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Abstract. Given a Finsler manifold (M,F ), it is proved that the first
eigenvalue of the Finslerian p-Laplacian is bounded above by a constant
depending on p, the dimension of M , the Busemann-Hausdorff volume
and the reversibility constant of (M,F ).

For a Randers manifold (M,F :=
√
g + β), where g is a Riemannian

metric on M and β an appropriate 1-form on M , it is shown that the first
eigenvalue λ1,p(M,F ) of the Finslerian p-Laplacian defined by the Finsler
metric F is controled by the first eigenvalue λ1,p(M, g) of the Riemannian
p-Laplacian defined on (M, g).

Finally, the Cheeger’s inequality for Finsler Laplacian is extended for p-
Laplacian, with p > 1.
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1 Introduction

The study of the p-Laplace operator − and in particular of its first eigenvalue − is
a classical and important problem in Riemannian geometry. In [8, 9], the author
studies the first eigenvalue of the p-Laplacian ∆p on a compact Riemannian manifold
M as a functional on the space of Riemannian metrics on M . He proved that on
any compact manifold of dimension n ≥ 3, there is a Riemannian metric of volume
one such that the first eigenvalue of the p-Laplacian can be taken arbitrary large and
that the eigenvalue functional restricted to the conformal class is bounded above for
1 < p ≤ n.

In Finsler geometry, there is no canonical way to introduce the Laplacian. Hence,
several authors proposed different extensions of the standard Riemannian Laplacian to
the Finsler setting like Antonelli and Zastawniak [1], Bao and Lackey [2], Barthelmé
[3], Centoré [4] and Shen [14]. In the last decade, the non-linear Shen’s Finsler-
Laplacian received a particular attention and Q. He and S-T Yin use it to introduce
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the p-Laplacian on Finsler manifolds [6, 7]. They established some inequalities related
to the first eigenvalue and obtained a regularity theorem of its associated functions.

Eigenfunctions of the p-Laplacian have weaker regularities in the Finslerian setting
than the Riemannian one, due to the non-linearity of the Finsler Laplacian.

In [10], the author shows that a canonical smooth Riemannian metric can be
associated to any Finsler metric F . This Riemannian metric is called Binet-Legendre
metric and is bi-lipschitz equivalent to F with lipschitz constant depending only on
the dimension of the manifold and on the reversibility constant of F (see Section 2.3).
It allows us to control the first eigenvalue of the Finsler p-Laplacian and to prove our
main result:

Theorem 1.1. Let (M,F ) be a compact Finsler n-dimensional manifold. Then, for
any p ∈ (1, n], there exists a constant C := C(n, p, κF , [F ]) depending only on the
dimension n, p, the reversibility constant κF and the conformal class [F ] of F such
that,

λ1,p(M,F )V ol(M,F )
p
n ≤ C(n, p, κF , [F ]).

Randers metrics are an important class of Finsler metrics. They are Finsler metrics
of the form F :=

√
g+ β where g is a Riemannian metric and β a 1-form which norm

with respect to the metric g is smaller than one. It is interesting to know the relations
between geometric quantities related to F and g respectively. We prove the following

Theorem 1.2. If (M,F :=
√
g+β) is a Randers manifold endowed with the Holmes-

Thompson volume form dµHT then, for any p > 1, we have

1

κpF
λ1,p(M, g) ≤ λ1,p(M,F ) ≤ κpFλ1,p(M, g),

where λ1,p(M, g) is the first eigenvalue of the p-Laplacian on the Riemannian manifold
(M, g) and κF , the reversibility constant of (M,F ).

In [5], Cheeger introduced for a closed Riemannian manifold (M, g) an geometric
invariant h(M) called Cheeger invariant, and he proved that 4λ1,2(M) ≥ h2(M). The
authors in [18] generalize this inequality for the Finslerian Laplacian. In this paper
we extend their result to the Finslerian p-Laplacian for p > 1.

