The new Minkowski norm and integral formulas
for a manifold endowed with a set of one-forms
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Abstract. Integral formulas are the power tool for obtaining global re-
sults in Analysis and Geometry. We explore the problem: Find integral
formulas for a closed manifold endowed with a set of linearly independent
1-forms (or vector fields). In our recent works in common with P. Walczak,
the problem was examined for a manifold endowed with a codimension-
one foliation and a 1-form f, using approach of Randers norm. Continuing
this study, we introduce new Minkowski norm, determined by Euclidean
norm «, linearly independent 1-forms 5;, (1 < ¢ < p) and a function ¢
of p variables; this produces a new class of “computable” Finsler met-
rics generalizing Matsumoto’s («, 8)-metric. The geometrical meaning
of our Minkowski norm is that its indicatrix is a rotation hypersurface
with the axis ()?_, ker 8; passing through the origin. We explore a Rie-
mannian structure, naturally arising from this norm and a codimension-
one distribution kerw of 1-form w # 0, and find the second fundamental
form of kerw through invariants of a,w,3; and ¢. Then we apply the
above to prove new integral formulas for a closed Riemannian manifold
endowed with a codimension-one distribution and linearly independent 1-
forms B;, (1 < i < p), which generalize the Reeb’s integral formula and
its counterpart for the second mean curvature of the distribution.
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Integral formulas are the power tool for obtaining global results in Analysis and
Geometry (e.g. generalized Gauss-Bonnet theorem and Minkowski-type formulas for
submanifolds). Such formulas are usually proved applying the Divergence theorem to
appropriate vector field. The first known integral formula by G. Reeb [10], for a closed
Riemannian manifold (M, a) endowed with a 1-form w # 0 tells us that the total mean
curvature H of the distribution kerw vanishes:

(0.1) H dvol, = 0;
M
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thus, either H = 0 or H(z)H(z') < 0 for some points « # z’. Its counterpart (6.1)
for the second mean curvature of a codimension one foliation (see [9]) has been used
to estimate the energy of a vector field [3] and to prove that codimension-one folia-
tions with negative Ricci curvature are far from being totally umbilical [6]. Recently,
these were extended into infinite series of integral formulas including the higher or-
der mean curvatures of the leaves and curvature tensor, see [1, 7, 11]. The integral
formulas for foliations can be used for prescribing the mean curvatures of the leaves,
e.g. characterizing totally geodesic, totally umbilical and Riemannian foliations.

We explore the problem: Find integral formulas for a closed Riemannian mani-
fold endowed with a set of linearly independent 1-forms (or vector fields). The “max-
imal number of pointwise linearly independent vector fields on a closed manifold” is
an important topological invariant; such vector fields on a sphere S’ are built using
orthogonal multiplications on R,

In [12, 13], the problem was examined for (M, a) endowed with 1-forms w # 0 and
B, using approach of Randers norm, that is a Euclidean norm « shifted by a small
vector. In the paper we extend this approach for (M, a) with the codimension-one
distribution kerw and p linearly independent 1-forms 31, ..., 3,, by introducing new
Minkowski norm, generalizing («, 3)-norm of M. Matsumoto, see [8]. Remark that
navigation (a, §)-norms appear when p = 2. The («, 8)-metrics form a rich class of
computable Finsler metrics and play an important role in geometry, see [2, 8, 14, 17],
thus we expect that our so called (c, 5)-metrics will also find many applications.

The paper contains an introduction and six sections. In Section 1 we introduce
and explore the («, ﬁ)—norm, determined by Euclidean norm «, linearly independent
1-forms /31, ..., Bp and a function ¢ of p variables; the indicatrix is a rotational hyper-
surface with p-dimensional rotation axis. The norm produces a class of “computable”
Finsler metrics generalizing Matsumoto’s («, 8)-metric. In Sections 24 we study a
new Riemannian structure, naturally arising on M endowed with (c, ﬁ)—metric with
5 = (f1,...,5p) and 1-form w # 0, and calculate the second fundamental form of the
distribution ker w through invariants of a,w, 8; and ¢. Sections 5-6 contain applica-
tions to proving new integral formulas for a closed M endowed with a codimension-
one distribution kerw and a set of linearly independent 1-forms, which generalize
the Reeb’s formula (0.1) and its counterpart for the second mean curvature of the
distribution. Using our norm and assuming for simplicity p = 1, we get new esti-
mates of the “non-umbilicity” of a codimension-one distribution and the energy of a
vector field.

1 The (q, g)-norm

In this section, we define a new Minkowski norm, generalizing the («, 8)-norm of
M. Matsumoto.

A Minkowski norm on a vector space V™1 (m > 1) is a function F : V — [0, 00)
with the properties of regularity, positive 1-homogeneity and strong convexity [14]:

M;: FeC>®WV\{0}), Ma: F(Ay)=AF(y) for A\>0and y €V,

Mj : For any y € V'\ {0}, the following symmetric bilinear form is positive definite:

1 0?2 5
(1.1) gy (u,v) = 5 350 [F?(y + su—&-tv)]ls:t:o.
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By My-Ms, gxy = gy (A > 0) and g,(y,y) = F?(y). As a result of M3, the indicatrix
S:={yeV:F(y) =1} is a closed, convex smooth hypersurface that surrounds the
origin.
The following symmetric trilinear form is called the Cartan torsion for F:
83

_1 2
(1.2) Cy(u,v,w) = 158501 [F?(y + ru+ sv + tw)]

where y,u,v,w € V and y # 0. Note that Cy(u,v,y) = 0 and Cy, = A\7'C, for
A > 0. Vanishing of a 1-form I,(u) = Try, Cy(u, -, -), called the mean Cartan
torsion, characterizes Euclidean norms among all Minkowski norms, see e.g. [14].

Definition 1.1. Given p € Nand §; > 0 (1 < i < p), let ¢ : II — (0,00) be a
smooth function on IT = []%_,[=4;,4;], and a(-,-) = (-,-) a scalar product with the
Euclidean norm a(y) = <y7y>1/2 on a (m + 1)-dimensional vector space V. Given
linearly independent 1-forms 3; (1 < ¢ < p) on V of the norm «(3;) < d;, the (a,ﬁ)—

norm (see below Lemma 1.3 on regularity) with 5 = (f1,...,Bp) is defined on V'\ {0}
by

(1.3) F(y) = a(y) ¢(s), s=(s1,--,8), i = Dbi(y)/aly).

Usually, we assume ¢(0,...,0) = 1. We call « the associated norm (or metric).

| r=s=t=0"

The geometrical meaning of (1.3) is that the indicatrix of F' is a rotation hyper-
surface in V with the axis ()7_, ker 3; passing through the origin, see below Propo-
sition 1.1. For p = 1, (1.3) defines the (o, 8)-norm. By shifting the indicatrix of an
(o, B)-norm, we obtain new Minkowski norms, called navigation (a, 8)-norms, [17].
The indicatrix of this norm is still a rotation hypersurface, but the rotation axis does
not pass the origin in general. Meanwhile, this is a case of («, ,é)—norm with p = 2,
whose indicatrix has a two-dimensional rotation axis passing through the origin.

The “musical isomorphisms” # and b will be used for rank one and symmetric rank
2 tensors. For example, <5f,u> = Bi(u) = ub(ﬁf). We will use Einstein summation
convention. Set

bij = (Bi, Bj) = <5375§>

A Minkowski norm on V™ *! is Euclidean if and only if it is preserved under the

action of O(m+1). Next, we will clarify the geometric property about the indicatrices

-,

of (o, B)-metrics.

Definition 1.2 (The symmetry of a Minkowski norm, see [17]). Let F' be a Minkowski
norm on V™! and G a subgroup of GL(m + 1,R). Then F is called G-invariant if
the following holds for some affine coordinates (y*,...,y™!) of V:

(1.4) Fly',...,y™™) =F(W',...,y™™f), weV, fea.
The next proposition for p = 1 belongs to [17].

