. �

Corollary 3.5. Let Mn(n ≥ 3) be a θ-slant submanifold tangent to ξ in a Sasakian

space form M
2m+1

(c).

a) If U ∈ TpM be an unit vector, linearly independent of ξp, then

G ≥ Ric(U) ≥ G−
{
n2(2n− 3)

4
∥H∥2 + n(n− 1)2

2
(
c+ 3

4
)− (n− 1)τ

−3

{
∥PnU∥2 − 1

2
∥P∥2 − ∥PU∥2 + (n− 1)2

3

−n(n− 2)

3
sec2 θ∥PU∥2 + λ2

3
n(n− 2) sec4 θ∥PU∥4

}
(
c− 1

4
)

}
in which

G =
n2

4
∥H∥2 + (n− 1)(

c+ 3

4
) +

{
(1− n) + (n− 2) sec2 θ∥PU∥2 + 3∥PU∥2

}
(
c− 1

4
),
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λ :=
1

∥ξ − η(U)U∥
,

H and τ are the mean curvature vector and the scalar curvature of M at p, respec-
tively.

b) The following assertions are equivalent:
(i) For each unit vector U ∈ TpM , we have Ric(U) = G at p.

(ii) On M , we have

τ =
1

n− 1

{
n2(2n− 3)

4
∥H∥2 + n(n− 1)2

2
(
c+ 3

4
)− 3

{
∥PnU∥2 − 1

2
∥P∥2 − ∥PU∥2

+
(n− 1)2

3
− n(n− 2)

3
sec2 θ∥PU∥2 + λ2

3
n(n− 2) sec4 θ∥PU∥4

}
(
c− 1

4
)

}
(iii) p is a totally geodesic point.

Proof. It is obvious from Theorem 1.2 and Corollary 3.4 by taking f1 = (c+3)
4 and

f2 = f3 = (c−1)
4 . �

4 The Ricci curvature of invariant and anti-invariant
submanifolds tangent to structure vector field in
generalized Sasakian space forms

F. Malek and V. Nejadakbary obtained some results for anti-invariant submanifolds
in generalized Sasakian space forms (see [13]). If M be an invariant submanifold
tangent to ξ in a generalized Sasakian space form and L ⊂ TpM be a k-plane section
normal to ξp, we obtain same result as theorem 1.1. In this section we are going to
prove other results for invariant submanifolds in generalized Sasakian space forms.

Corollary 4.1. Let Mn(n ≥ 3) be an invariant submanifold tangent to ξ in a gener-

alized Sasakian space form M
2m+1

(f1, f2, f3).

a) If L ⊆ TpM be a k-plane section (k ≥ 2) tangent to ξp and unit vector U ∈ L is
normal to ξp, then

2RicL(U) ≥ (k − 1)A++2
(
(k − 1)(n− 1)− 1

)
f3 + 6∥Pk,LU∥2f2.

in which

A := 2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1 − 3∥P∥2f2,

H and τ are the mean curvature vector and the scalar curvature of M at p, respec-
tively.

b)The equality case holds identically if and only if respect to a suitable orthonor-
mal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of TpM , the
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coefficients of the fundamental form h at p take the following form


0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


k×k

O

O O


n×n

r = n+ 1,

and hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.

Proof. It is obvious from theorem 3.1 because η(U) = 0, η
(
ξp − η(U)U

)
= 1, λ = 1,

and from (3.12), sec2 θ∥PU∥2 = 1. �

Corollary 4.2. Let Mn(n ≥ 3) be an invariant submanifold tangent to ξ in a gener-

alized Sasakian space form M
2m+1

(f1, f2, f3).

a) If L ⊂ TpM be a (n − 1)-plane section normal to ξp, then for all unit vectors
U ∈ L, we have

2

n− 2
RicL(U) ≥ 2τ − n2(n− 2)

n− 1
∥H∥2 − (n+ 1)(n− 2)f1 + 2(n− 1)f3 − 3∥P∥2f2,

in which H and τ are the mean curvature vector and the scalar curvature of M at p,
respectively.

b) The equality case holds identically if and only if with respect to a suitable or-
thonormal basis {e1, e2, . . . , e2m+1} of TpM such that {e1, . . . , en} is a basis of TpM ,
the coefficients of the fundamental form h at p take the following form


0 0 0 . . . 0
0 γ 0 . . . 0
0 0 γ . . . 0
...

...
...

. . .
...

0 0 0 . . . γ


(n−1)×(n−1)

O

O O


n×n

r = n+ 1,

and hr
ij = 0, r ≥ n+ 2, 1 ≤ i, j ≤ n.

Proof. Let U ∈ L be an unit vector. Since ξ is normal to L, therefore η(U) =

0, η
(
ξp − η(U)U

)
= 1, λ = 1, and from (3.12), sec2 θ∥PU∥2 = 1. Also ϕ(U) is

normal to U . We choose local orthonormal basis {e1, . . . , e2m+1} of TpM such that
{e1, . . . , en} ⊂ TpM , L spanned by {e1, . . . , en−1}, e1 = U , e2 = ϕ(U), en = ξp and
en+1 is parallel to H at p. Therefore ∥P(n−1),LU∥2 = 0. The proof is completed from
part (b) of theorem 3.1. �

Example 4.1. The standard complex Euclidean space Cn with coordinates (z1, z2, . . . , zn)
such that for any 1 ≤ i ≤ n, zi ∈ C is an almost complex manifold with almost struc-
ture J induced by multiplication by

√
−1. In [1], it is shown that M = R×f Cn is a
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generalized Sasakian space form with

f1 = − (f ′)2

f2
, f2 = 0, f3 = − (f ′)2

f2
+

f ′′

f
,

where f = f(t) > 0. We define submanifold M = R ×f In of M such that I =
(−1, 1)×(−1, 1). It is easy to see that M is an invariant submanifold in M(f1, f2, f3).
A lower bound for the Ricci curvature of this submanifold and any k-plane section
L ⊆ TpM can be obtained by Theorems 3.1, 3.2 and Corollary 3.4. Also The lower
bound for the Riemannian invariant Θk on M can be obtained by Corollary 3.3.
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