The content of the paper is organized as follows. In section 2 , we recall some
fundamental notions which are necessary and important for this article. Section 3
and 4 are devoted to the proofs of Theorem 1.1 and Theorem 1.2 respectively. We
prove the Cheeger’s type inequaliy in the last section.

2 Preliminaries

Let M be a connected, n-dimensional smooth manifold without boundary. Given a
local coordinates system (xi)ni=1 on an open set U of M , we will use the coordinates
(xi, vi)ni=1 of TU such that for all v ∈ TxM , x ∈ U ,

v := vi
∂

∂xi

∣∣∣∣
x

.
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2.1 Finsler geometry

Definition 2.1. A Finsler metric on M is a nonnegative function F : TM → [0,∞)
satisfying:

1. (Regularity) F is C∞ on TM\O, where O stands for the zero section,

2. (Positive 1-homogeneity) It holds F (cv) = cF (v) for all v ∈ TM and c ≥ 0,

3. (Strong convexity) The n× n matrix

(2.1) (gij(v))1≤i,j≤n := (
1

2

∂2(F 2)

∂vi∂vj
(v))1≤i,j≤n

is positive-definite for all v ∈ TxM\{0}.

Remark that for each v ∈ TxM\{0}, the positive-definite matrix (gij(v))1≤i,j≤n
in the Definition 2.1 defines the Riemannian structure gv of TxM via

gv

 n∑
i=1

ai
∂

∂xi
,

n∑
j=1

bj
∂

∂xj

 :=

n∑
i,j=1

gij(v)aibj .

The reversibility constant of (M,F ) is defined by

κF := sup
x∈M

sup
v∈TxM\{0}

F (v)

F (−v)
∈ [1,∞].

F is said to be reversible if κF = 1, that is F (v) = F (−v), ∀ x ∈ TxM .

The dual metric F ∗ : T ∗M → [0,∞) of F on M is defined for any α ∈ T ∗M by

F ∗(α) := sup
v∈TxM,F (v)≤1

α(v) = sup
v∈TxM,F (v)=1

α(v).

One also define the 2-uniform concavity constant as

σF := sup
x∈M

sup
v,w∈TxM\{0}

gv(w,w)

F (w)2
= sup
x∈M

sup
α,β∈T∗xM\{0}

F ∗(β)2

g∗α(β, β)
∈ [1,∞].

F is Riemannian if and only if σF = 1 (see [13]).

Given a vector field X := Xi ∂
∂xi , the covariant derivate of X by v ∈ TxM with

the reference w ∈ TxM\{0} is defined by

Dw
v X(x) :=

{
vj
∂Xi

∂xj
(x) + Γijk(w)vjXk(x)

}
∂

∂xi
,

where Γijk(w) are the coefficients of the Chern connection.
The flag curvature of the plane spanned by two linearly independent vector V and

W of TxM\{0} is given by

K(V,W ) :=
gV (RV (V,W )W,V )

gV (V, V )gV (W,W )− gV (V,W )2
,
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where RV is the Chern curvature:

RV (X,Y )Z := DV
XD

V
Y Z +DV

Y D
V
XZ −DV

[X,Y ]Z.

The Ricci curvature of (M,F ) is defined by

Ric(V ) :=

n−1∑
i=1

K(V, ei),

where {e1, e2, . . . , en = V
F (V )} is an orthonormal basis of TxM with respect to gV .

2.2 Finsler p-laplacian

Denote by J∗ : T ∗M → TM the Legendre transform which assigns to each α ∈ T ∗xM
the unique maximizer of the function v 7→ α(v) − 1

2F
2(x, v) on TxM . The quantity

J∗(x, α) is characterized as the unique vector v ∈ TxM with F (x, v) = F ∗(x, α) and
α(v) = F ∗(x, α)F (x, v).