Proposition 1.1. Let F be a Minkowski norm and 8; (1 < i < p) linearly independent
1-forms on a vector space V™1, Then F is an («, 3)-norm with B = (B1,...,Bp) if

and only if F is G-invariant, where G = {x € GL(m + 1,R) : x = (g ic(l) )7 Ce
P
GL(m —-p+1,R)}.
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Proof. Let F = aqﬁ(%, ce ’%”) be the (a, B)-norm. Let {eq,...,emi1} be an (-, -)-
orthonormal basis such that (\?_, ker 8; = span{ei,...,en—pt1}. Then SB;i(y) =

1 .
Z;n:m_p_;_g Bi(e;)y? where

Z;‘n:tiprrg 51 (ej)yj Z;‘n:tifijQ ﬁp(ej)yj )

F) = v+ + (ym+1)2¢(\/(y1)2 o TV )R

and y = y'e;. Hence, F is G-invariant.

Conversely, let F' obey (1.4) for G and affine coordinates y = (y*,...,y™*1). If
p = m+ 1 then for G = {id,, 41} one may take 3; = €’ and use axiom M. Let
p < m. By restricting F' on the (m — p + 1)-dimensional linear subspace U given
by p equations y™ P*2 = ... = y™T! = 0, one obtains an O(m — p + 1)-invariant
Minkowski norm, which must be Euclidean. Thus, there exists B > 0, such that the
norm a(y) = By/(y1)2 + ...+ (y™+1)2 on V obeys a|y = F|y. Set

o(y) = F(y)/aly) (y#0).

Then ¢ is G-invariant, hence ¢ depends on p variables y™~?*2 .. ¢! only. Since
¢ is 0-homogeneous, we have ¢(y) = ¢(By™" er2/cu( )y..., Byt /a(y)), that is
Bi=Bey, pi14i - i

Define real functions p, p, p% (1 <i,j < p) of variables s = (s1,...,5,), see also
(1.3):

=¢(¢ — Zi $i05), pi = b dij + didy, pL=ddi— Zj s; (¢ dij + i b5,
where ¢; = 9 , gi)” = 89 ag , etc. Assume in the paper that p > 0, thus
¢— sidi>0.
The following relations hold:
pi=r1, By = (p1)j = —sk(ph);-
Proposition 1.2. For («, 3)-norm, the bilinear form gy (Y #0) in (1.1) is given by

gy(u,v) = plu,v) + pg Bi(u)B;(v)
(1.5) + P4 (Bi(w){y, v) + Bi(v)(y, u) a(y) — Bi(y)p (y, u)(y, v) /o (1)

The Cartan tensor of (a,ﬁ)-norm is expressed by

20y (u,v,w) = a (y) Zzpzl (Ky(u, V)pyi(w) + Ky (v, w)pyi(u) + Ky (w, u)pyi(v))
(1.6) +a '(y) Z”k(@%k + & ik + drdij + & D k) Pyi(WPy; (V)Pyr (W),

where py; = Bi — siy’/aly) (1 < i < p) are 1-forms and K,(u,v) = (u,v) —
{(y,u){y,v)/a?(y) is the angular metric of the associated metric a = (-, ).
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Proof. From (1.1) and (1.3) we find

9y(u,v) = [F?/2]ay(u,0)/a(y) + [F?/2aaly, u)(y, v) /a®(y)
(L.7) +Zi([F2/2]am/Oé(y))(<y7U>ﬂi(v) + (y, v)Bi(u)) + Z” [F2/2)p,8,8:(w) B (v).

Calculating derivatives of 3 F? =  a?¢?(61/a, ..., Bp/a),

[F2/2)o = ap, [F?/2ls, = a¢di, [F?/2ap, =0}, [F?/2].p, = p(,
(1.8) [F?/2]aa = p+ (Zisi Qgi)2+¢zi,j $i5; Gij

and comparing (1.5) and (1.7), completes the proof of (1.5).

—,

We calculate the Cartan tensor of (v, 3)-norm using (1.2) as

20y (u,v,w) = ail(y) Zi[F2/2]&5i (Ky (u, v)pyi(w) + Ky (v, w)py: (u) + Ky (w, u)py; (”))

(1'9) + Zi’j’k[F2/2]Bi6j6k Pyi (U)pyj (U)pyk (w)
Then using equalities (1.8) and
[F?/2]5,8,8, = a M y) (b b + b; ik + dr bij + ¢ '(b.ijk)a

and comparing (1.9) and (1.6) completes the proof of (1.6). O
Note that if s; =0 (1 < i < p) then p = 1. By Proposition 1.2, g, (for small s;
and p > 0) of (o, B)-norm can be viewed as a perturbed scalar product (-, -).
Define nonnegative quantities: Ry = max s ||p1(s)]] — the maximal norm of the

vector p; = (p}), Ro = max seq1 || po(s)|| — the maximal norm of the symmetric matrix
po = (pg), and R = min sep p(s), where IT = [T?_,[-6;,6;] and §; > 0.

Lemma 1.3 (Regularity). Let 5o := (62 + ...+ (5}%)% obeys the following inequality:

- 2R
3R; 4+ \/9R? + 4RR,

Then F in (1.3) is a Minkowski norm on V.

(1.10) do

Proof. Since a(f;) < 6; (1 < i < p), the terms in (1.5) obey the inequalities when
y #0:

|06 i © B3| < 1p 6,1 < Rod,

WP (Bi @Y+’ @ B)| < 2|pidi] < 2R,

a2 WBiy)r)y’ © ¥'| < [pidil < Rudo.
Thus, g, > R — 3R18p — Rod3. The RHS of the last inequality (quadratic polynomial
. . P : 9RZF4RRo—3R, .
in o > 0) is positive if and only if dy < *——5z——— that is (1.10) holds. O

We restrict ourselves to regular (a, 8)-norms alone, that is det gy 0 (y #0).
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Let {e1,...,emt1} be abasis of V. A scalar product (metric) a on V and similarly,
the metric g, for any y # 0, define volume forms by

dvolg(e1,...,emp1) = y/detby;, dvolg, (e1,...,emq1) = 1/det gy(es, e;).

Then

dvoly, = pg, (y) dvol,
for some function pg, (y) > 0. Let qp = (qis---,q.) € RP be unit eigenvectors with
cigenvalues A\* of the matrix {pf + e~ 1pipl}. Define vectors B, = ¢i.B; (1 < k < p).
Then (1.5) takes the form

(1.11) gy(u,0) = plu, ) + Y N Biu) Bi(v) — e Y (W)Y (v),

which can be used to find pg, (y).

Let M™*! (m > 2) be a connected smooth manifold with Riemannian metric
a = (-,-) and the Levi-Civita connection V. We will generalize definition in [17] for
p=1.

Definition 1.3. A general (o, 3)-metric F on M is a family of (o, 3)-norms F, in
tangent spaces T, M depending smoothly on a point x € M.

The study of a sphere S™+! endowed with a general (a, 8)-metric (e.g., the bounds
of curvature, and totally geodesic submanifolds) seem to be interesting and is dele-
gated to further work.

2 The (a, 8)-modification of a scalar product

Let w # 0 be a 1-form and f3i,..., 3, linear independent 1-forms on a vector space
V™t endowed with Euclidean scalar product (-,-). Let N be a unit normal to a
hyperplane W = kerw in V,

(No)=0 (veW), (N,N)=1.

If W # ker 8; (1 <i < p)then BET # 0 (the projection ofﬁii onto W) and |5;(N)| < b;.
For any Minkowski norm on V', there are two normal directions to W, opposite when
this norm is reversible, see [15]. Hence, there is a unique a-unit vector n € V', which
is gn-orthogonal to W and lies in the same half-space as INV:

gn(n,0) =0 (weW), amn)=1, (n,N)>0.

