p-Laplacian first eigenvalue controls on Finsler
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Abstract. Given a Finsler manifold (M, F), it is proved that the first
eigenvalue of the Finslerian p-Laplacian is bounded above by a constant
depending on p, the dimension of M, the Busemann-Hausdorff volume
and the reversibility constant of (M, F).

For a Randers manifold (M,F := /g + (), where g is a Riemannian
metric on M and 3 an appropriate 1-form on M, it is shown that the first
eigenvalue A1 ,(M, F') of the Finslerian p-Laplacian defined by the Finsler
metric F' is controled by the first eigenvalue A1 , (M, g) of the Riemannian
p-Laplacian defined on (M, g).

Finally, the Cheeger’s inequality for Finsler Laplacian is extended for p-
Laplacian, with p > 1.
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1 Introduction

The study of the p-Laplace operator — and in particular of its first eigenvalue — is
a classical and important problem in Riemannian geometry. In [8, 9], the author
studies the first eigenvalue of the p-Laplacian A, on a compact Riemannian manifold
M as a functional on the space of Riemannian metrics on M. He proved that on
any compact manifold of dimension n > 3, there is a Riemannian metric of volume
one such that the first eigenvalue of the p-Laplacian can be taken arbitrary large and
that the eigenvalue functional restricted to the conformal class is bounded above for
1<p<n.

In Finsler geometry, there is no canonical way to introduce the Laplacian. Hence,
several authors proposed different extensions of the standard Riemannian Laplacian to
the Finsler setting like Antonelli and Zastawniak [1], Bao and Lackey [2], Barthelmé
[3], Centoré [4] and Shen [14]. In the last decade, the non-linear Shen’s Finsler-
Laplacian received a particular attention and Q. He and S-T Yin use it to introduce
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the p-Laplacian on Finsler manifolds [6, 7]. They established some inequalities related
to the first eigenvalue and obtained a regularity theorem of its associated functions.

Eigenfunctions of the p-Laplacian have weaker regularities in the Finslerian setting
than the Riemannian one, due to the non-linearity of the Finsler Laplacian.

In [10], the author shows that a canonical smooth Riemannian metric can be
associated to any Finsler metric F'. This Riemannian metric is called Binet-Legendre
metric and is bi-lipschitz equivalent to F' with lipschitz constant depending only on
the dimension of the manifold and on the reversibility constant of F' (see Section 2.3).
It allows us to control the first eigenvalue of the Finsler p-Laplacian and to prove our
main result:

Theorem 1.1. Let (M, F) be a compact Finsler n-dimensional manifold. Then, for
any p € (1,n], there exists a constant C' := C(n,p,kp,[F]) depending only on the
dimension n, p, the reversibility constant kg and the conformal class [F] of F such
that,

M p(M, F)Vol(M, F)= < C(n,p, g, [F]).

Randers metrics are an important class of Finsler metrics. They are Finsler metrics
of the form I := ,/g+ 8 where g is a Riemannian metric and 3 a 1-form which norm
with respect to the metric g is smaller than one. It is interesting to know the relations
between geometric quantities related to F' and g respectively. We prove the following

Theorem 1.2. If (M, F := ,/g+f3) is a Randers manifold endowed with the Holmes-
Thompson volume form dugr then, for any p > 1, we have

1
@)‘LP(Mv g) < >‘1-,P(Mv F) < F':Z})?)‘LP(Mv g)v

where A1 (M, g) is the first eigenvalue of the p-Laplacian on the Riemannian manifold
(M, g) and kF, the reversibility constant of (M, F).

In [5], Cheeger introduced for a closed Riemannian manifold (M, g) an geometric
invariant h(M) called Cheeger invariant, and he proved that 4\; 2(M) > h?(M). The
authors in [18] generalize this inequality for the Finslerian Laplacian. In this paper
we extend their result to the Finslerian p-Laplacian for p > 1.

The content of the paper is organized as follows. In section 2 , we recall some
fundamental notions which are necessary and important for this article. Section 3
and 4 are devoted to the proofs of Theorem 1.1 and Theorem 1.2 respectively. We
prove the Cheeger’s type inequaliy in the last section.