For a differentiable function f : M → R, the gradient vector of f at x is defined as
the Legendre transform of the derivative of f : ∇f(x) := J∗(x, df(x)). In coordinates,
we have

∇f(x) =

{
gij(x, df(x)) ∂f∂xj

∂
∂xi , if df(x) 6= 0

0, if df(x) = 0

where gij(x, α) := 1
2
∂2F∗(x,α)2

∂αi∂αj . Remark that (gij(x, α))ij is the inverse matrix of
(gij(x, J

∗(x, α)))ij .

We fix an arbitrary positive C∞-measure m on M as our base measure. In a local
coordinates system, the measure element is given by dm := eΦdx1 . . . dxn. Usually,
the Busemann-Hausdorff volume form dmBH and the Holmes-Thompson volume form
dmHT are used. They are defined by

dmBH :=
ωn

V ol(BxM)
dx1 ∧ · · · ∧ dxn,

and

dmHT :=

(
1

ωn

∫
BxM

detgij(x, v)dv1 ∧ · · · ∧ dvn
)
dx1 ∧ · · · ∧ dxn,

where BxM := {v ∈ TxM : F (x, v) < 1} and ωn denotes the volume of the n-
dimensional Euclidean ball.

The divergence of a differentiable vector field V on M with respect to m is defined
by

divmV :=

n∑
i=1

(
∂V i

∂xi
+ V i

∂Φ

∂xi

)
.

Denote by W 1,p(M) the completion of C∞(M). For a function f ∈W 1,p(M), its
Finsler p-Laplacian (p > 1) is defined as

∆p(f) := divm(F (∇f)p−2∇f) := divm(|∇f |p−2∇f),
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where the equality is in the distibutional sense.
For p = 2, we obtain the non-linear Shen’s Finsler Laplacian:

∆2(f) := ∆(f) = divm(∇f).

This operator is naturally associated to the canonical energy functional E defined
on W 1,p(M)\{0} by

E(f) :=

∫
M
|∇f |p dm∫

M
|f |p dm

.

The first (closed) eigenvalue of the Finsler p-Laplacian is defined by

λ1,p(M,F ) := inf
f∈Hp

0

E(f),

where Hp0 := {f ∈ W 1,p(M)\{0} :
∫
M
|f |p−2f dm = 0}. An eigenfunction related to

the first eigenvalue is a function f ∈W 1,p(M) satisfying ∆pf + λ1,p(M)|f |p−2f = 0.
We have the following characterization: for all ϕ ∈W 1,p(M),∫

M

|∇f |p−2dϕ(∇f) dm = λ1,p(M)

∫
M

|f |p−2fϕ dm.

Now, we will recall the construction of a canonical Riemannian metric associated
to the Finsler manifold (M,F ). See [10, 11] for more details.

2.3 Binet-Legendre metric

In this part, dmF will always denote the Busemann-Hausdorff measure induced by
the metric F on M .

Let define a scalar product on the cotangent spaces T ∗xM , (x ∈M) by

g∗F (α, β) :=
n+ 2

λ(BxM)

∫
BxM

α(v).β(v) dλ(v),

where λ is a Lebesgue measure on TxM .
The Binet-Legendre metric gF associated to the Finsler metric F is the Rieman-

nian metric dual to the scalar product g∗F .

Proposition 2.1. [11] Let (M,F ) be a n-dimensional Finsler manifold with finite
reversibility constant κF and gF its associated Binet-Legendre metric. Then

(i) The metric gF is as smooth as F ;

(ii) We have

(κF
√

2n)−n−1√gF ≤ F ≤ (κF
√

2n)n+1√gF ;

(iii) If dVgF denotes the Riemannian volume density of gF , there is a constant k
such that

ωnk
−ndVgF ≤ dmF ≤ ωnkndVgF ,

where ωn denotes the volume of the standard n-dimensional Euclidean ball. In
particular, dVgF ≤ dmF .
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Proposition 2.2. Let (M,F ) be a closed n-dimensional Finsler manifold with re-
versibility constant κF and gF its associated Binet-Legendre metric. Then

1

(κF
√

2n)p(n+1)k2n
≤ λ1,p(M,F )

λ1,p(M, gF )
≤ (κF

√
2n)p(n+1)k2n,

for some constant k ≥ 1.