Remark that v = F(n)~!n is a g,-unit normal to W, where F(n) = a ¢(s), and we
get gn(n,n) = ¢*(s), where s = (s1,...,s,) and

(2.1) s; = Bi(n), 1<i<p.

In what follows, in all expressions with s;, ¢ and p’s we assume (2.1). Put g := gy,
thus
(2.2) ) | |

9(u,v) = plu,v) + pg Bi(u) B (v) + p1(Bi(u)(n, v)+Bi(v)(n, u) — (pisi)(n, u)(n,v),
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see (1.5) with y = n. Define the quantities (needed for two lemmas in what follows),
o= +0isi)/p=bi /(- Zj bjs;) (1<i<p),
v = Py = el —let = vivleise (L<ij<p)

(2.3) c1 = Bi(N) + (1= 7indb)' 2,

where biTj ==b;; — Bi(N)B;(N). Assume that

(2.4) b < 1.

By (2.4), discriminant in the formula (2.3) for ¢; is nonnegative, hence ¢; is real. In
the following lemma we express g-normal n to W through the a-normal N and the
auxiliary functions (2.3).

Lemma 2.1. Let (2.4) holds, then the value of ¢1 is real and

(2.5) n=cN — %ﬂ?»
(2.6) 9(u,v) = p(u,v) + 75 Bi(u) B;(v)  (u,v € W).

Moreover, the values s; = B;(n) can be found from the system
(2.7) si=a1Bi(N) —4iby; (1 <j<p).
Proof. From (2.2) with v =n and v € W and g(n,v) = 0 we find
(2.8) (pn+1p vy =0 (vew).
From (2.8) and p > 0 we conclude that pn + ’yiﬂfT = ¢ N for some real ¢;. Using
1= (n,n) = cf —2c7 B} +91 (8. 8])
and ( Z—'—,ﬂ]—r> = b;; — Bi(N)B;(N), we get two real solutions
(01)1,2 = “Yiﬂi(N) +(1- ’Yﬁ{bjj)l/z-

The greater value (with +) provides inequality (n, N) > 0, that proves (2.5). Thus,
we get (2.7):

Finally, (2.6) follows from (2.2), (2.5) and (n,u) = —~viB;(u) (u € W). O

Remark 2.1 (Case Bf € W). An interesting particular case appears when all vectors
Bf belong to W, that is 3;(IN) = 0. Then, rather complicated system (2.7) reads

(2.9) D, 0i/d(bij —sis;) = —s; (1<) <p),

from which all ¢; at s; = B;(n) can be expressed through ¢ and {s;}.
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Define a matrix P with elements
P{ = 75'bj.
@ = pid +P is non-singular, if fy;j are “small” relative to p > 0, i.e.,
(2.10) det[pd] + v5b\. ] # 0.
Using the inverse matrix Q~!, define the quantities (needed for the following lemma),
7 =-n(@Q@p (1<ij<p)
In the following lemma, we find relation between ©w € W and U € W such that
(2.11) g(u,v) =(U,v), YveW.

Lemma 2.2. Let (2.4) and (2.10) hold. If the vectors u,U belong to W and obey
(2.11) then

(2.12) pu="U+~y Bi(U) B

Proof. By (2.6), g(u,v) = <pu+7§jﬁi(u)ﬁ§, v) for u,v € W. By conditions, and since

U, Bg‘r € W, we find pu + fy;j,é’i(u)ﬁg—r = U. Applying B and using ,Bk(/BgT) = b;'—k
yields

(08, + P)Bj(u) = Br(U) (1 <k <p),
and then (2.12). O

3 Examples

=,

The following lemma is used to compute the volume forms of («, 3)-norm for p = 1, 2.
This extends the Silvester’s determinant identity, see [14],

det(id,, +C, P}) =1+ CL Py,
where Cy, P, are m-vectors (columns), and id,, is the identity m-matrix.

Lemma 3.1. Let C;, P; (1 < i < j < m) be m-vectors. Then Tr(C’iPJ'?) = Clp; =
PiC; and

(3.1) det(id,, +C1 P} + CoP3) =1+ ClP + CLP, +CiP, - CLP, — O P, - CL Py
det(id,,, +C1 P + CoP + C3PY) = 1+ C{ P, + CiPy + CiPy + C1 Py - C4 Py
+CLPy - CiP3 + O} Py - CLPy — CiPy - CYP — CLPy - CAPy — CLP3 - CL Py
+CIP - CLPy - ClPy + CLPy - CLPy - CLPy 4+ CLP3 - CL Py - CL Py

(3.2) —CiP,-CLPy-CLPy — CiPy-CLPy - C4P3 — O P3 - CLPy - CLPy, and so on.
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For p =1, (1.3) defines (a, §)-norm F = a¢(s) for s = §/a. This function F is a
Minkowski norm on V for any a and S with «(8) < dp if and only if ¢(s) satisfies

(3.3) b—sd+ (b7 —5%) >0,

where real s,b obey |s| < b, see [14]. Taking s — b in (3.3), we get ¢ — s¢ > 0. By
(15),

gy(u,v) = p(u,v) + poB(u)B(v) + p1(B(u)(y,v) + B(v)(y,u))/a(y)
(3.4) — p1BW){y, u)(y,v)/a®(y).

Here p > 0 and pg, p1 are the following functions of s:
p=d(6—50). po=00+¢" p=00—s(00+0%).

The following relations hold: p = py, p = p1 = —spo. Set ¥ = 5715 — 3y’ /a(y) and
e = sp1. Then (3.4) takes the form

(3-5) 9y(u,v) = plu,v) + (po + pi/2) B(u) Bv) — e Y (W)Y (v),
From (3.5) and (3.1) with C} = (po+p3/e)p 1Bt P = B, Co = —ep~ 'YV, Py =Y
for the volume form dvol,, = g, (y) dvol, we obtain, see also [14],

m

tg, () = p" (0% + pop1s® + pis” + (p — pob®)prs + (ppo — p7)b%)
(3.6) = ¢" (6 —5d)" D —sd+ ( — 7).
Set p, = B* — sy/a(y). The Cartan tensor of (o, 3)-norm has an interesting special
form [8]:
2 Oy(ua v, ’U)) = plail(y)('}”(y(uv U)<py7 w> + Ky(’U, ’LU) <pya U> + Ky(w7 U) <py, 'U>)
+ (3¢¢+ ¢ (b)a_l(y) <py7u><pyvv><pyaw>7

see (1.6) for p = 1. For a hyperplane W C V we have s = 8(n) and

a1 =mB(N) + (L= (b° = B(N)*))/2,
Y1 = (P1+P05(n))/9_¢/( *3915) ) . ]
Y2 =po —npL(Bn)1 +2) = ¢ (0% — 6 d* +56%) /(¢ — 5 9)°,

_ 2
BT F =B

Then (2.7) reads

sVb2 — 2 + B(N)/b2 — B(N)?
0~ 2 BINP)VE -2

which for 8% € W reads % = —gz>, see also (2.9) for p = 1.

__
¢

Example 3.1 (p = 1). Some progress was achieved for particular cases of (o, 5)-
norms. Below we consult some of (a, §)-norms to illustrate the above metric g on
V.
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(i) For ¢(s) = 1+s, |s| < b < dp = 1, we have the norm F' = «a+ S, introduced by
a physicist G. Randers to consider the unified field theory. We have p =145, pg =1
and p; = 1. For a hyperplane W C V and g = g,,, we get n = ;N — %, s = B(n) =
cer —1, ¢(s) = ceq, where ¢; = ¢+ B(N) and ¢ = /1 — b2 + B(N)? € (0, 1], see also
[13]. Then

=1, ~2=—cci, 7vy3= c 2.

