Locally maximal homoclinic classes for generic diffeomorphisms

Manseob Lee

Abstract. Let M be a closed smooth $d(\geq 2)$ dimensional Riemannian

- ² manifold and let $f: M \to M$ be a diffeomorphism. For C^1 generic f, a
- ³ locally maximal homogeneous homoclinic class is hyperbolic.

4 M.S.C. 2010: 37C20; 37D20.

5 Key words: keywords; phrases; homoclinic class; locally maximal; hyperbolic; generic.

6 1 Introduction

Let M be a closed smooth $d(\geq 2)$ dimensional Riemannian manifold and let $f: M \to M$ be a diffeomorphism. Denote by Diff(M) the set of all diffeomorphisms of M endowed with the C^1 topology. Let Λ be a closed f invariant set. We say that Λ is *hyperbolic* if the tangent bundle $T_{\Lambda}M$ has a Df-invariant splitting $E^s \oplus E^u$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E_x^s}|| \leq C\lambda^n$$
 and $||D_x f^{-n}|_{E_x^u}|| \leq C\lambda^n$

for all $x \in \Lambda$ and $n \ge 0$. If $\Lambda = M$ then f is said to be Anosov. A point $p \in M$ is periodic if there is n > 0 such that $f^n(p) = p$. Denote by P(f) the set of all periodic points of f. It is well known that if p is a hyperbolic periodic point of f with period $\pi(p)$ then the sets

$$W^{s}(p) = \{x \in M : f^{\pi(p)n}(x) \to p \text{ as } n \to \infty\} \text{ and}$$
$$W^{u}(p) = \{x \in M : f^{-\pi(p)n}(x) \to p \text{ as } n \to \infty\}$$

⁷ are C^1 injectively immersed submanifolds of M. A point $x \in W^s(p) \pitchfork W^u(p)$ is called ⁸ a homoclinic point of f associated to p. The closure of the homoclinic points of f⁹ associated to p is called the homoclinic class of f associated to p, and it is denoted ¹⁰ by $H_f(p)$. It is known that $H_f(p)$ is closed, transitive and f-invariant sets. Let p¹¹ and q be hyperbolic periodic points. We write $p \sim q$ if $W^s(p) \pitchfork W^u(q) \neq \emptyset$ and ¹² $W^u(p) \pitchfork W^s(q) \neq \emptyset$. We say that $p, q \in P(f)$ are homoclinically related if $p \sim q$. It

Balkan Journal of Geometry and Its Applications, Vol.22, No.2, 2017, pp. 44-49. © Balkan Society of Geometers, Geometry Balkan Press 2017.

¹³ is clear that if $q \sim p$ then index $(p) = \operatorname{index}(q)$, where $\operatorname{index}(p) = \dim W^s(p)$. Note that ¹⁴ a hyperbolic $p \in P(f)$, there are a C^1 neighborhood $\mathcal{U}(f)$ of f and a neighborhood U¹⁵ of p such that for any $g \in \mathcal{U}(f)$, $p_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$, where p_g is said to be *continuation* ¹⁶ of p.

¹⁷ We say that the homoclinic class $H_f(p)$ is homogeneous if index(p) = index(q), ¹⁸ for any hyperbolic $q \in H_f(p) \cap P(f)$, We say that Λ is *locally maximal* if there is a ¹⁹ neighborhood U of Λ such that $\Lambda = \bigcap_{n \in \mathbb{Z}} f^n(U)$. Here the neighborhood U is called ²⁰ *locally maximal neighborhood* of Λ .

We say that a subset $\mathcal{G} \subset \text{Diff}(M)$ is *residual* if \mathcal{G} contains the intersection of a countable family of open and dense subsets of Diff(M). In this case \mathcal{G} is dense in Diff(M). A property "P" is said to be (C^1) generic if "P" holds for all diffeomorphisms which belong to some residual subset of Diff(M).