Proof. Let f be the eigenfunction relative to the first eigenvalue λ1,p(M,F ). Then,
we have

(2.2) λ1,p(M,F ) =

∫
M
F ∗(df)p dmF∫
M
|f |p dmF

,

and

(2.3)

∫
M

|f |p−2f dmF = 0.

Equation (2.3) implies that∫
M

|f |p dmF = max
s∈R

∫
M

|f + s|p dmF .

So, λ1,p(M,F ) ≤
∫
M
F∗(d(f+s))p dmF∫
M
|f+s|p dmF

, ∀s ∈ R.

In other hand, there exists a unique s0 ∈ R such that

(2.4)

∫
M

|f+s0|p dVgF = max
s∈R

∫
M

|f+s|p dVgF and

∫
M

|f+s0|p−2(f+s0) dVgF = 0.

Therefore,

λ1,p(M,F ) ≤
∫
M
F ∗(d(f + s0))p dmF∫
M
|f + s0|p dmF

,

≤ k2n(κF
√

2n)p(n+1)

∫
M
F ∗0 (d(f + s0))p dVgF∫
M
|f + s0|p dVgF

,

≤ k2n(κF
√

2n)p(n+1)λ1,p(M, gF ),

where we used (κF
√

2n)−(n+1)F ∗0 ≤ F ∗ ≤ (κF
√

2n)n+1F ∗0 in the second line with
F0 :=

√
gF , and (2.4) in the last line.

An analogue argument provides the second inequality by exchanging F and F0. �

Definition 2.2. Two Finsler metrics F0 and F defined on a smooth manifold M are
called bi-Lipschitz if there exists a constant C > 1 such that, for any (x, v) ∈ TM ,

(2.5) C−1F0(x, v) ≤ F (x, v) ≤ CF0(x, v).

Example 2.3. Let (M, g) be a Riemannian manifold and β1, β2 two 1-form on M
such that

0 ≤ sup
x∈M
‖(β1)x‖g := b1 ≤ b2 := sup

x∈M
‖(β2)x‖g < 1.
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Then the Randers metrics F1 :=
√
g + β1 and F2 :=

√
g + β2 are bi-Lipschitz:

1− b2
1 + b1

≤ F1

F2
≤ 1 + b1

1− b2
.

Particulary, a Randers metric F =
√
g + β and the associated Riemannian metric g

are bi-Lipschitz.

Lemma 2.3. [11] If F and F0 are Finsler metrics on M satisfying (2.5) for some
constant C > 1 then the Binet-Legendre metrics gF and gF0

associated to F and F0

respectively satisfy
C−n
√
gF0 ≤

√
gF ≤ Cn

√
gF0 .

Theorem 2.4. Let F, F0 be two C-bi-Lipschitz Finsler metrics on a closed n- dimen-
sional manifold M . Then, for any p > 1, there exists a constant K(n, p, κ, κ0) ≥ 1
depending on p, the dimension n and the reversibility constants κ and κ0 of F and
F0 respectively such that,

C−K ≤ λ1,p(M,F )

λ1,p(M,F0)
≤ CK .

Proof. Applying Proposition 2.2 to (M,F ) and (M,F0), there are some constants k
and k0 such that

1

(2nκκ0)p(n+1)(kk0)2n

λ1,p(M, gF )

λ1,p(M, gF0
)
≤ λ1,p(M,F )

λ1,p(M,F0)

≤ (2nκκ0)p(n+1)(kk0)2n λ1,p(M, gF )

λ1,p(M, gF0)
.