Conditions (2.4) and (2.10) become trivial: ¢ > 0. Next, pg(n) = (cc1) ™2 and

9(u,v) = (1 + ) (u,v) = s(n, u)(n, v) + B(u)(n,v) + () (n, u) + B(u) 5 (v).

(ii) The (o, B)-norms F = o'/l (I > 0), ie., ¢(s) = 1/st (0 < s < b), are
called generalized Kropina metrics, see [8], and have applications in general dynamical
systems. The Kropina metric, i.e., | = 1, first introduced by L. Berwald in connection
with a Finsler plane with rectilinear extremal, and investigated by V.K.Kropina in
1961. We have p = 2/s2, po = 3/s* and p; = —4/s®. For a hyperplane W # ker § in
V and g = g, we get

e = (b—28(N))//2b(b — B( B(n) =s=/bb— BIN))/2,
:—1/ 25 :—1/\/2bb— Y2 =773 = U,

47n+1

and fig(n) = smpymre- Note that conditions (2 4) and (2.10) become trivial.

(iii) The (o, B)-norm F = %, ie., ¢(s) = T with |s| < b < & = 3, (called
slope-metric) was introduced by M. Matsumoto to study the time it takes to negotiate
any given path on a hillside. We have p = %, po = ﬁ and p; = &_5)4 For a
hyperplane W # ker 8 and g = gy, from (2.7) we find that s = 8(n) obeys 4th-order
equation

st — 45% + (1 — 4b%)s* + 2(b* + B(N)?)s + b* — (b + 1)B(N)* = 0,

and s = & (1 —v1+8b%) if 8% € W, see (2.9). We find py(n) = 8:373;;1 (2% — 3s +
1) and

~ BN) + /(1 —25)% — b2 4 B(N)?
= 1—2s :
1 1 1

1-25 27T 0252153 T 0_253+62_BN)?2

71 =

Thus, (2.10) becomes trivial and (2.4) reads as (1 — 2s)? > b? — ﬂ(N)Z.

(iv) A Finsler metric is a polynomial (mﬁ)-norm if ¢(s) = Z ' Cy =
1, Cx # 0. The quadratic metric F = (a+ (8)?/a, i.e., ¢(s) = (1 + s)? W th |s| <b<
dp = 1, appears in many geometrical problems, [14]. We have p = (1—5)(1+5)3, po =
6(1 + s)? and p; = 2(1 — 2s)(1 + s)2. For a hyperplane W # ker 8 in V and g = g,

from (2.7) we find that s obeys 4th-order equation

st — 25 4+ (1 —4b% 4 38(N)?)s? +2(2b% — B(N)?)s + 4b* — (4b* +1)B(N)? = 0,
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and s = (1 — /1 +8b2)/2 if B* € W, see (2.9). Then we obtain

_ 2B8(N) + /(1 —5)2 — 4(b2 — B(N)?)
1—s ’
2 C2(3s—1)(1+s)? B 2(3s—1)
1-s P77 (1—s2 = BT 5P _20-3520—B(NN)?)
and fig(n) = (1+ 5)3™+3(1 — s)™ 1(2b% — 352 + 1). Conditions (2.4) and (2.10) read

(1—5)° 240" = BIN)?),  (1—35)° #2(1 = 35)(b* = B(N)?).

C1

1=

(v) Define by ¢(s) = e*/*, |s| < b < & := |k|, the exponential metric F =
aef/k)  Condition (3.3) reads as a quadratic inequality s> + ks — (b? + k?) < 0.
Taking s = b in (3.3) yields k(s — k) < 0 when |s| < |k|. Thus, (3.3) is satisfied for
arbitrary numbers s and b with |s| < b < |k|. We have p = e>*/*(k — s)/k > 0, po =
2e25/% /K% and p; = **/*(k — 2s)/k?. For a hyperplane W # ker 3 in V and g = g,,
by (2.7), s = B(n) obeys 4th-order equation

st —2ks® + (k% — 20 + B(N)?)s? + 2b%ks + b* — (b + k?)B(N)?* =0,
and s = (k — k2 + 4b?) /2 if % is tangent to the foliation, see (2.9). Then we get

_ BIN) + ((k = 5)° — b + B(N)2)1/2
- - |

1 5625/k .
’71:m7 72:@’ 3= (k_5)3+8(b2—ﬂ(N)2)'

and i4(n) = % (V% + k% — ks — s2) e®m+2)s/k Conditions (2.4) and (2.10) read,
respectively,

(k=92 >0 =B(N)?,  (k—s)"# —s(b" = BN)?).

Fig. 3.1 shows the dependence of s on S(N) € [—b, b], see (2.7), for four of above met-
rics. For B(N) = 0 we obtain the values of s: a) 0.64, b) -0.13, ¢) -0.26, d) -0.53.

5 5 0815
03 03 b=0.9
b=0.4 b=0.4 061 k=1
02 02 0.4
0.1 0.1 02
B(N) B(N) B(N)
0.1 02 03 K{ 010203 -08 £ 0.2 0.4 0608
5 -0.1 -0..

-03 \
(b) (c)

Flgure 1: Dependence of s on B(N) for metrics: a) Kropina, b) Matsumoto, ¢) quadratic, d) exponential.

-04-02 0 02 04 06 08
(a)

(d)

For p = 2, we can use (1.11) to find uy(y). By (1.5) we get

gy(u,v) = pu,v) + (pg +e ' pipl)Bi(u)B;(v) — e Y (W)Y (v),
Y =epiBi -y /aly), €= sipl.
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From (3.2) with
CVl = >\1P_15§7 Pl = B%a 02 = )\2;0_1/5)57 P2 = Bga 03 = _Ep_lf/ﬁ7 P3 = Yna
using Y from (3.7), b (ﬁl,ﬁj> Bi = q}B1 + ¢?B2 and € = pls; + p3sy, we obtain

tg, (y) = p" (% + p(A'b11 + AN2bas) — pe(Y,Y) + A A2 (br1bao — b3,)
— e(Y, V) (A'biy + ANbag) + N'e <ﬁ1 V) + A% (B, Y) + AN e/p[b11 (B2, Y)?
+ b2 (B1, V)2 + b12(Y,Y)? — biiboa (Y, Y) — 2b12(B1, V) (B, V)]).

Example 3.2 (p =2). A navigation («, 8)-norm is the («, ﬁ)—norm with p = 2.

(a) For shifted Kropina norm ¢ = 1+ i + s for s1 > 0, hence F' = a(1+ 4 + %),
we have

p=(2+s1)(1+ 51+ s182)/57, P% = *(4 +3s1+2s182) /5%, pi = (24 51)/51,
=(B+2s1+2s182)/s1,  po- =pp = —1/s1,  ppt =1

For a hyperplane W = ker 8; (i = 1,2) in V and the metric g = g,, we get

o = S2B2N=B1V) 4 (1 _u=BiN)? | 20012=B1(N)Ba(N) s?(bzrﬁzm)z))l/?’

51(2+81) s2(2+s1)2 (2+s1)? (2+s1)?
1 _ _ s _ _2—31—103%—103?—33%—3%32(2—23%—3‘;’)
"= 51(2—0—51)’ 71 — 2481 Y2 = S%(2+51) ’
12 _ 1241351 +3s7+5152(2—251 —57) 22 _ 4+3s1—s3(1+s3)
Y2 = s2(2+s1) y Y2 = T B

If ﬁ? € W then sq, s5 obey the system
(]. —+ 282)85’ — b128? + b11 = 0, (1 + 281)8182 b2281 + b12 =0.