2 Preliminaries

Let M be a connected, n-dimensional smooth manifold without boundary. Given a

local coordinates system (x%)?_; on an open set U of M, we will use the coordinates

(z%,v))"_; of TU such that for all v € T,M, z € U,

0

- .
oz,

vi=1"
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2.1 Finsler geometry

Definition 2.1. A Finsler metric on M is a nonnegative function F' : TM — [0, 00)
satisfying:

1. (Regularity) F' is C* on TM\O, where O stands for the zero section,
2. (Positive 1-homogeneity) It holds F(cv) = cF'(v) for all v € TM and ¢ > 0,
3. (Strong convexity) The n X n matrix

(2.1) (935 (V)h<ij<n = (% gvgﬂ}

is positive-definite for all v € T, M\{0}.

(v)1<i,j<n

Remark that for each v € T, M\{0}, the positive-definite matrix (g;;(v))i<i j<n
in the Definition 2.1 defines the Riemannian structure g, of T, M via

[ Z‘“@’Zbﬂﬁ = Z gij(v)aibj.
=1 j=1

ij=1

The reversibility constant of (M, F') is defined by

F
Kp = sup  sup ©) € [1, 0]

zeM ver, M\{0} F(—v)
F is said to be reversible if kg = 1, that is F(v) = F(—v), V2 € T, M.
The dual metric F* : T*M — [0,00) of F on M is defined for any o € T*M by

F*(a) = sup a(v) = sup a(v).
veT, M,F(v)<1 vET, M,F(v)=1

One also define the 2-uniform concavity constant as

OF 1= sup sup M’f) = sup sup M € [1,00].
zeM vwer, M\{0} F(w) zeM a,peT: M\{0} Ia (B, B)

F is Riemannian if and only if o = 1 (see [13]).

Given a vector field X := X*-2. the covariant derivate of X by v € T, M with
the reference w € T, M\{0} is defined by

aX?

— () + Fék(w)vak(x)} 9

ozt’

DYX (z) = {vj

where 1"; (W) are the coefficients of the Chern connection.
The flag curvature of the plane spanned by two linearly independent vector V' and
W of T, M\{0} is given by

gv(RV(V,W)W, V)
gv(V,V)gv (W, W) — gv(V,W)%’

K(V,W):=
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where RV is the Chern curvature:
RY(X,Y)Z := DX Dy Z + Dy DX Z — Dl y1Z.
The Ricci curvature of (M, F') is defined by

n—1

Ric(V) =Y K(V,e),

i=1

where {e1,ea,...,e, = %} is an orthonormal basis of T, M with respect to gy .

2.2  Finsler p-laplacian

Denote by J* : T*M — TM the Legendre transform which assigns to each a € T) M
the unique maximizer of the function v — a(v) — $F?(z,v) on T, M. The quantity
J*(x,a) is characterized as the unique vector v € T, M with F(z,v) = F*(z,«) and
a(v) = F*(z,a)F(x,v).

For a differentiable function f : M — R, the gradient vector of f at x is defined as
the Legendre transform of the derivative of f: Vf(z) := J*(z,df (z)). In coordinates,

we have B or o
07 if df(l’) =0
where ¢ (z,a) = %%. Remark that (¢%(x,));; is the inverse matrix of

(9ij (z, J*(z,@)))ij-

We fix an arbitrary positive C°°-measure m on M as our base measure. In a local
coordinates system, the measure element is given by dm := e®da’...dz". Usually,
the Busemann-Hausdorff volume form dmpy and the Holmes-Thompson volume form
dmpygr are used. They are defined by

w
d = —————dz' A+ A da"
MBH = B, M) v
and
1
dmyr = < / detg;;(z, v)dvt A A dv”> dzt A Ada™,
Wn JB, M

where B,M = {v € T,M : F(z,v) < 1} and w, denotes the volume of the n-
dimensional Euclidean ball.
The divergence of a differentiable vector field V' on M with respect to m is defined

by
"N (oVE OB
di = - — .
UV ; <8$l +V 096’)

Denote by W1P(M) the completion of C*°(M). For a function f € W1P(M), its
Finsler p-Laplacian (p > 1) is defined as

A, (f) == div (F(VFPT2V L) i= diva (|V P2V f),
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where the equality is in the distibutional sense.
For p = 2, we obtain the non-linear Shen’s Finsler Laplacian:

As(f) := A(f) = divm(V ).
This operator is naturally associated to the canonical energy functional E defined
on W»(M)\{0} by
VP d
B(f) = D VI,
Jag 1P dm

The first (closed) eigenvalue of the Finsler p-Laplacian is defined by

Mp(M, F) = inf, B()

where Hf := {f € WHP(M)\{0} : [,,|f[P~2f dm = 0}. An eigenfunction related to
the first eigenvalue is a function f € W1P(M) satisfying A, f + A1 ,(M)|f[P~2f = 0.
We have the following characterization: for all ¢ € WP (M),

/ VP 2dp(V ) dm = Ay (M) / FP2f dm.
M M

Now, we will recall the construction of a canonical Riemannian metric associated
to the Finsler manifold (M, F'). See [10, 11] for more details.