We say that Λ admits a *dominated splitting* if the tangent bundle $T_{\Lambda}M$ has a continuous Df-invariant splitting $E \oplus F$ and there exist constants C > 0 and $0 < \lambda < 1$ such that

$$||D_x f^n|_{E(x)}|| \cdot ||D_x f^{-n}|_{F(f^n(x))}|| \le C\lambda^n$$

for all $x \in \Lambda$ and $n \geq 0$. An invariant closed set Λ is called a *chain transitive* if for 25 any $\delta > 0$ and $x, y \in \Lambda$, there is δ -pseudo orbit $\{x_i\}_{i=0}^n (n \ge 1) \subset \Lambda$ such that $x_0 = x$ 26 and $x_n = y$. Abdenur *et al* [1] proved that C^1 generically, any chain-transitive set Λ 27 of f, then either (a) there is a dominated splitting over Λ or (b) the set Λ is contained 28 is the Hausdorff limit of a sequence of periodic sinks/sources of f. Recently, Lee [9] 29 proved that C^1 generically, if a chain transitive set Λ is locally maximal then it admits 30 a dominated splitting. We say that Λ is Lyapunov stable for f if for every neighbor-31 hood U of Λ there is another neighborhood V of Λ such that $f^n(V) \subset U$ for any 32 $n \geq 1$. We say that Λ is *bi-Lyapunov stable* if it is Lyapunov stable for f and for f^{-1} . 33 Potrie and Sambarino [12] proved that C^1 generic diffeomorphisms with a homoclinic 34 class with non empty interior and in particular those admitting a codimension one 35 dominated splitting. Potrie [13] proved that for C^1 generic $f \in \text{Diff}(M)$, a Lyapunov 36 stable homolinic class $H_f(p)$ admits a dominated splitting. Wang [14] proved that 37 for C^1 generic $f \in \text{Diff}(M)$, where M is connected, if a homoclinic class $H_f(p)$ is 38 bi-Lyapunov stable, then we have: either $H_f(p)$ is hyperbolic, and so, $H_f(p) = M$ 39 and f is Anosov, or f can be C^1 approximated by diffeomorphisms that have a het-40 erodimensional cycle. From the results, we prove the following. 41 42

⁴³ **Theorem A** For C^1 generic $f \in \text{Diff}(M)$, a locally maximal homogeneous homoclinic ⁴⁴ class $H_f(p)$ is hyperbolic, for some hyperbolic $p \in P(f)$.

45

From Theorem A, we directly obtained the previous results ([3, 7, 8]). Moredetail, C^1 generically, if a diffeomorphism f has the shadowing or limit shadowing property on a locally maximal $H_f(p)$ then $H_f(p)$ is homogeneous. Thus we can easily show that C^1 generically, if a diffeomorphism f has the shadowing property ([3, 7]), or the limit shadowing property ([8]) on a locally maximal homoclinic class then it is hyperbolic.

⁵¹ 2 Proof of Theorem A

Let M be as before, and let $f \in \text{Diff}(M)$. For $\delta > 0$, a sequence of points $\{x_i\}_{i=0}^n (n \ge 1)$ 52 1) in M is called a δ -pseudo orbit of f if $d(f(x_i), x_{i+1}) < \delta$ for $i = 0, \dots, n$. For given 53 $x, y \in M$, we write $x \rightsquigarrow y$ if for any $\delta > 0$, there is a δ -pseudo orbit $\{x_i\}_{i=0}^n (n \ge 1)$ 54 of f such that $x_0 = x$ and $x_n = y$. The set $\{x \in M : x \rightsquigarrow x\}$ is called the *chain* 55 recurrent set of f and is denoted by $\mathcal{CR}(f)$. The relation \iff induces an equivalence 56 relation on $\mathcal{CR}(f)$ whose classes are called *chain recurrence classes* of f. For any 57 hyperbolic periodic point p, denote by $C_f(p) = \{x \in M : x \rightsquigarrow p \text{ and } p \rightsquigarrow x\}$. The 58 chain recurrent class $C_f(p)$ is a closed and invariant set. In general, the homoclinic 59 class $H_f(p)$ contained in the chain recurrence class $C_f(p)$. 60

Lemma 2.1. There is a residual set $\mathcal{G}_1 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_1$,

- (a) f is Kupka-Smale, that is, any element of P(f) is hyperbolic, and its invariant manifolds intersect transversely (see [11]).
- (b) the chain recurrence class $C_f(p)$ is the homoclinic class $H_f(p)$, for some hyperbolic periodic point p (see [4]).
- (c) an isolated chain recurrence class $C_f(p)$ is robustly isolated, that is, there are a C^1 neighborhood $\mathcal{U}(f)$ of f and a neighborhood U of $C_f(p)$ such that for every $g \in \mathcal{U}(f), C\mathcal{R}(g) \cap U = C_q(p_q)$ (see [5]).
- (d) if for any C^1 neighborhood $\mathcal{U}(f)$ of f there is $g \in \mathcal{U}(f)$ such that g has two periodic points p and q with $index(p) \neq index(q)$ then f has two periodic points p_f and q_f with $index(p_f) \neq index(q_f)$ (see [10]).