Thus sy = 1 [(b11 — s3b12)/s? — 1], where s; is a positive root of the 6th-order poly-
nomial:

2 bggs? + buS? — (b%Z + 2[)12)81l — 6118? + 2b11b128% — b%l = 0;

for example, if bjo = 0 then s; = (417;212 (1+ \/1 + 8b22))1/3 and sp = 5 (by1/s3 —1).

(b) For shifted Matsumoto norm ¢ = +

%), we have

- Oé(a B1

o (17281)(14’8275132) 1 1+2$1(818275272) 2 17281
(1—81)3 ’ P1 = (1—81)4 ) P1 = (1_51)23
po- = (3= 25150+ 252)/(1 = s1),  pg° =pg =1/(1—s1)>, pg° =1.
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For a hyperplane W £ ker 3; (1 < i < p) in V and the metric g = g,, we get

(1 —51)*B2(N) + B1(N) (1= 51)"(baz — B2(N)?)

— 1—
“ 1—2s +( (1—25)2
2(1 = 51)*(b12 = BL(N)Ba(N)) b1y — ﬂl(N)2)1/2
(1—281)2 (1—281)2 ’
N 1 22 = (1—s1)? i 1+ 281 + 882 + s2(1 + sy — 6s7)
P12y P 127 2 (1—s1)3(1 —2s1) ’
22 _ _1—381—|—2s%—48‘;’—1—8‘11—#52(1—431—1—38%)
Y2 (1_31)4 )
12 1 — 551 + 357 + 453 + s9(1 — 851 + 1757 — 1253 + 257)
2 - .

(1 —281)(1 —s9)*
If Bf € W then s; and so obey the system
b11 + (1 — 81)2(612 — 25152) = 81, b12 —+ (1 — 51)2(b22 — 28%) = S9.

Then s;=(2b1152—b1252—b11b22+b35) /(2b1252—ba2 ), where s5 is a root of a 6th-order
polynomial.

Similarly to graphs on Fig. 3.1, one may calculate and graph pairs of surfaces
in R3, showing dependence of s; and sy on variables (31(IN), 82(N)) for the above
navigation (o, 8)-metrics. For 3;(IN) = 0 we obtain the values: a) s; ~ —0.79 and
sy = —1.5 for Kropina norm; b) s; ~ —0.42 and sy = s3 — 252 + s; ~ —0.84 for
Matsumoto norm.

4 The shape operator and the curvature of normal
curves

Let (M™* a = (-,:)) (m > 2) be a connected Riemannian manifold with the Levi-
Civita connection V. Let N be a unit normal field to a codimension-one distribution
D :=kerw on (M, a). Due to Section 2, there exists a g,-normal (to D) vector field
n such that (n, N) > 0 and (n,n) = 1. Define a new Riemannian metric g := g,
on M, see (2.2), with the Levi-Civita connection V. Let ker 8; # D everywhere for
all i, hence |B;(N)| < vbii. By (2.7), s; = Bi(n) are smooth functions on M, and
v =n/¢(s) is a g-unit normal to the leaves.

The shape operators A and A9 of D and the curvature vectors of v- and N- curves
for both metrics (-,-) and g belong to Extrinsic Geometry and are defined by

(4.1) A(u) ==V, N, A%u)=-V,v (u€eD),
Z=V,v, Z =VnN.

Let T : D — D be a linear operator adjoint to the integrability tensor T of D with
respect to a,

2T (u,v) = ([u,v], Ny (u,v € D).
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Note that T% = % (A— A*), where A* is a linear operator adjoint to A. The deforma-
tion tensor,

Def,, = (Vu + (Vu)")/2,

measures the degree to which the flow of a vector field u distorts (-, -). Here, Vu and
(Vu)t are

(Vu) (v) = Vyu, {(Vu)(v), w) = (v, (Vu)(w)) (v,weTM).

In the next proposition, we express A9 through A and invariants of D with respect
to a.

Proposition 4.1 (The shape operator). Let (M™% a) be a Riemannian manifold
with a form w # 0 and linear independent 1-forms 1, ... B, obeying conditions (2.4)
and (2.10). Let g be a Riemannian metric (2.2) determined by a distribution D =
ker w, 5 = (p1,...,Bp) and a smooth function ¢(x,s) on M x RP. Then

(4.3) poA? = —A—~f (Bio A BT,
where the linear operator A : D — D is given by
14 A= —perA— pyi (el )T + 2 n(p)id" +Sym(U? ® BT
(4.4) =—pcrd = pyi(Defy) + 5 nlp)id’ +Sym(U7 ® §;),
and the vector fields U7 are given by
1 i =T
= 5 ()BT + 75V ) — VT
+ (g —1eh) (Bi(N)V Ter = (1 /2)V Tbire — binV T A7)
+ (e1 = BN (05 — 1) Bi(N) + crpi (1 + si91)) Z
(4.5) + (erpt(L+ 50 = (o6 — A pb) (er = Be(N)YE) A" (BET).

Proof. By known formula for the Levi-Civita connection V of g,
(4.6)
2 g(vuva w) = u(g(v, w))—H}(g(u, w))—w(g(u, U))+g([u7 U]: w)_g([uv ’LU], U)_g([v7 ’LU], U),

where u,v,w € C*°(T M), we have

(47) 2g(vu nav) = n(g(u,v)) + g([u,n],v) +g([v’n]7u) - g([uv U]vn) (U,U € D)

Assume Viu = Vv =0 for X € T,M at a given point € M. Using (2.2) and
(2.6), we get

( (u,v)) = n(p(u, v)) + n(vs Bi(uw) B;(v))
n(p)(u,v) + [n(73))Bi(u)B; (v) + 75 (Bi(w) (Vi (B] ) (v) + Bi(0)(Vn(B])) ()],
g([u,v],n) =2pcT(u,v),
9([u,n],0) = p(Vun, v) + pg Bi([u, 1)) B;(v) + pL(Bi([u, n]) {n,v) + Bi(v)(n, [u,n]))
—pisi(n, [u, n])(n, v),
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where u,v € D. Using equalities

(Vun,v) = —(e1A(u),v) — 71 (Vo B, 0) = Bi(0)(Vi, u) = (Us, v),
Bi([u,n]) = = (V. 8L, BE) + (Bi(N)Ver — bi; V]
+Bi(N) [(er = 9B (N)) Z + A A (8], >=<Uzz~7 u) — v (Vu 85, BY),
(n, [u,n]) = ((cx = B (N))Ver + (vibji — 1B (N)Vy
—e1dV(Bi(N)) — c1l B (N) Z,u) = (Un, u),
(n,v) = =7 B;(v),

we then obtain
9([u,n],v) = =per(A(u),v) = p(31(Va B v) + Bi(v) (Vi u))
05 B () [{Bi(N)Ver — bigVAF + Bi(N)[(cr — VEBe(N))Z +AE A*(BT)] )
— (Vi BY, BE)] — 7B () [(Bi(N)Ver — iy, V¥

+Bi(N) [(er = A B(N)) Z + A A (BET)], u) — 1 (Vi B, B)]

+ i Bi(w)((er — 1B (N)Ver + (4 — e1B5(N)) VA

PV (Br(N)) — (W BR(N)) Z,u) + phsivi B5(v){(er — vE Be(N))Ver
+(’71 ik — 135 (N ))v%_cl’hv(ﬁk( ))_0171 i (IV Z u>

= —per(Alu),v) — p(r}(Tu B0) + Bi() (V2 u))

ol = AN Ter — (G T — b T)

+ (1 = BNV (Bi(N)Z — A*(BET)),u) B (v)
i+ s (er — BNV Z + A (5L, u) B 0),

where u,v € D. Formula for g([v,n],u) is obtained from g¢([u,n],v) after change
u <> v. Substituting the above into (4.7), we find g(V, n,v) = (A(u), v), where A is
given in (4.4)—(4.5). In particular,

(2A(), 8]7) = =2per(A"(B] ) u) — 2 p7] (Del s (8] u)
n(p)Bi(u) + B; (u)B;(U7) + U7 (u)b];

By Lemma 2.2 and g(V, n,v) = —¢ g(A9(u),v), see (4.1), we get (4.3). O

The elementary symmetric functions oy (A4) of a m x m-matrix A (or a linear trans-
formation) are defined by equality det(id +tA) = >, o4 (A)t* and are called mean
curvatures in the case of shape operator. Thus, 0¢(A4) =1, 01(A) =Tr A, ..., opn(A) =
det A.