2.3 Binet-Legendre metric

In this part, dmpg will always denote the Busemann-Hausdorff measure induced by
the metric F on M.
Let define a scalar product on the cotangent spaces T, M, (x € M) by

g3, B) = jB—% /B |, 2050) D),

where X is a Lebesgue measure on T, M.
The Binet-Legendre metric gr associated to the Finsler metric F' is the Rieman-
nian metric dual to the scalar product g} .

Proposition 2.1. [11] Let (M, F) be a n-dimensional Finsler manifold with finite
reversibility constant kg and g its associated Binet-Legendre metric. Then

(i) The metric gr is as smooth as F;

(i) We have
(kpV2n) "t /gr < F < (kpV2n)" ™\ /gF;
(111) If dVy, denotes the Riemannian volume density of gr, there is a constant k

such that
Wk " dVy, <dmp <wpk"dVy,,

where w, denotes the volume of the standard n-dimensional Euclidean ball. In
particular, dVy, < dmpg.
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Proposition 2.2. Let (M, F) be a closed n-dimensional Finsler manifold with re-
versibility constant kp and gp its associated Binet-Legendre metric. Then

1 _ Aup(MLF)

< (K /27’1 p(n+1)k_2n’
(kpV2n)P0+DE2e = Xy (M, gr) = L2

for some constant k > 1.

Proof. Let f be the eigenfunction relative to the first eigenvalue A1 ,(M, F'). Then,
we have

_ Jy FE(Af)P dmp

(2.2) Mp(M,F) = [y [fIP dmp
and
(2.3) |fIP72f dmp = 0.

M

Equation (2.3) implies that

|fIP dmp :max/ |f + s|P dmp.
M sER S

fu (@ )" d
S0, Aup(M, F) < D QHLITAnE s e R,

In other hand, there exists a unique sg € R such that

(2.4) / | f+s0|F dVy, = max/ |f+s|P dVy, and / |f+50|p72(f+50) dVy, =0.
M seR S M
Therefore,

fM F*(d(f + 30))p dmp

A (M,F) <
LP( ) fM|f+50‘p de
< k2n(K/F\/ﬁ)p(n+l) fM Fg (d(f + SO))p d‘/tQF ,
- Jog I + S0l dVy,
< kP (kpV20)PTUN (M, gr),

where we used (kpyv2n)""TVEF < F* < (kpy/2n)" T EF in the second line with
Fy := /gr, and (2.4) in the last line.
An analogue argument provides the second inequality by exchanging F' and Fy. O

Definition 2.2. Two Finsler metrics Fy and F defined on a smooth manifold M are
called bi-Lipschitz if there exists a constant C' > 1 such that, for any (z,v) € TM,

(2.5) C'Fy(z,v) < F(z,v) < CFy(x,v).

Example 2.3. Let (M, g) be a Riemannian manifold and 8;, 82 two 1-form on M
such that

0 < sup [[(B1)allg := b1 < by := sup [|(B2)allg < 1.
zeM zeM
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Then the Randers metrics Fy := /g + 1 and F» := /g + (2 are bi-Lipschitz:

1+b — F — 1—by

1—by <F1 < 1+

Particulary, a Randers metric ' = /g + 8 and the associated Riemannian metric g
are bi-Lipschitz.

Lemma 2.3. [11] If F and Fy are Finsler metrics on M satisfying (2.5) for some
constant C > 1 then the Binet-Legendre metrics gr and gr, associated to F' and Fj
respectively satisfy

C"gr, < Var < C"/ar,.

