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Abstract. In this paper, a new geometric quantity, the trace-free horizon-
tal Ricci tensor of a Finsler manifold is proposed. The conformal changes
of this tensor, relatively to the conformal deformations of Finsler metrics
when an Ehresmann form varies, are studied. As an application, it is
shown that on a closed manifold two conformal Finsler metrics with the
same horizontal Ricci tensor must be homothetic.
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1 Introduction

A prescribed Ricci tensor is a very interesting and important problem in Geometry
and in General Relativity. For Riemannian Geometry this problem has been studied
by D. DeTurck [2] and by X. Xu [9]. Furthermore, an Ehresmann connection on the
slit tangent bundle of a Finsler manifold plays a fundamental role and is a powerfull
tool in studying Finsler Geometry (for example see Aikou-Kozma [1] and Benjancu-
Farran [4]).

In this paper, using the Chern’s curvature tensors, we introduce canonically the
notion of trace-free Ricci tensor in Finsler geometry. We investigate the behavior of
trace-free horizontal Ricci (1, 1; 0)-tensor BH

F under the conformal change of Finsler
metrics when the Ehresmann form varies. Using this tensor, we prove mainly the
Theorem 3.1 and the Theorem 4.3.

The rest of this work is organized as follows. In Section 2, we briefly describe
the notation and convention used, but for a more detailed description we refer to
the book of Bao-Chern-Shen [3] and to the reference [8]. In Section 3, we study the
conformal change of BH

F associated with the Chern connection ∇. The main result
of this Section is the Theorem 3.1, that generalizes the A. L. Besse’s result [5]. The
Section 4 prescribes the horizontal Ricci tensor in the conformal class of F . The main
result in this Section is the Theorem 4.3 that generalizes the X. Xu’s Theorem [9]
given in the book of E. Hebey.
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2 Preliminaries

Throughout this paper, M is an n−dimensional C∞ manifold. We denote by TxM
the tangent space at x ∈ M , by TM :=

⋃
x∈M TxM the tangent bundle of M and

by SM := {(x, [y])} the sphere bundle of M . Set T̊M = TM\{0} and the natural
projection π : TM −→ M : π(x, y) 7−→ x. Let (x1, ..., xn) be a local coordinate on
an open subset U of M and (x1, ..., xn, y1, ..., yn) be the local coordinate on the open
π−1(U) ⊂ TM . The local coordinate system (xi)i=1,...,n produces the bases sections
{ ∂
∂xi }i=1,...,n and {dxi}i=1,...,n respectively, for the tangent bundle TM and cotangent

bundle T ∗M . We use Einstein summation convention.

Definition 2.1. A function F : TM −→ [0,∞) is called a Finsler metric on M if :

(1) F is C∞ on the entire slit tangent bundle T̊M ,

(2) F is positively 1-homogeneous on the fibers of TM , that is for all c > 0,
F (x, cy) = cF (x, y),

(3) the Hessian matrix (gij(x, y))1≤i,j≤n with elements

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
(2.1)

is positive definite at every point (x, y) of T̊M .

Given a manifold M and a Finsler metric F on TM , the pair (M,F ) is called a
Finsler manifold.

Remark 2.2. F (x, y) 6= 0 for all x ∈M and for every y ∈ TxM\{0}.

2.1 Finsler-Ehresmann connection and Chern connection

Consider the tangent mapping π∗ of the restricted projection π : T̊M −→ M :
π(x, y) 7−→ x. The vertical subspace of T T̊M is defined by V := ker(π∗) and is
locally spanned by the set {F ∂

∂yi , 1 ≤ i ≤ n}, on each π−1(U) ⊂ T̊M .