Corollary 4.2 (The mean curvature of D). Let conditions of Proposition 4.1 are
satisfied. Then

pdo1(A?) = peror(A) —
(4.8) - Bi(U7) -

n(p) + pyi(div B — B;(Z) + N(Bi(N)))

5
v (ABET), B2,
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where U7 are given in (4.5) and
(ABET), B5) = per(AT(BET), B57) + ot (BE (b)/2 = Br(N)(A*(BT), B9))
(19) b (5 (o) + B(UF)).

Proof. Let {e;} be a local g-orthonormal frame of D. We calculate

(Do (557), 857) = 5 (07, BT — BN (A (517, ),
see (4.4)—(4.5). Tracing of (4.3), we obtain

po1 (A7) = —a1(A) — 4 (A(BET), BE).

Then, using
Tr (mﬁn)TT}- = Eﬂf — Bi(Z) + N(Bi(N)),

i

(4.9) and Lemma 2.2, we get (4.8)—(4.9). O

Example 4.1. (i) One may ask the question: “When D is totally geodesic with
respect to g, i.e., A9 = 07”7 In this case, when Vj; = 0 and j3;(N) = 0, by Proposi-
tion 4.1, A has a special form

A=W'®pi+uw' ® B,
for some vector fields W and 1-forms w®. If p = 1 then, necessarily, rank A < 2.

In next corollary and proposition, for simplicity, we assume that D is integrable
and p = 1.

Corollary 4.3 (The second mean curvature). If p =1 and V3% =0 then

(06V02(A%) = (per)*o2(A) + £ mlm — ) n(p)? — 5 (m — 1) e1pn(p) o1(A)

2
+ 5 BWON29ABT) + U, 5) — 1 (7 = BN 27A@ET) + U, U)
(110)  + (" En(p) - peror (A) (uABT) + U, B + per (o ABT) + U, A7),

where A= —pci A+ Sym(U ® ") and U is given in (4.5).
Proof. By conditions, Eﬂu = 0. Thus, by Proposition 4.1,
-1 -
pPAI = pclA— 3 n(p)id' —A; — As,

where A; = U ® 8" and Ay = (3 U” +y3(80.A)) ® B*T are rank 1 matrices (thus
UQ(Ai) = 0) and

- 1
A= —pciA+ 3 n(p)id" +Sym(U @ 81)

is symmetric. Applying the identity

02() P) =) oa(P)+ ZKJ. (01(P)or(Py) — o1(PiFy)),
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to matrices P, = pciA, Py = —7n( ) id" , Ps = —A; and P, = —As, and using
equalities (80 A)f, u) = (A(u"), B*) and UQ(idT) =m(m —1)/2, we get
(p9)202(A9) = (per)?oa(A) +m(m — 1) n(p)*/8
1

=5 (m=1)erpn(p) 01(A) + 01(A1) 01(Az) — 01 (A1 A2)

+((m = 1)n(p)/2 = pero1(A)) o1 (A1 + A2) + peroi (A(Ar + Az)),

where

o1(A1) = BU)/2, o01(A2) = 275A(B*T) + U, BY)/2,
01(A1Az) = (b* = B(N)*)(2y3A(B%) + U, U)/4,
o1(A(A1 + A2)) = (v ABT) + U, A(BT)).
From the above (4.10) follows. O

In next proposition, we express Z through Z, see (4.2), and invariants of D with
respect to a.

Proposition 4.4. Let g be a new Riemannian metric determined by an integrable
distribution D, a 1-form 8 and a function ¢(s) on (M, a) with conditions (2.4), (2.10).
Then

pZ = Z+y3B(2) BT,

where the vector field Z is given by

Z = [plvT(’YlM’) +p2?T(C1/¢(5))}¢(S)71 + [psZ + s ABT) +psVT (B N))}QVZ
p1 = c1 ((4p1m — po + 3p1s7])b” — p+ ciprs) BIN) — p1(2sm + 1)cFB(N)?
— pr(sy + DO +7i(po — 2711 = Aiprs)b? +yipb?,
p2 = (po — 2p157% — 3p1m1) c1B(N)? + (11(2v1p1 +Ep1s — po)b?
p1(2+3sm) ¢t —p)B(N) = ¢iprs + (p — mpi(sm + D)b?)er,
NGBy + 297018 — po)erBIN)® + ((po — Bp1syt — Bprya)ei +vip
T (po = 211 — 1Ep18)b*)B(N)? + (2p1 (1 + 2571)cf
e ((3v1p1 + 293p1s — po)b” — 2p))B(N) — ciprs + (p — yip1(smi + 1)b%)cF
7 (po — 2v3p1s — 3v1p1) c1B(N)? + 11 ((po — 2v1p1 — Vip18)b? + p)
[(4p171 = po+3p1577) € + 77 (27101 + 718 — po)b? = VEplB(N) = pi(smi + 1) e,
ps = mlcipis — p1(2s71 + DAEB(N) + cr(npr (1 +719)b> — p)].

_l_

b3

+ +

D4

_|_

Moreover, if B* is tangent to D and b = const then
Z=¢{dlp—cprs —mp(sm +1)0°)Z
+eifmp = pi(sm +1) e +71(po — 2mp1 — Aip1s)0°]A(BF) )

Proof. Extend X € T,F onto a neighborhood of a point € M with the property
(Vy X)T =0 for any Y € T, M. By formula (4.6), we obtain at x :

(4.11) 9(Z, X) = g([X,v],v).
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Using equalities v = ¢! (c; N — 71 8%) and [X, fY] = X (f)Y + f[X,Y] we get

9([X,v],v) = (c1/d) X(c1/) g(N,N) — X (c1m/9*) g(N, B%)
+ (/)X (1 /9) 9(B*, B%) + (c1/9)*9([X, N],N)
(4.12) — (me1/o?) [9([X, BY,N) + g([X, N], B%) | + (m1/9)*9([X, 8], BY).

To compute first three terms in (4.12), by (2.2) for p =1,
(4.13) g(u,v) = p(u,v) + pof(w)B(v) + pr(B(w)(n, v) + B(v)(n, u) = B(n){n, u)(n,v)),
and Lemma 2.1, we find

9(B%, %) = pb® + pob* + 2p1b%s — p15°,
g(N,B*) = (p+ pob® + p15) B(N) + p1(b° — 5*)(n, N),
g(N,N) = p+pOB(N)2 +2p1B(N){n, N) —p15<n,N>2.

To compute last four terms in (4.12), we will use

(X, 8% = [X, B*T] + X (B(N))N + B(N) ({2, X) N — A(X)),
[X,N] = VxN — VyX = —A(X) — (VyX, N)N = (Z, X) N — A(X),

and by (4.13) and Lemma 2.1, obtain the equalities

= (p+ pob® + p15)(
= (p+ pob® + prs)(

/—\

=
E=Y

N

[X, N1, 8%) + pr(b* — s°){[X, N],n),
(X, 8%, B%) + p1(b® — s°)([X, B, ),
[X, N], N) + (poB(N) + p1(n, N)){[X, N], 5%)
(B(N) = s(n, N))([X, N],n),

(X, 8%, N) + (poB(N) + pr(n, N))([X, 5%, B%)
(B(N) = s(n, N))([X, %], n).