For any $\delta > 0$, we say that a hyperbolic $p \in P(f)$ has a δ weak eigenvalue if there is an eigenvalue λ of $D_p f^{\pi(p)}$ such that

$$(1-\delta)^{\pi(p)} < |\lambda| < (1+\delta)^{\pi(p)},$$

where $\pi(p)$ is the periodic of p. The following lemma was proved by Wang [14].

⁷³ Lemma 2.2. There is a residual set $\mathcal{G}_2 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_2$, if ⁷⁴ a homoclinic class $H_f(p)$ is not hyperbolic then there is a hyperbolic periodic point ⁷⁵ $q \in H_f(p)$ with $q \sim p$ such that q has a Lyapunov exponent arbitrarily close to 0.

⁷⁶ By Lemma 2.2, the hyperbolic periodic point $q \in H_f(p)$ is said to be a *weak* ⁷⁷ hyperbolic periodic point if the hyperbolic periodic point $q \in H_f(p)$ has a Lyapunov ⁷⁸ exponent arbitrarily close to 0. The notion of weak hyperbolic periodic point is a δ ⁷⁹ weak eigenvalue for the hyperbolic periodic point. We say that a periodic point p is ⁸⁰ said to be *weak hyperbolic* if p has a δ weak eigenvalue. We rewrite the result of Wang ⁸¹ as the following.

Lemma 2.3. There is a residual set $\mathcal{G}_2 \subset \text{Diff}(M)$ such that for any $f \in \mathcal{G}_2$, any hyperbolic periodic point p of f, if a homoclinic class $H_f(p)$ is not hyperbolic then there are $\delta > 0$, and a hyperbolic periodic point $q \in H_f(p)$ with $q \sim p$ such that q is a weak hyperbolic.

⁸⁶ The following Franks' lemma [6] will play essential roles in our proofs.

46

Lemma 2.4. Let $\mathcal{U}(f)$ be any given C^1 neighborhood of f. Then there exist $\epsilon > 0$ 87 and a C^1 neighborhood $\mathcal{V}(f) \subset \mathcal{U}(f)$ of f such that for given $g \in \mathcal{V}(f)$, a finite set 88 $\{x_1, x_2, \cdots, x_k\}$, a neighborhood U of $\{x_1, x_2, \cdots, x_k\}$ and linear maps $L_i: T_{x_i}M \to T_{x_i}M$

90

 $\begin{aligned} & T_{g(x_i)}M \text{ satisfying } \|L_i - D_{x_i}g\| \leq \epsilon \text{ for all } 1 \leq i \leq k, \text{ there exists } \widetilde{g} \in \mathcal{U}(f) \text{ such that } \\ & \widetilde{g}(x) = g(x) \text{ if } x \in \{x_1, x_2, \cdots, x_k\} \cup (M \setminus U) \text{ and } D_{x_i}\widetilde{g} = L_i \text{ for all } 1 \leq i \leq k. \end{aligned}$ 91

Lemma 2.5. Let $\mathcal{U}(f)$ be a C^1 neighborhood of f and let U be a locally maximal 92 neighborhood of $H_f(p)$. If a weak periodic point $q \in H_f(p)$ then there are $g \in \mathcal{U}(f)$ 93

- and $q_1 \in \Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ such that $index(q_1) \neq index(p_g)$, where $\Lambda_g(U)$ is the 94
- continuation of $H_f(p)$. 95

Proof. Let $\mathcal{U}(f)$ be a C^1 neighborhood of f and let U be a locally maximal neighborhood. borhood of $H_f(p)$. Suppose that there is a periodic point $q \in H_f(p)$ with the period $\pi(q)$ such that q is a weak hyperbolic. For simplicity, we may assume that $f^{\pi(q)}(q) = f(q) = q$. Since $q \in H_f(p)$ is a weak hyperbolic periodic point, for any $\delta > 0$ there is an eigenvalue λ of $D_q f$ such that

$$(1-\delta) < |\lambda| < (1+\delta)$$
 and $q \sim p$.