Furthermore, from Lemma 2.3, we have

1

Cn(p+2n)
≤ λ1,p(M, gF )

λ1,p(M, gF0
)
≤ Cn(p+2n).

Then

1

(2nκκ0)p(n+1)(kk0)2nCn(p+2n)
≤ λ1,p(M,F )

λ1,p(M,F0)
≤ (2nκκ0)p(n+1)(kk0)2nCn(p+2n).

Since (2nκκ0)p(n+1)(kk0)2n > 1, there exists a positive constant K ′(n, p, κ, κ0) de-
pending on n, p, κ, κ0 such that (2nκκ0)p(n+1)(kk0)2n ≤ CK

′
. This completes the

proof. �

Remark 2.4. One can prove this theorem directly following idea of the proof of
Proposition 2.2.

3 Boundedness on conformal class

Let F(M) be the set of Finsler metrics F on a manifold M with V ol(M,F ) = 1,
where V ol(M,F ) denotes the volume of the Finsler manifold (M,F ) with respect to
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the Busemann-Hausdorff measure induced by F . The following holds for the first
eigenvalues of the p-Laplacians, p > 1:

inf
F∈F(M)

λ1,p(M,F ) = 0.

In the Riemannian case the eigenvalues-functional is not generally bounded. For
p = 2, it is shown that the functional λ1,2 is bounded when the dimension n = 2
and is unbounded when n ≥ 3, but λ1,2 is uniformly bounded when restricted to any
conformal class. Matei generalizes these results to any p > 1 (see [8, 9]). Using mainly
Matei’s works and Proposition 2.2, we have the following:

Theorem 3.1. Let (M,F ) be a closed Finsler n-dimensional manifold. Then, for
any p ∈ (1, n], there exists a constant C := C(n, p, κF , [F ]) depending only on the
dimension n, p, the reversibility constant κF and the conformal class [F ] of F such
that,

λ1,p(M,F )V ol(M,F )
p
n ≤ C(n, p, κF , [F ]).

Before proving this theorem, let’s remark that, in the Mathei’s result used ([9]),
the dependence on the conformal class of the Riemannian metric comes from the
n-conformal volume of the compact Riemannian manifold (M, g) which is defined as

V cn (M, [g]) := inf
φ∈In(M,[g])

sup
γ∈Gn

V ol(M, (γ ◦ φ)∗can),

where can denotes the canonical Riemannian metric on the n-dimensional sphere Sn,
Gn := {γ ∈ Diff(Sn)| γ∗can ∈ [can]} the group of conformal diffeomorphism of
(Sn, can) and In(M, [g]) := {φ : M → Sn| φ∗can ∈ [g])} the set of conformal immer-
sion from (M, g) to (Sn, can). Using a nice property of the Binet-Legendre metric
associated to the Finsler metric F , we can obtain a dependence on the conformal
class of F .

Proof. From Proposition 2.2, there is a constant C1(n, p, κF ) depending only on n, p
and κF such that λ1,p(M,F ) ≤ C1λ1,p(M, gF ), where gF is the Binet-Legendre metric
associated with F .

Set α−1 := V ol(M, gF )
2
n and g̃ := αgF . Then, we have

V ol(M, g̃) = α
n
2 V ol(M, gF ) = 1

and
λ1,p(M, gF ) = α

p
2 λ1,p(M, g̃).

Furthermore, Matei proved in [9] that there exists a constant C2(n, p, [g̃])1 depending
on n, p and the conformal class of the metric g̃ which satisfy λ1,p(M, g̃) ≤ C2.

Hence, by Proposition 2.1, we obtain

λ1,p(M,F )V ol(M,F )
p
n ≤ C1C2

(
V ol(M,F )

V ol(M, gF )

) p
n

≤ C1C2(ωnk
n)

p
n .