An horizontal subspace H of T T̊M is by definition any complementary to V. The
bundles H and V give a smooth splitting [4, 10]

T T̊M = H⊕ V.(2.2)

An Ehresmann connection is a selection of horizontal subspace H of T T̊M .
As explained in [6], all Finsler metric F on M induces a vector field on T̊M in the

form

G(x, y) = yi
∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where x = (xi) ∈M, y = yi ∂
∂xi ∈ T̊M and the elements

Gi(x, y) :=
1

4
gil
(
∂gjl
∂xk

+
∂glk
∂xj

− ∂gjk
∂xl

)
yjyk
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are y-homogeneous of degree two. The vector field G is called spray on M and the
Gi, i = 1, .., n are called spray coefficients of G. Let consider the functions

N i
j(x, y) :=

∂Gi(x, y)

∂yj
, 1 ≤ i, j ≤ n.

One says that N i
j(x, y) are Ehresmann connection coefficients on T̊M . Otherwise

N i
j = − 1

F
Ajklgilγkrsyrys + γijky

k, i, j, k, r, s = 1, ..., n;(2.3)

where γijk := 1
2g
il
(
∂gjl
∂xk

+ ∂glk
∂xj −

∂gjk
∂xl

)
are formal Christoffel symbols of second kind.

One defines a global π∗TM -valued C∞ form on T̊M by

θ =
∂

∂xi
⊗ 1

F
(dyi +N i

jdx
j).(2.4)

Remark 2.3.

1. For objects invariant under y 7→ cy, we can consider N i
j as Ehresmann connec-

tion coefficients on SM . In that case (we must work with)

N i
j

F
:= −Ajklgilγkrs

yr

F

ys

F
+ γijk

yk

F
.(2.5)

2. On a Finsler manifold, the local tensor ∂
∂xi ⊗

1
F (dyi + N i

jdx
j) defines a global

tensor on T̊M (see [3]).

In the sequel, we consider the following definitions.

Definition 2.4. Let π : T̊M −→M be the restricted projection.

1. A Finsler-Ehresmann connection of π is the subbundle H of T T̊M given by

H := kerθ,(2.6)

where θ : T T̊M −→ π∗TM is the bundle morphism defined in (2.4).

2. The form θ : T T̊M −→ π∗TM induces a linear map

θ|(x,y) : T(x,y)T̊M −→ TxM, for each point (x, y) ∈ T̊M ;(2.7)

where x = π(x, y).
The vertical lift of a section ξ of π∗TM is a unique section v(ξ) of T T̊M such
that for every (x, y) ∈ T̊M ,

π∗(v(ξ))|(x,y) = 0(x,y) and θ(v(ξ))(x,y) = ξ(x,y).(2.8)

3. The differential projection π∗ : T T̊M −→ π∗TM induces a linear map

π∗|(x,y) : T(x,y)T̊M −→ TxM, for each point (x, y) ∈ T̊M ;(2.9)

where x = π(x, y).
The horizontal lift of a section ξ of π∗TM is a unique section h(ξ) of T T̊M such
that for every (x, y) ∈ T̊M ,

π∗(h(ξ))|(x,y) = ξ(x,y) and θ(h(ξ))(x,y) = 0(x,y).(2.10)
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Remark 2.5.

1. The vector bundle π∗TM can be naturally identified with the horizontal sub-
bundle H of T T̊M or with the vertical V (see [1], [4]). Thus any section ξ of
π∗TM is considered as a section of H or a section of V. In fact

ξ = ξi
∂

∂xi
∈ Γ(π∗TM)⇐⇒ h(ξ) = ξi

δ

δxi
∈ Γ(H),(2.11)

and

ξ = ξi
∂

∂xi
∈ Γ(π∗TM)⇐⇒ v(ξ) = ξiF

∂

∂yi
∈ Γ(V),(2.12)

where{
δ

δxi
:=

∂

∂xi
−N j

i

∂

∂yj
= h(

∂

∂xi
)

}
i=1,...,n

and

{
F

∂

∂yi
:= v(

∂

∂xi
)

}
i=1,...,n

are respectively horizontal and vertical lifts of the natural local frame field
{ ∂
∂x1 , ...,

∂
∂xn } with respect to the Finsler-Ehresmann connection H.