@’TS
RS
212

(
1
(

~
@1

g([X,

+ 0+

P
P
P
p1
Thus,

9([X,v],v) = (c1/9) X (c1/9) [p+ poB(N)* + 2 p1 B(N)(n, N)

— p15(n, N’ = X (mie1/9%) [(p + pob® + p1s) B(N) + p1 (b
$2)(n, N)] + (71/8) X (71/9) [pb + pob” + 2p1b°s — p15°]

+ (C1¢)2[0<[X7 N], N) + (poS(N)+p1(n, N))B([X, N])

+ p1(B(N)=s(n, N))(n, [X, N)] = (vic1/9?)[p([X, B*], N)+(poB(N)

+ pr{n, N))B([X, BY) + p1(B(N) — s(n, N))(n, [X, B%))]

+ (11e1/0°) [(p + pob® + p15)B(X, N]) + p1(b* — s°)(n, [X, N])]

+ (7/8%) [(p + pob® + p15)B(1X, BY]) + p1(b* — s%)(n, [X, B])).
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Note that (n, N) = c¢; —y18(N) and B(n) = c13(N) — 7152, see (2.5), and
([X,N], N) = (Z,X),
(X, N, 5%) = (B(N)Z — A(B*T), X),
([X,N], n) = er([X,N], N) = (X, N, §)
= {(e1i=mnB(N)Z + 1 AB ), X),
([X, 6%, N) =< (B(N)) + B(N)Z, X),
(X, 87, 8) = bX(b) = (Ve X, ) = (bVb+ B(N)*Z = BIN)A(FT), X),
<[X,ﬁﬁ},n>=cl<[x,5“], N) = (X, 57, 8°)

((B(N) = BN Z = b Vb +nB(N)A(BT), X).
By (4.11), g(Z, X) = (Z, X). With the help of Lemma 2.2 we complete the proof. O

5 The Reeb type integral formula

In this section we apply results in Sections 1-4 to prove a new integral formula
for a closed Riemannian manifold with a set of linearly independent 1-forms and a
codimension one distribution, which generalizes the Reeb’s integral formula (0.1).

Theorem 5.1. Let g be a new Riemannian metric determined by D = kerw, I1-forms
B: (1 <i<p)on a closed Riemannian manifold (M,a) and a function ¢(s), where
s=(s1,...,8p), with conditions (2.4), (2.10). Then

/M ng(n)(p )~ {pero1(A) = (m/2) n(p) + p11(Bi(Z) = N(B:(N))) + Bi(U")

(5.1) =7 CABE).B]T) — po(B (i) + 108 (log ig(n))) } d vola = 0.
Proof. For the metric g the Reeb’s integral formula (0.1) reads

(5.2) / Hg dvoly, =0.
M

By (5.2), we have
/ tg(n) o1(A%) dvol, = 0.
M

Corollary 4.2 and using f‘aﬁf = a(fzﬁf) - Bf(fl) with f% = pg(n) i/, yield
(5.1). O

The integral formula (5.1) holds when all 1-forms are defined outside a closed
submanifold of codimension > 2 under convergence of some integrals, see discussion
in [7, 16]. The singular case is important since many manifolds admit no codimension-
one distributions or foliations, while all of them admit non-vanishing 1-forms outside
some “set of singularities”.

Corollary 5.2. In conditions of Theorem 5.1 for p =1, let b and S(N) be constant.
Then

(5.3) /N (@A) + @2, Fdvol, =0



94 Vladimir Rovenski

where the constants q1 and q2 are given by

@1 = —p(p+ (0> = BIN)*)2) (erpimn (L + sm) +72(cr — B(N)™)),
@2 = mp—crpiplp+ (b2 = BIN)*)y2) 11+ s71)(er — BN )m).

Proof. If b and B(N) are constant, that is 4% and its D*-component have constant
lengths, then s, p, p;, i, c1 and ¢(s), pig(n) are also constant. In this case, (5.1) yields
(5.3). a

There are topological obstructions to the existence of codimension one totally
geodesic and Riemannian foliations on a closed Riemannian manifold, see [4, 6]. For
such foliations we get

Corollary 5.3. In conditions of Theorem 5.1 for p =1, let b and S(N) be constant.
(i) If A =0 and go # 0 then either B(Z) =0 or B(Z)s - B(Z)w < O for some points
v # 2. (i) If Z =0 and q1 # 0 then either (A(B*T), B*) = 0 or (A(B*T), B¥), -
(A(B*T), B¥)2r < O for some points x # .

Example 5.1. (i) For Randers metric (p = 1), by (5.1) we get, see [13],
/ (Ccl)ch_l((ccl)Ul(A) -5 (N +¢7' 8 (cer) +aN(e)
M
(5.4) —(e1 = ¢)[N(e) + (cTTA(B*T) + Z, B’U]) dvol, =0,
which is the Reeb formula when 8 = 0. If 8(N) = 0 then (5.4) reads
/ A %oy (A) — (m+ 1) eN(c) — (m +2) B%(c)) dvol, = 0.
M

If b and B(N) # 0 are constant then (5.4) reads [,,(A(8*T) +cZ, 8%) dvol, =0, see
also (5.3) with ¢; = ¢ tej(c— 1) and g2 = c1(c — ¢1).
(ii) For Kropina metric, if B(N) = 0 then u,(n) = (2/b)>™+2, and
n=-v2/(2b), =0, a=1/V2,
s=0/V2, p=4/b%, po=12/b, p1=—8V2/b°.
Hence, by Proposition 4.1 for p = 1, 01 (A9) = 01 (A) — § div g* + 7 n(b)+ 55 B*(b),
and, we get integral formula

LG {praa) + vama) - 255 50 b dvol, = 0.

which for b = const reduces to (0.1) for metric a.

(iii) The following application of (5.3) (when b and (V) are constant) seems to
be interesting. Let Z = 0, ¢; # 0 and a-unit vector field X € Xp be an eigenvector of
A with an eigenvalue A : M\ ¥ — R. Then % = ¢’X + &N, where ¢ = const € (0, dy)
and ¢’ = const € (0,v1—e?), obeys (5.3). Thus, [,, A dvol, = 0. Consequently,
either A = 0 on M or A(z) A(z') < 0 for some points = # x’. Furthermore, this implies
Reeb formula (0.1) for (-,-):

o1(A4)dvol, = /)\idvola:().
/M (4) ZZ M



The new Minkowski norm and integral formulas 95

6 The counterpart of Reeb integral formula

In this section we assume for simplicity that D is integrable and p = 1, and use
(a, B)-metrics.
The counterpart of the Reeb integral formula for the second mean curvature reads

(6.1) /M(Q o5(A) — Ricy.v) dvol, = 0.

Here Ricy v = Tro(u — Ry, N) is the Ricci curvature of a in the N-direction. The
proof of (6.1), see e.g. [11], is based on the Divergence theorem applied to

I (01(A) N + Z) = Ricn.w — 209(A).

We will generalize (6.1) for codimension one foliations with general («, §)-metrics on
M. In this case, the volume form of g with p, given in (3.6) obeys

(6.2) dvoly = pg(n)dvol, .

Let Ric,, = Try(u — RY , v) be the Ricci curvature of g in the v-direction, where
Ry, = [V, Vu] = V[y,y is the curvature tensor derived using the Levi-Civita con-
nection of g. The Chern connection D" is torsion free and almost metric, it is deter-
mined by

(6.3)  9(Dyv,w) = g(Vuv,w) = Cp(Dy, v,u,v) = Cp (D v, v,w) = Cp (DY v, u, w),

see [14], for any vector fields u, v, w, where g(V,, v, w) is given in (4.6).