By Lemma 2.4, there is $g C^1$ close to f such that g(p) = f(p) = p and $D_p g$ has an 96 eigenvalue λ such that $|\lambda| = 1$. Note that by Lemma 2.4, there is $g_1 C^1$ close to f 97 such that $D_p g_1$ has only one eigenvalue λ with $|\lambda| = 1$. Denote by E_p^c the eigenspace 98 corresponding to λ . In the proof we consider two cases : (i) λ is real, and (ii) λ is 99 complex. 100

First, we may assume that $\lambda \in \mathbb{R}$ (other case is similar). By Lemma 2.4, there are 101 $\alpha > 0, B_{\alpha}(p) \subset U$ and $h C^1$ close to $g (h \in \mathcal{U}(f))$ such that 102

103
$$\cdot h(p) = g(p) = p,$$

$$h_{104}$$
 $\cdot h(x) = \exp_p \circ D_p g \circ \exp_p^{-1}(x)$ for $x \in B_\alpha(p)$, and

 $\cdot h(x) = g(x)$ for $x \notin B_{4\alpha}(p)$. 105

> Let $\eta = \alpha/4$. Take a nonzero vector $v \in \exp_p(E_p^c(\alpha))$ which is corresponding to λ such that $||v|| = \eta$. Here $E_p^c(\alpha)$ is the α -ball in E_p^c with its center at $\overrightarrow{0_p}$. Then we have

$$h(\exp_p(v)) = \exp_p \circ D_p g \circ \exp_p^{-1}(\exp_p(v)) = \exp_p(v).$$

Put $\mathcal{J}_p = \exp_p(\{tv : -\eta/4 \le t \le \eta/4\})$. Then \mathcal{J}_p is center at p and $h(\mathcal{J}_p) = \mathcal{J}_p$. Since $B_{\alpha}(p) \subset U$ we know that $\overline{\mathcal{J}}_p \subset \Lambda_h(U) = \bigcap_{n \in \mathbb{Z}} h^n(U)$. Since $h(\mathcal{J}_p) = \mathcal{J}_p$, take two end points q, r of \mathcal{J}_p . Then we know that

$$D_q h|_{E_p^c} = D_r h|_{E_p^c} = 1.$$

By Lemma 2.4, there is ϕC^1 close to $h \ (\phi \in \mathcal{U}(f))$ such that $\operatorname{index}(q_\phi) \neq \operatorname{index}(r_\phi)$, 106 where q_{ϕ} and r_{ϕ} are hyperbolic points with respect to ϕ . 107

Finally, we consider $\lambda \in \mathbb{C}$. For simplicity, we assume that f(p) = p. As in the proof of the case of $\lambda \in \mathbb{R}$, by Lemma 2.4, there are $\alpha > 0, B_{\alpha}(p) \subset U$ and $q \in \mathcal{U}(f)$ such that

$$g(p) = f(p) = p$$
 and $g(x) = \exp_p \circ D_p g \circ \exp_p^{-1}(x)$

for $x \in B_{\alpha}(p)$. Since $\lambda = 1$, there is n > 0 such that $D_p g^n(v) = v$ for any $v \in \exp_p^{-1}(E_p^c(\alpha))$. Let $v \in \exp_p(E_p^c(\alpha))$ such that $||v|| = \alpha/4$. Then we have a small arc

$$\exp_p(\{tv: 0 \le t \le 1 + \alpha/4\}) = \mathcal{I}_p \subset \Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$$

108 such that

(i)
$$g^i(\mathcal{I}_p) \cap g^j(\mathcal{I}_p) = \emptyset$$
 if $0 \le i \ne j \le n-1$,

- 110 (ii) $g^n(\mathcal{I}_p) = \mathcal{I}_p$, and
- 111 (iii) $g_{|\mathcal{I}_p}^n : \mathcal{I}_p \to \mathcal{I}_p$ is the identity map.

Then we take two point $q, r \in \mathcal{I}_p$ such that the points are the end points of \mathcal{I}_p . As in the previous arguments, there is $g_1 C^1$ close to g such that $index(q_{g_1}) \neq index(r_{g_1})$ where q_{g_1} and r_{g_1} are hyperbolic with respect to g_1 .