2. In the sequel, for g-orthonormal basis sections {ea}a=1,...,n of π∗TM , we denote
respectively h(ea) and v(ea) by êa and êa+n.

The following theorem defines the Chern connection on π∗TM .

Theorem 2.1. [8] Let (M,F ) be a Finsler manifold, g the fundamental tensor asso-
ciated with F and π∗ the tangent mapping of the submersion π : T̊M −→ M . There
exist a unique linear connection ∇ on the pulled-back tangent bundle π∗TM such
that, for all X,Y ∈ Γ(T T̊M) and for every ξ, η ∈ Γ(π∗TM), one has the following
properties:

(i) Symmetry:
∇Xπ∗Y −∇Y π∗X = π∗[X,Y ],

(ii) Almost g-compatibility:

X(g(ξ, η)) = g(∇Xξ, η) + g(ξ,∇Xη) + 2A(θ(X), ξ, η),

where A is the Cartan tensor.

2.2 Tensor formalism on Chern’s curvatures

The tensors that will be considered are defined as follows:

Definition 2.6. Let (M,F ) be a Finsler manifold. A tensor field T of type (p1, p2; q)
on (M,F ) is a mapping

T : π∗TM ⊕ ...⊕ π∗TM︸ ︷︷ ︸
p1−times

⊕T T̊M ⊕ ...⊕ T T̊M︸ ︷︷ ︸
p2−times

−→ ⊗qπ∗TM, p1, p2 and q ∈ N

which is C∞(T̊M) or C∞(SM)-linear in each arguments.
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The full curvature φ, of Chern connection ∇, is the (1, 2; 1)-tensor defined by

φ(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ,(2.13)

where X,Y ∈ Γ(T T̊M) and ξ ∈ Γ(π∗TM). Using the decomposition (2.2), we have

∇X = ∇XH +∇XV ,(2.14)

where X = XH +XV with XH ∈ Γ(H) and XV ∈ Γ(V).
The full curvature φ can be written as

φ(X,Y )ξ = φHH(X,Y )ξ + φHV (X,Y )ξ + φV H(X,Y )ξ + φV V (X,Y )ξ,

where

φHH(X,Y )ξ = φ(XH , Y H)ξ = ∇XH∇Y H ξ −∇Y H∇XH ξ −∇[X,Y ]H ξ,

φHV (X,Y )ξ = φ(XH , Y V )ξ = ∇XH∇Y V ξ −∇Y V∇XH ξ −∇[XH ,Y V ]ξ,

φV H(X,Y )ξ = φ(XV , Y H)ξ = ∇XV∇Y H ξ −∇Y H∇XV ξ −∇[XV ,Y H ]ξ,

φV V (X,Y )ξ = φ(XV , Y V )ξ = ∇XV∇Y V ξ −∇Y V∇XV ξ −∇[XV ,Y V ]ξ.

As in the Riemannian case, one can define a (2, 2; 0) version of φ by the following
formula:

Φ(ξ, η,X, Y ) = g(φ(X,Y )ξ, η)

= g(R(X,Y )ξ, η) + g(P (X,Y )ξ, η)

= R(ξ, η,X, Y ) + P(ξ, η,X, Y ),

where R is the first Chern’s curvature tensor and P is the second Chern’s curvature
tensor. One has

R(ξ, η,X, Y ) = Φ(ξ, η,XH , Y H)(2.15)

and

P(ξ, η,X, Y ) = Φ(ξ, η,XH , Y V ) + Φ(ξ, η,XV , Y H).(2.16)

Definition 2.7. Let (M,F ) be a Finsler manifold, R the horizontal part of the full
curvature tensor associated with the Chern connection. We define