It is known that when F1 and F2 are in the same conformal class, then the associ-
ated Binet-Legendre metrics gF1

and gF2
are also in the same conformal class. Hence,

1In [9], C2 = n
p
2 (n+1)|p/2−1|V c

n (M, [g̃]) where V c
n (M, [g̃]) denote the conformal volume of (M, g̃)
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the constant C1C2(ωnk
n)

p
n depends on n, p, κF and the conformal class [F ] of the

metric F .
�

Particulary, for compact surface, we have the following:

Theorem 3.2. Let (Σ, F ) be a compact Finsler surface with genus δ and reversibility
constant κF . Then, for any 1 < p ≤ 2, there exists a constant K(p, κF ) depending
only on p and κF such that

λ1,p(Σ, F )V ol(Σ, F )
p
2 ≤ K(p, κF )

(
δ + 3

2

) p
2

.

Proof. From the proof of Theorem 3.1, there exists a constant A1(p, κF ) depending
on p and κF such that λ1,p(Σ, F ) ≤ A1(p, κF )α

p
2 λ1,p(Σ, g̃) where g̃ := αgF and

α := V ol(Σ, gF )−
2
n . By a result of Matei (see [9]), λ1,p(Σ, g̃) ≤ C(p)

(
δ+3

2

) p
2 for some

constant C depending only on p. Then, we have

λ1,p(Σ, F )V ol(Σ, F )
p
2 ≤ A1C

(
V ol(Σ, F )

V ol(Σ, gF )

) p
2
(
δ + 3

2

) p
2

≤ A1(p, κF )C(p)(ω2k
2)

p
2

(
δ + 3

2

) p
2

.(3.1)

This completes the proof.
�

Theorem 3.3. Let (M,F ) be a compact Finsler manifold of dimension n. Then
for any p > n, there exists a conformal metric F̃ ∈ [F ] such that the quantity
λ1,p(M, F̃ )V ol(M, F̃ )

p
n can be taken arbitrarily large.

Proof. Let K > 0. From [9], there exists a metric g̃ := ϕ2gF ∈ [gF ] satisfying

λ1,p(M, g̃)V ol(M, g̃)
p
n >

K

C1
,

for a fixed positive constant C1. Consider the metric F̃ := ϕF ∈ [F ]. Then the
Binet-Legendre metric associated to F̃ is g̃ (see [10]). Hence, Proposition 2.2 implies
λ1,p(M, F̃ ) ≥ C(n, p, κF̃ )λ1,p(M, g̃) for some constant C and from Proposition 2.1,

V ol(M, F̃ ) ≥ V ol(M, g̃) . This implies that λ1,p(M, F̃ )V ol(M, F̃ )
p
n > K taking

C1 = C(n, p, κF̃ ).
�

4 Randers spaces

Consider a Randers metric F :=
√
g + β. In local coordinates (xi, vi) on TM , we

write

g(v, w) := gijv
iwj , β(v) = biv

i, v = vi
∂

∂xi
, w = wj

∂

∂xj
.
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Denote ‖β‖x :=
√
gij(x)bi(x)bj(x) and b = supx∈M ‖β‖x where (gij) stands for the

inverse matrix of (gij).
To prove theorem 1.2, we need the following lemmas:

Lemma 4.1. [15] For any smooth function f on M , we have

F (∇f) = F ∗(df) =

√
(1− ‖β‖2)|df |2 + 〈β, df〉2 − 〈β, df〉

1− ‖β‖2
,

where

|df |x :=

√
gij(x)

∂f

∂xi
(x)

∂f

∂xj
(x), and 〈β, df〉x := gij(x)bi(x)

∂f

∂xj
(x).

Lemma 4.2. [18] The reversibility constant and the 2-uniform concavity constant of
the Randers space (M,F :=

√
g + β) are given by

σF =

(
1 + b

1− b

)2

= κ2
F .

The first eigenvalue of (M,F ) and (M, g) can be controlled by the reversibility
constant as the next proposition showing. Note that a similar result is obtained in
[12] using Bao-Lackey Laplacian.