The difference 7 = DY — V is called the contorsion tensor. It is a symmetric
tensor because both connections, V and DY, are torsion-free. By (6.3), DY v =V, v
holds; hence, 7, v = 0 (thus, v is geodesic for F' if and only if it is geodesic for g).

Comparing the curvature R?, = [Dy, D}] — Dy, ,; of D" with Rf, . we find

(6.4) RD, = RS, =(VuT)o — (VuT)u— [To. Tul, uweTM.

In [5], the Ricci curvature Ric? = Try(u — R[,y) of (o, B)-metric is expressed
through Ric, of «; in particular, V3 = 0 provides Ricf = Ric, (y #0).
Let C¥ be a (1, 1)-tensor g-dual to the symmetric bilinear form C,(Z, -,-):

g(C’ﬁ(u),v) =C,(Z,u,v), wu,veTM.

Note that A9 4+ C¥ is the shape operator of the leaves with respect to DV, see [13].
By (6.3), we get

(6.5) T, =-C! TrT,=—0,(Ch) = —1,(2).
Unlike Theorem 5.1, the following theorem contains non-Riemannian quantities.

Theorem 6.1. Let g be a new metric determined by a codimension-one foliation
F (TF =D), a I-form B on (M,a), and a function ¢(s) with the conditions (2.4),
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(2.10) and V3* = 0. Then
/M {10 202(A) ~ Ric ) + g mlm — 1)n(p)? ~ (m — 1) espn(p) o1 (A)
43 BO)2WAWT) + U, 57) — L (07~ BN 2 A(5T) + U U) ~ (2peron(A)

—(m = 1)n(p)) (3AB*T) + U, B%) +2per (s ABT) + U, ABT))] (0 6(5)) 2
(6.6) I,((A9 + C% + 01 (A9)id) Z) — 201 (AICE) — al((cﬁ)%} 11(n) dvol, = 0,

where A9, A and U are given in Proposition 4.1, Z is given in Proposition 4.4 and
pg(n) is given in (3.6) with y =n and s = B(n).

Proof. We will use the adjoint (1,2)-tensor 7* defined by
9(Tjv,w) = g(Tyw, v)

for u,v,w € TM. Note that 7 v = 0 and define Tr, 7 = >, 7," b; — the trace of
T* with respect to g. Assuming (V, b;)7 = 0 and (V,, v)1 = 0 at a point z € M,
calculate at x:

Do 9(ViT)wbi) =2 g(T) bi, A(b)) = 201(CHAY),
Yo, 9(VuT)ivbi) = divg(Try T°), Y g((Ti, Tolw.bi) = —o1((CE)?),

using the symmetry 7; v = T, b;. Then, applying (6.4) we get

Ricgy —Ricy ,
(6.7)

> L9V b)) = g(VuT)iwsbi) + g(([Ti, To v, bi)]
201 (CFA9) — o1 ((C*)?) — d1v (Te" 7).

From (6.7) and
divy (Tr, T*) = div, ((Tr, 7)) — g(Tr, T, 01(A%) v — 2)
we obtain

divy((Try 7°)*) = Ricf, — Ricl)

v,V

(6.8) + g(Try T, 01(A%) v — Z) — 201 (AICE) — o1 ((CE)?).
Then, using (6.3) and (6.5), we find
9(Teg T, v) = =) Cu(Dyw.bibi) = =01 (CF) = ~L,(2),
9(Trg T*u) = =Y Co(Dyv,bi,bi) = L((AY + CF) ()
for w € D. By the above we obtain

g(Try T*, 01(A9) v — Z) = —1,((AY + C¥ + 01(A%)id) Z).
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By conditions, b = const and R(X,Y)s* =0 (X,Y € TM). Using
Ric RICnn—ClRICNN+’71R1C511,3;1*261’712 Nb)ﬂ b;)

and Ric}, = ¢2Ricl, ,, we find

n,n’
Ricfyl, = (Cl/(b)zﬁ]v,]v.
By the above, (6.1) and (6.2) for g, using (6.8) and Corollary 4.3, we find (6.6). O

Corollary 6.2. In conditions of Theorem 6.1, let B(N) = const, Z = 0 and q3 # 0,
where

- = ap(dper — (0 = B(N)?)q) — 4p°ciye
’ 4(p+ (2 — B(N)?)72) !

q = preryi(l+sm) — (po — p171) (1 — BIN) 1) — 1172B8(N).

Then A(B*T) = 0, hence rank(A) < m. If F is totally umbilical then F is totally
geodesic.

Proof. By conditions, s, p, p;,7i,c1 are constant (since b and S(N) are constant) and
Ricgy = Ric} ,. Hence, see (6.8),

/M {g(Trg T*, 01 (A% v — Z) — 201 (AICE) — 01((05)2)} dvol, = 0.
Thus, (6.6) and (6.1) yield

| G0 20AET) + U, 8% - 1 07 = 50N (2008 T) + U, U)
(6.9) —pc1o1(A) (s AB) + U, B + per(ysA(BHT) + U, A(ﬂﬂ»} dvol, =0,
where, in view of V! 8#T = —v,3(N)A(B*T), we have
U=qABT), A=—parAd+qSym(A(F*T) e B").
If B(N) = const then 3(Z) =0 and (A(8*"),B*") = 0:
0= (VN3 N)=(Vn (BT +B(N)N), N) = —(8*, Z),
0= (Vg B, N) = (Vger (BT + B(N)N), N) = —(A(8*7), 8%).
By (6.9),
| AT dvol, =0,
M

and g3 # 0 yields A(*7) = 0. If F is totally umbilical then 0 = (A(*7),8%7) =
1847|201 (A), hence o1 (A) = 0. By the above, A =0 on M. O

Example 6.1. For Randers metric, we obtain g5 = § c*cf((c — 2¢1)? — 1) with

¢p = ¢+ B(N) and ¢ = /1 —-0>+4 B(N)2. For Kropina metric, we have g3 =
—1—165(N)(16c15 +b2B(N) — B(N)3) 5710 w1ths= b(b— B(N))/2.
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Let ky < ko < ... <k, be the eigenvalues of A9. One can consider the integral

Ur = ki — k;)*dvol,,
F /MZKJ‘( 3)” dvolg

which measures “how far from g-umbilicity” is a foliation F, see [6] for Riemannian
case. Put
in = min .
Hmin JEeTMN{0} g, (v)

Theorem 6.3. Let g be a new Riemannian metric determined by a codimension-one
foliation F, a I-form B on (M,a), and a function ¢ with conditions (2.4), (2.10),

VB =0, B(N) = const and Ricy xy < —r < 0. Then
(6.10) Ur >mr(c1/d(5))? timin Volg (M).

In particular, if ¢y # 0 then F is nowhere g-totally umbilical.

Proof. One may show that
> ki~ k;)? = (m —1)02(A%) — 2moy(A9).
1<j

Hence, and by (6.1) for g we obtain
Ur > —m/ 209(A%)dvol, = —m/ Ricy , dvol, .
M M '

By conditions, Ric], , = (c1/4(s)) 2Ric n N, and s, p, pi, Vi, 1, §(8), 14 (V) are constant.
Thus,

Ur > —m(01/¢(8))2umin/ Ric n,n dvolg,
M
which reduces to (6.10) since our assumption EN,N < —r<0. O

Following [3] for Riemannian case, define the energy of a vector field v by
1 2
5(1/):7V019(M)+§ | Dv||; dvoly, .
M

By (6.1) for g and the inequality ||Dv |2 > 2 g,5(AY), see [3], we get the following.
Theorem 6.4. Let g be a new Riemannian metric determined by a codimension-one
foliation F, a 1-form B on (M,a), and a function ¢ with conditions (2.4), (2.10),
VB =0 and B(N) = const. Then for a unit g-normal v,

Py Vola(M) + s /M Ric vy dvola).

E(v) = Hmin<
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