Theorem 2.4. Let F, Fy be two C-bi-Lipschitz Finsler metrics on a closed n- dimen-
sional manifold M. Then, for any p > 1, there exists a constant K(n,p, k, ko) > 1
depending on p, the dimension n and the reversibility constants k and kg of F' and
Fy respectively such that,

_ Ap(M, F)
oK < 2B L < OF,
- Al,p(MuFO) -

Proof. Applying Proposition 2.2 to (M, F') and (M, Fy), there are some constants k
and kg such that

1 Al,p(Mn(JF) < Al,p(M7 F)
(2nsro )P (D (ko)™ M p(M, gry) = A1p(M, Fy)
Ap(M, gr)
< (2nkko )P (kk) 2 S0 IE)
= ( 0) ( 0) Al,p(MmgFo)

Furthermore, from Lemma 2.3, we have

1 < Ap(M,gr) < onpt2n),
Cn(p+ n) A1,;n(j\47 gFo)

Then

1 Ap(M, F)
(271/1/{0);0(""'1)(kko)2ncn(p+2n) - )\17p(M, Fo)

< (QnHHO)p(”“) (kko)%cn(pﬁn)'

Since (2nkko)P" ) (kko)?™ > 1, there exists a positive constant K'(n,p, s, kg) de-
pending on n, p, K, kg such that (2nkrg )P+ (kk)?® < CK'. This completes the
proof. |

Remark 2.4. One can prove this theorem directly following idea of the proof of
Proposition 2.2.
3 Boundedness on conformal class

Let F(M) be the set of Finsler metrics F on a manifold M with Vol(M,F) = 1,
where Vol(M, F) denotes the volume of the Finsler manifold (M, F) with respect to
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the Busemann-Hausdorff measure induced by F. The following holds for the first
eigenvalues of the p-Laplacians, p > 1:
inf A\ ,(M,F)=0.
Fer(u) (M F)
In the Riemannian case the eigenvalues-functional is not generally bounded. For
p = 2, it is shown that the functional A; 2 is bounded when the dimension n = 2
and is unbounded when n > 3, but Ay 2 is uniformly bounded when restricted to any

conformal class. Matei generalizes these results to any p > 1 (see [8, 9]). Using mainly
Matei’s works and Proposition 2.2, we have the following:

Theorem 3.1. Let (M, F) be a closed Finsler n-dimensional manifold. Then, for
any p € (1,n], there exists a constant C' := C(n,p, kg, [F]) depending only on the
dimension n, p, the reversibility constant kg and the conformal class [F] of F such
that,

M (M, F)Vol(M,F)% < C(n,p, kr, [F]).

Before proving this theorem, let’s remark that, in the Mathei’s result used ([9]),
the dependence on the conformal class of the Riemannian metric comes from the
n-conformal volume of the compact Riemannian manifold (M, g) which is defined as

Vio(M, = inf sup Vol(M, (y o ¢)*can),
(M, [g]) ver. o 1o B (M, (o ¢)*can)

where can denotes the canonical Riemannian metric on the n-dimensional sphere S™,
G, = {y € Dif f(S")| v*can € [can]} the group of conformal diffecomorphism of
(S™, can) and I,,(M,[g]) :=={¢ : M — S™| ¢*can € [g])} the set of conformal immer-
sion from (M, g) to (S™,can). Using a nice property of the Binet-Legendre metric
associated to the Finsler metric F'; we can obtain a dependence on the conformal
class of F.

Proof. From Proposition 2.2, there is a constant C;(n,p, kr) depending only on n, p
and kg such that A\ ,(M, F) < Ci A1 (M, gr), where gp is the Binet-Legendre metric
associated with F.

Set ! := Vol(M,gr)+» and j := agp. Then, we have

Vol(M,§) = a2 Vol(M,gr) =1

and
Al,p(Ma gF) = ai}‘l,p(Ma g)

Furthermore, Matei proved in [9] that there exists a constant Ca(n, p, [§])* depending
on n, p and the conformal class of the metric § which satisfy A1 ,(M, §) < Cs.
Hence, by Proposition 2.1, we obtain

Vol(M,F)
‘/OZ(]\47 gF)

ya
n

A p(M, F)Vol(M,F)% < C1Cy ( ) < 01y (wnk™)

It is known that when F; and F5 are in the same conformal class, then the associ-
ated Binet-Legendre metrics gr, and g, are also in the same conformal class. Hence,

n [9], C2 = n% (n+1)IP/2=1ve(M, [§]) where V,¢(M, [§]) denote the conformal volume of (M, §)
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the constant C;Ch(w,k™)" depends on n,p, kr and the conformal class [F] of the
metric F.
O

Particulary, for compact surface, we have the following:

Theorem 3.2. Let (3, F) be a compact Finsler surface with genus § and reversibility
constant kp. Then, for any 1 < p < 2, there exists a constant K(p,kp) depending
only on p and kg such that

NS EWal(E, P < Kipr) (S5

Proof. From the proof of Theorem 3.1, there exists a constant A;(p, kr) depending
on p and kp such that A\ (3, F) < Ay (p,kr)az i ,(,§) where § := agp and

P

o :=Vol(X,gr) . By a result of Matei (sce [9]), Mp(2,9) < C(p) (5%3)5 for some
constant C' depending only on p. Then, we have

(3.1) < Ai(p, HF)C(p)(w2k2)% <§—‘,—23)2

This completes the proof.
|

Theorem 3.3. Let (M, F) be a compact Finsler manifold of dimension n. Then
for any p > n, there exists a conformal metric F' € [F] such that the quantity
M (M, F)Vol(M,F)= can be taken arbitrarily large.

Proof. Let K > 0. From [9], there exists a metric § := p?gr € [gr| satisfying

>\1¢Z7(M7.§)VOZ(M7§)% > 67
1
for a fixed positive constant C. Consider the metric F := ¢oF € [F]. Then the
Binet-Legendre metric associated to F' is g (see [10]). Hence, Proposition 2.2 implies
Mp(M,F) > C(n,p, kp)A1,p(M,g) for some constant C' and from Proposition 2.1,
Vol(M,F) > Vol(M,§) . This implies that \; (M, F)Vol(M,F)x > K taking
Cl = C(nap7 K’F‘)
]

4 Randers spaces

Consider a Randers metric F' := /g + 3. In local coordinates (2%, v") on TM, we
write

0 0

g(v,w) := gijviwj, Bv) = bv', v = vi@, w = wj@-
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Denote |8l := v/g" (2)b;(z)b;(z) and b = sup,¢,; ||8]l- where (¢*/) stands for the
inverse matrix of (g;;).
To prove theorem 1.2, we need the following lemmas:

Lemma 4.1. [15] For any smooth function f on M, we have

VA= [IBIP)df? + (B, df)? — (B, df)
1— 8|1 ’

F(Vf) = F*(df) =

where

il =990 2L 0) 2 (0, and (5.1, = g @) 2L o)

Lemma 4.2. [18] The reversibility constant and the 2-uniform concavity constant of
the Randers space (M, F := /g + () are given by

1+b\>
O = m = Kp.

The first eigenvalue of (M, F') and (M,g) can be controlled by the reversibility
constant as the next proposition showing. Note that a similar result is obtained in
[12] using Bao-Lackey Laplacian.

Proposition 4.3. Let (M, F := /g + f3,dmyr) be a Randers space, where dmpr is
the Holmes-Thompson measure. Then we have

1
EALP(Mv g) < Al,P(Mv F) < K%)\Lp(Mv 9)7

where A1 ,(M, g) is the first eigenvalue of the Riemannian manifold (M, g).

Proof. Since dmpgp denotes the Holmes-Thompson measure then it coincides with
the Riemannian measure dV, induced by g. Recall that the first eigenvalue on the
Riemannian space (M, g) is defined by

o S ldfIP dVy
A y(M,g):= inf M ZT “%9
LP( g) fGHg fM |f|p dVg

Furthermore, from lemma 4.1, we have
1 *
—|df| < F*(df) < rpldf].
KF

Indeed, for all x € M,
1-b<1-b2<1—|B]2<1+b*<1+band

V= BIPf? + (B, df)? = (B,df) < |df| +2I(B,df)|
< (1+2b)ldf].

Then 1+2b
211 < el

Also, we have F*(df) > (1 — b)|df| > kp|df|.

F(df) <
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As a direct consequence, we have

Corollary 4.4. Let (M, g) be a Riemannian manifold of dimension n and (Bx)x be a
sequence of 1-forms, with ||Bx|| < 1 for all k, converging to the null 1-form in A*(M).
Consider the corresponding sequence of Finsler metrics (Fy)y, with Fy := /g + Bk
Then the real sequence of first eigenvalues pr = A1 ,(M, Fy) converges to the first
eigenvalue (1 = A1 ,(M, g).