Proof of Theorem A. Let $f \in \mathcal{G} = \mathcal{G}_1 \cap \mathcal{G}_2$ and let p be a hyperbolic periodic point 115 of f. Suppose, by contradiction, that a homogeneous homoclinic class $H_f(p)$ is not 116 hyperbolic. Since $H_f(p)$ is homogeneous, we assume that index(p) = j. Let U be a 117 locally maximal neighborhood of $H_f(p)$. Since $H_f(p)$ is not hyperbolic, by Lemma 118 2.3 there is a periodic point $q \in H_f(p)$ with $q \sim p$ such that q is a weak hyperbolic 119 point. Since $H_f(p)$ is locally maximal in U, by Lemma 2.5 there is $g C^1$ close to 120 f such that g has two hyperbolic periodic points $r, s \in \Lambda_g(U) = \bigcap_{n \in \mathbb{Z}} g^n(U)$ with 121 $\operatorname{index}(r) \neq \operatorname{index}(s)$. Since $f \in \mathcal{G}_1$, $H_f(p) = C_f(p)$ and it is robust isolated, we have 122 that 123

(2.1)
$$\bigcap_{n \in \mathbb{Z}} g^n(\mathcal{CR}(g) \cap U) = \mathcal{CR}(g) \cap \Lambda_g(U) \subset \mathcal{CR}(g) \cap U = C_g(p_g) = H_g(p_g),$$

where p_g is the continuation of p.

Since $r, s \in \Lambda_g(U)$ as hyperbolic periodic points of g, we know that $r, s \in \mathcal{CR}(g) \cap U$. Then by (1) we have

$$r, s \in \mathcal{CR}(g) \cap \Lambda_g(U) \subset \mathcal{CR}(g) \cap U = H_g(p_g) = C_g(p_g).$$

Thus we have $r, s \in H_g(p_g)$ with $index(s) \neq index(r)$. By Lemma 2.1, we have two hyperbolic periodic points $r_f, s_f \in H_f(p)$ with $index(r_f) \neq index(s_f)$. Since index(p) = j, we know that either $index(r_f) \neq j$ or $index(s_f) \neq j$. This is a contradiction since $H_f(p)$ is homogeneous.

Acknowledgements. This work is supported by Basic Science Research Program
 through the National Research Foundation of Korea(NRF) funded by the Ministry of
 Science, ICT & Future Planning (No. 2017R1A2B4001892).

132 **References**

[1] F. Abdenur, C. Bonatti and S. Croviser, Global dominated splitting and the C¹
 Newhouse phenomenon, Proc. Amer. Math. Soc., 134(2006), 2229-2237.

- [2] F. Abdenur, C. Bonatti, S. Croviser, L. Diaz and L. Wen, *Peirodic points and homoclinic classes*, Ergodic Th. Dynam. Syst., **27** (2007), 1-22.
- [3] J. Ahn, K. Lee and M. Lee, *Homoclinic classes with shadowing*, J. Inequal. Appl. 2012:97(2012), 1-6.
- [4] C. Bonatti and S. Crovisier, *Récurrence et généricité*, Invent. Math. 158 (2004),
 33-104.
- [5] C. Bonatti and L. J. Díaz, Robust heterodimensional cycles and C^1 generic dynamics, J. Inst. Math. Jessieu, 7(2008), 469-525.
- [6] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer.
 Math. Soc., 158 (1971), 301-308.
- [7] K. Lee and X. Wen, Shadowable chain transitive sets of C^1 -generic diffeomorphisms, Bull. Korea. Math. Soc. **49** (2012), 263-270.
- [8] M. Lee, Usual limit shadowable homoclinic classes of generic diffeomorphisms,
 Advan. Differ. Equat., 2012:91 (2012), 1-8.
- [9] M. Lee, Chain transitive sets and dominated splitting for generic diffeomorphisms, preprint.
- ¹⁵¹ [10] M. Lee and S. Lee, *Generic diffeomorphisms with robustly transitive sets*, Com-¹⁵² mun. Korean Math. Soc., **28** 2013, 581-587.
- [11] J. Palis and W. Melo, *Geomerty theory of dynamical systems*, An introd.
 Springer-Verlag, Berlin, 1982.
- [12] R. Potrie and M. Sambarino, Codimension one generic homoclinic classes with
 interior, Bull Braz Math Soc, New Series 41 (2010), 125-138.
- [13] R. Potrie, Generic bi-Lyapunov stable homoclinic classes, Nonliearity, 23 (2010),
 1631-1649.
- [14] X. Wang, Hyperbolicity versus weak periodic orbits inside homoclinic classes, to
 appear in Ergod. Th. Dyn. Syst.
- 161 Author's address:
- 162 Manseob Lee
- ¹⁶³ Department of Mathematics,
- ¹⁶⁴ Mokwon University, Daejeon, 302-729, Korea.
- 165 E-mail: lmsds@mokwon.ac.kr