1. the horizontal Ricci tensor RicHF of (M,F ) by

RicHF (ξ,X) := traceg(η 7−→ R(X,h(η))ξ),

for any X ∈ Γ(T T̊M) and for every ξ, η ∈ Γ(π∗TM). In g-orthonormal basis
sections {ea}a=1,...,n of π∗TM , we have

RicHF (ξ,X) :=

n∑
a=1

R(ξ, ea, X, êa).(2.17)
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2. the horizontal scalar curvature ScalHF of (M,F ) is the trace of the horizontal
Ricci tensor. ScalHF is a function on T̊M or on SM . In g-orthonormal basis
sections {ea}a=1,...,n of π∗TM ,

ScalHF :=

n∑
a=1

RicHF (ea, êa) =

n∑
a,b=1

R(ea, eb, êa, êb).(2.18)

Now, we introduce the trace-free horizontal Ricci tensor on (M,F ) as follows.

Definition 2.8. Let (M,F ) be an n-dimensional Finsler manifold and g its funda-
mental tensor. The trace-free horizontal Ricci tensor of (M,F ) is a (1, 1; 0)-tensor on
(M,F ) given by

BH
F = RicHF −

1

n
ScalHF g,(2.19)

where g := π∗g that is the pullback of g by the submersion π : T̊M −→ M ; and for

every ξ ∈ Γ(π∗TM) and for any X ∈ Γ(T T̊M), g(ξ,X) = g(ξ, π∗X), RicHF is the

horizontal Ricci tensor and ScalHF is the horizontal scalar curvature of (M,F ).

2.3 Differential operators on Finsler manifolds

In this paragraph, we give some fundamental differential operators on (M,F ).

Definition 2.9.

1. Let τ : π∗TM −→ TM be the canonical mapping defined by τ(x, y, v) = v. For
a smooth function u on M , the gradient of u, noted by Ou, is the section of
π∗TM , given by

g(x,y)(Ou(x,y), ξ(x,y)) = duπ(x,y)(τξ),(2.20)

for every section ξ ∈ Γ(π∗TM) and for any (x, y) ∈ T̊M . Locally, one has

Ou(x,y) = gij(x, y)
∂u

∂xi
∂

∂xj
.(2.21)

2. For a C∞ section ξ ∈ Γ(π∗TM), we define the horizontal divergence by

divHξ = traceg
(
η 7−→ ∇h(η)ξ

)
(2.22)

and the vertical divergence by

divV ξ = traceg
(
η 7−→ ∇v(η)ξ

)
,(2.23)

where g is the fundamental tensor associated with F and ∇ is the Chern con-
nection.
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Remark 2.10. In the local basis sections { ∂
∂xi }i=1,...,n of the bundle π∗TM , we have:

divHξ = gijg

(
∇ δ

δxi
ξ,

∂

∂xj

)
(2.24)

and

divV ξ = gijg

(
∇F ∂

∂yi
ξ,

∂

∂xj

)
.(2.25)

Definition 2.11. Let (M,F ) be a C∞ Finsler manifold and u a C∞ function
on M .

1. The Hessian of u is the mapping

Hu : Γ(π∗TM)× Γ(T T̊M) −→ C∞(T̊M) such that

Hu(ξ,X) = g (ξ,∇X(Ou)) ∀ξ ∈ π∗TM, ∀X ∈ T T̊M.(2.26)

2. The horizontal Laplacian and the vertical Laplacian of u are respectively defined
by the following relations:

∆Hu = −divHOu(2.27)

and

∆V u = −divV Ou.(2.28)

Lemma 2.2. Let u ∈ C∞(M). The Laplacians of u, ∆Hu and ∆V u, can be given in
term of the Hessian of u by

∆Hu = −traceg ((ξ, η) 7→ Hu(ξ,h(η))) , ξ, η ∈ Γ(π∗TM),(2.29)

and

∆V u = −traceg ((ξ, η) 7→ Hu(ξ,v(η))) , ξ, η ∈ Γ(π∗TM).(2.30)