Proof. For all k, we have

1— by < )\LP(M,F;@) < 14 by
L+by = Mp(M,g) — 1—by

Since B — 0 then by, — 0. Hence

Moo (M, F
lim 71’17( . Fi)

=1.
k—o0 )‘17P(M7 g)

]

Corollary 4.5. Let (M,F := /g + f3) be a compact Randers manifold. For any
p,q € R such that 1 < p < g, the positive eigenvalues A\ p(M,F) and A\ (M, F)
satisfy

/A, (L F) _

SOF.
q v Al,q(MaF)

Proof. Let 1 < p < q. By Proposition 4.3, we obtain

p Al,p(Ma F) < K2 PRy Al,p(Mvg)

49/ MaLE) ~ T qy/N (M, g)

However, the map t — t{/A1 +(M, g) is strictly increasing on (1,00) (see [8]). Then,

/A, (OLF) _
4{/ MgV F) ~

H%:UF.

5 Cheeger-type inequality

Definition 5.1. Let (M, F,dm) be a closed n-dimensional Finsler manifold. The
Cheeger’s constant is defined by

o min{An)
(5.1) h(}) := Ff min{m(D;),m(Ds)}’

where I' varies over (n — 1)-dimensional submanifolds of M which divide M into
disjoint open submanifolds Dy, Dy of M with common boundary 0D = 9Dy =T
One denotes A (T") the areas of I' induced by the outward and inward normal vector
field ny.
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We have the following useful co-area formula:

Lemma 5.1. [18] Let (M, F,m) be a Finsler measure space. Let ¢ be a piecewise C!
function on M such that =1 ({t}) is compact for allt € R. Then for any continuous
function f on M, we have

/MfF(qu) dm:/_o; </¢l(t)fdAn> dt.

where n := V¢/F (V).
Lemma 5.1 yields the following :

Lemma 5.2. Given a positive function f € C*(M). Then, we have

/M F(V]) dm > h(M) /M f dm.

Proof. Let f € CY(M). From Lemma 5.1, we have

[renm = ([ o)
- / Au{f =1}) dt
_ A=Y
AullF =1
> tfm{f>t}) m({f >t}) dt

v

/fdm

We now state our Cheeger-type inequality:

Theorem 5.3. Let (M, F,m) be a closed Finsler manifold such that the 2-uniform
concavity constant op < o. Then
h(M)\"
op '

Proof. Let f be a smooth function on M. Let define the positive and the negative

)‘LP(M)

Y
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parts of f by fi := max{f,0} and f_ := max{—f,0}. Then

h(M) (/Mfﬁ dm—&-/Mff dm)

h(M) [ 171 dim

< /M F*(Df%) dm+/M F*(Df?) dm

= p [ /M fITUF(Dfy) dm o+ /M fTUF(DSY) dm}
< por /M|f|p*1F*<Df>dm

< po([1mram) " ([ Fopyan)

Hence,

Taking the infimum over H} (M), the inequality follows.
O

In [17], Yau showed that on a n-dimensional compact Riemannian manifold with-
out boundary whose Ricci curvature is bounded from below by (n — 1)K, the first
eigenvalue can be bounded from below in terms of the diameter, the volume of the
manifold and the constant K. The authors of [18] gave a finslerian version of this
result for the non-linear Shen’s Laplacian. As in [18], we use the following Croke-type
inequality to obtain the general case:

Proposition 5.4. [16] Let (M, F,dm) be a closed Finsler n-dimensional manifold
satisfying Ric > (n—1)K for some constant K, where dm denotes either the Busemann-
Hausdorff measure or the Holmes-Thompson measure. Then

T Vol(S"2)ap 2 diam(M) [ i (1) dt

where diam(M) denotes the diameter of M and the function sy is defined by

o 7= sin(vVKt), K >0,
si(t) = t, K= 0,
ﬁ Sinh(\/ —Kt), K <O.

From Theorem 5.3 and Proposition 5.4, we obtain the following Yau-type estimate.

Proposition 5.5. Let (M, F,dm) be a n-dimensional closed Finsler manifold whose
Ricci curvature satisfies Ric > (n— 1)K for some real constant K, where dm denotes
either the Busemann-Hausdorff measure or the Holmes-Thompson measure. Then

p

(n — Lym(M)

WV ol(S"=2)o s 2 diam(M) [ §n=1() dt

Al,p(M) >
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Proof. By Proposition 5.4, we have

h(M) _ (n = Dm(M)
por 2pVol(S"_2)U;n+%diam(M) Odim”(M) snol(t) dt

A direct application of Theorem 5.3 completes the proof.
O
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