Proposition 4.3. Let (M,F :=
√
g + β, dmHT ) be a Randers space, where dmHT is

the Holmes-Thompson measure. Then we have

1

κpF
λ1,p(M, g) ≤ λ1,p(M,F ) ≤ κpFλ1,p(M, g),

where λ1,p(M, g) is the first eigenvalue of the Riemannian manifold (M, g).

Proof. Since dmHT denotes the Holmes-Thompson measure then it coincides with
the Riemannian measure dVg induced by g. Recall that the first eigenvalue on the
Riemannian space (M, g) is defined by

λ1,p(M, g) := inf
f∈Hp

0

∫
M
|df |p dVg∫

M
|f |p dVg

.

Furthermore, from lemma 4.1, we have

1

κF
|df | ≤ F ∗(df) ≤ κF |df |.

Indeed, for all x ∈M ,
1− b ≤ 1− b2 ≤ 1− ‖β‖2x ≤ 1 + b2 ≤ 1 + b and√

(1− ‖β‖2)|df |2 + 〈β, df〉2 − 〈β, df〉 ≤ |df |+ 2|〈β, df〉|
≤ (1 + 2b)|df |.

Then

F ∗(df) ≤ 1 + 2b

1− b2
|df | ≤ κF |df |.

Also, we have F ∗(df) ≥ (1− b)|df | ≥ κF |df |.
�
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As a direct consequence, we have

Corollary 4.4. Let (M, g) be a Riemannian manifold of dimension n and (βk)k be a
sequence of 1-forms, with ‖βk‖ < 1 for all k, converging to the null 1-form in Λ1(M).
Consider the corresponding sequence of Finsler metrics (Fk)k with Fk :=

√
g + βk.

Then the real sequence of first eigenvalues µk = λ1,p(M,Fk) converges to the first
eigenvalue µ = λ1,p(M, g).

Proof. For all k, we have

1− bk
1 + bk

≤ λ1,p(M,Fk)

λ1,p(M, g)
≤ 1 + bk

1− bk

Since βk −→ 0 then bk −→ 0. Hence

lim
k→∞

λ1,p(M,Fk)

λ1,p(M, g)
= 1.

�

Corollary 4.5. Let (M,F :=
√
g + β) be a compact Randers manifold. For any

p, q ∈ R such that 1 < p ≤ q, the positive eigenvalues λ1,p(M,F ) and λ1,p(M,F )
satisfy

p p
√
λ1,p(M,F )

q q
√
λ1,q(M,F )

≤ σF .

Proof. Let 1 < p < q. By Proposition 4.3, we obtain

p p
√
λ1,p(M,F )

q q
√
λ1,q(M,F )

≤ κ2
F

p p
√
λ1,p(M, g)

q q
√
λ1,q(M, g)

.

However, the map t 7→ t t
√
λ1,t(M, g) is strictly increasing on (1,∞) (see [8]). Then,

p p
√
λ1,p(M,F )

q q
√
λ1,q(M,F )

≤ κ2
F = σF .

�

5 Cheeger-type inequality

Definition 5.1. Let (M,F, dm) be a closed n-dimensional Finsler manifold. The
Cheeger’s constant is defined by

(5.1) h(M) := inf
Γ

min{A±(Γ)}
min{m(D1),m(D2)}

,

where Γ varies over (n − 1)-dimensional submanifolds of M which divide M into
disjoint open submanifolds D1, D2 of M with common boundary ∂D1 = ∂D2 = Γ.
One denotes A±(Γ) the areas of Γ induced by the outward and inward normal vector
field n±.
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We have the following useful co-area formula:

Lemma 5.1. [18] Let (M,F,m) be a Finsler measure space. Let φ be a piecewise C1

function on M such that φ−1({t}) is compact for all t ∈ R. Then for any continuous
function f on M , we have

∫
M

fF (∇φ) dm =

∫ ∞
−∞

(∫
φ−1(t)

f dAn

)
dt,

where n := ∇φ/F (∇φ).