Furthermore, in g−orthonormal basis sections {ea}a=1,...,n, one has

∆Hu = −
n∑
a=1

Hu(ea, êa)(2.31)

and

∆V u = −
n∑
a=1

Hu(ea, êa+n).(2.32)

Proof. By definition of horizontal Laplacian and vertical Laplacian. �



48 G. Nibaruta, S. Degla, L. Todjihounde

3 Conformal deformations of Finsler metrics and
Besse-type result

In this section, we first review some concepts concerning the conformal changes of
Finsler metrics [11]. Then, using these concepts, we study the conformal changes of
the trace-free horizontal Ricci tensor.

Definition 3.1. Let F and F̃ be two Finsler metrics on manifold M . Two fundamen-
tal tensors g and g̃, associated with F and F̃ respectively, are said to be conformal
if there exists a C∞ function u on M such that g̃ = e2ug. Equivalently, g and g̃ are
conformal if and only if F̃ = euF . In that case, F and F̃ are said to be conformal or
conformally related.

We obtain the following result.

Theorem 3.1. Let (M,F ) be an n-dimensional Finsler manifold and g the funda-

mental tensor of F . If F̃ = euF is a Finsler metric conformal to F then the trace-free
horizontal Ricci tensors BH

F and B̃H
F̃

, associated with F and F̃ respectively, are con-
formally related by

B̃H
F̃

= BH
F − (n− 2) (Hu − du ◦ du)− (n− 2)

n

(
∆Hu+ ||Ou||2g

)
g + Zu(3.1)

where Zu is the (1, 1; 0)-tensor on (M,F ) given by

Zu(ξ,X) := −ng(Ou,Θ(X,h(ξ)))

+

n∑
a=1

[
2

n
g(ea,Θ(êa,h(Ou))) +

(n− 2)

n
g(Θ(êa, êa),Ou)

]
g(ξ, π∗X)

+

n∑
a=1

[g(Θ(X,h(Θ(êa,h(ξ)))), ea)− g(Θ(êa,h(Θ(X,h(ξ))), ea)]

+

n∑
a=1

[g((∇XΘ)(êa,h(ξ)), ea)− g((∇êaΘ)(X,h(ξ)), ea)]

− 1

n

n∑
a,b=1

[g(Θ(êb,h(Θ(êa, êb)), ea)− g(Θ(êa,h(Θ(êb, êb))), ea)] g(ξ, π∗X)

− 1

n

n∑
a,b=1

[g((∇êbΘ)(êa, êb), ea)− g((∇êaΘ)(êb, êb), ea)] g(ξ, π∗X),(3.2)

for every ξ ∈ Γ(π∗TM) and X ∈ Γ(T T̊M) with (0, 2; 1)−tensor Θ defined by

Θ(X,Y ) := (A(B(X), π∗Y, •))] + (A(B(Y ), π∗X, •))] − (A(π∗X,π∗Y, •)) ◦ B)]

and the (0, 1; 1)−tensor B := 1
F

∂
∂yj (F

2

2 g
ir − yiyr) ∂u∂xr

∂
∂xi ⊗ dx

j.

Proof. The equation (3.1) follows from the relationship between the two Chern con-

nections ∇, ∇̃ associated with F and F̃ respectively:

∇̃Xπ∗Y = ∇Xπ∗Y + du(π∗X)π∗Y + du(π∗Y )π∗X − g(π∗X,π∗Y )Ou+ Θ(X,Y )
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where Θ is the (0, 2; 1)-tensor on (M,F ) given by

Θ(X,Y ) = (A(B(X), π∗Y, •))] + (A(B(Y ), π∗X, •))] − (A(π∗X,π∗Y,B(h(•))))]

with ( )] the dual section of π∗TM to the Cartan tensorA and with the (0, 1; 1)−tensor

B :=
1

F

∂

∂yj

(
F 2

2
gir − yiyr

)
∂u

∂xr
∂

∂xi
⊗ dxj .(3.3)

For every section ξ of π∗TM and for every section X of T T̊M we have, from Definition
(2.8)

B̃H
F̃

(ξ,X) = R̃ic
H

F̃ (ξ,X)− 1

n
(S̃cal

H

F̃ g̃)(ξ,X).