Lemma 5.1 yields the following :

Lemma 5.2. Given a positive function f ∈ C1(M). Then, we have∫
M

F (∇f) dm ≥ h(M)

∫
M

f dm.

Proof. Let f ∈ C1(M). From Lemma 5.1, we have

∫
M

F (∇f) dm =

∫ ∞
0

(∫
f−1(t)

dAn

)
dt

=

∫ ∞
0

An({f = t}) dt

=

∫ ∞
0

An({f = t}
m({f ≥ t})

.m({f ≥ t}) dt

≥ inf
t

An({f = t}
m({f ≥ t})

∫ ∞
0

m({f ≥ t}) dt

≥ h(M)

∫
M

f dm.

�

We now state our Cheeger-type inequality:

Theorem 5.3. Let (M,F,m) be a closed Finsler manifold such that the 2-uniform
concavity constant σF ≤ σ. Then

λ1,p(M) ≥
(

h(M)

σp

)p
.

Proof. Let f be a smooth function on M . Let define the positive and the negative
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parts of f by f+ := max{f, 0} and f− := max{−f, 0}. Then

h(M)

∫
M

|f |p dm = h(M)

(∫
M

fp+ dm +

∫
M

fp− dm

)
≤

∫
M

F ∗(Dfp+) dm +

∫
M

F ∗(Dfp−) dm

= p

[∫
M

fp−1
+ F ∗(Df+) dm +

∫
M

fp−1
− F ∗(Df−) dm

]
≤ pσF

∫
M

|f |p−1F ∗(Df)dm

≤ pσ

(∫
M

|f |p dm
) p−1

p
(∫

M

F ∗(Df)p dm

) 1
p

.

Hence, ∫
M

F ∗(Df)p dm ≥
(

h(M)

pσ

)p ∫
M

|f |p dm.

Taking the infimum over Hp0(M), the inequality follows.
�

In [17], Yau showed that on a n-dimensional compact Riemannian manifold with-
out boundary whose Ricci curvature is bounded from below by (n − 1)K, the first
eigenvalue can be bounded from below in terms of the diameter, the volume of the
manifold and the constant K. The authors of [18] gave a finslerian version of this
result for the non-linear Shen’s Laplacian. As in [18], we use the following Croke-type
inequality to obtain the general case:

Proposition 5.4. [16] Let (M,F, dm) be a closed Finsler n-dimensional manifold
satisfying Ric ≥ (n−1)K for some constant K, where dm denotes either the Busemann-
Hausdorff measure or the Holmes-Thompson measure. Then

h(M) ≥ (n− 1)m(M)

2V ol(Sn−2)σ
4n+ 1

2

F diam(M)
∫ diam(M)

0
sn−1
K (t) dt

,

where diam(M) denotes the diameter of M and the function sK is defined by

sK(t) :=


1√
K

sin(
√
Kt), K > 0,

t, K = 0,
1√
−K sinh(

√
−Kt), K < 0.

From Theorem 5.3 and Proposition 5.4, we obtain the following Yau-type estimate.

Proposition 5.5. Let (M,F, dm) be a n-dimensional closed Finsler manifold whose
Ricci curvature satisfies Ric ≥ (n− 1)K for some real constant K, where dm denotes
either the Busemann-Hausdorff measure or the Holmes-Thompson measure. Then

λ1,p(M) ≥

 (n− 1)m(M)

2pV ol(Sn−2)σ
4n+ 3

2

F diam(M)
∫ diam(M)

0
sn−1
K (t) dt

p

.
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Proof. By Proposition 5.4, we have

h(M)

pσF
≥ (n− 1)m(M)

2pV ol(Sn−2)σ
4n+ 3

2

F diam(M)
∫ diam(M)

0
sn−1
K (t) dt

.

A direct application of Theorem 5.3 completes the proof.
�
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