We get, from the conformal changes of curvatures associated with ∇ and ∇̃, that

B̃H
F̃

(ξ,X) = (RicHF −
1

n
ScalHF g)(ξ,X)

− (n− 2)

n

(
∆Hu+ ||Ou||2g

)
g(ξ, π∗X)

−(n− 2) (Hu − du ◦ du) (ξ,X)

+

n∑
a=1

[g(Ou,Θ(êa,h(ξ)))g(ea, π∗X)− g(Ou,Θ(X,h(ξ)))gaa]

+

n∑
a=1

[g(Ou, ea)g(Θ(X,h(ξ)), ea)− g(Ou, ea)g(Θ(êa,h(ξ)), π∗X)]

+

n∑
a=1

[g(Θ(êa,h(Ou)), ea)g(ξ, π∗X)− g(Θ(X,h(Ou)), ea)g(ea, ξ)]

+
(n− 2)

n

n∑
b=1

[g(Ou,Θbb) + g(Θ(êb,h(Ou)), eb)] g(ξ, π∗X)

+

n∑
a=1

[g(Θ(X,h(Θ(êa,h(ξ)))), ea)− g(Θ(êa,h(Θ(X,h(ξ))), ea))]

+

n∑
a=1

[g((∇XΘ)(êa,h(ξ)), ea)− g((∇êaΘ)(X,h(ξ)), ea)]

− 1

n

n∑
a,b=1

[g(Θ(êb,h(Θab)), ea)− g(Θ(êa,h(Θbb)), ea)] g(ξ, π∗X)

− 1

n

n∑
a,b=1

[g((∇êbΘ)ab, ea)− g((∇êaΘ)bb, ea)] g(ξ, π∗X)(3.4)

where Θab := Θ(êa, êb). Putting the equation (2.19) in the right hand side of the
equation (3.4) we obtain the relation in (3.1) and (3.2). �

Remark 3.2. If F is a Riemannian metric, we obtain the results in [5] for the
Riemannian case.
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Corollary 3.2. If the Finsler-Ehresmann form θ is invariant under the conformal
change of Finsler metric, that means Θ ≡ 0, the trace-free horizontal Ricci tensor and
the horizontal Laplacian behave like in Riemannian case.

4 Finslerian prescribed horizontal Ricci tensor

In this section with prove main results of this paper. We have

Lemma 4.1. Let (M,F ) be a Finsler manifold, { ∂
∂xi }1≤i≤n the natural and {ea}1≤a≤n

the special g-orthonormal bases sections for the pulled-back bundle π∗TM . Then

(i) uiagiju
j
b = δab, for i, j, a, b = 1, ..., n.

(ii) uiαu
j
βF

∂2F
∂yi∂yj = δαβ, for α, β = 1, ..., n− 1.

Proof. The bases { ∂
∂xi }1≤i≤n and {ea}1≤a≤n can be expressed in term of each other

via the n× n-matrix
(
uia
)

or its inverse (uai ) as follows [3]

ea = uia
∂

∂xi
and

∂

∂xi
= uai ea.

(i) By (4.1), we have

δab = g(uia
∂

∂xi
, ujb

∂

∂xj
) = uiagiju

j
b.

(ii) By (4.1) and (2.1) we have

δαβ = uiαgiju
j
β = uiα

(
∂F

∂yi
∂F

∂yj
+ F

∂2F

∂yi∂yj

)
ujβ .

�

The following Lemma gives the relationship between the Hessian and the horizon-
tal Laplacian both associated with F when the horizontal Ricci tensors RicHF and

R̃ic
H

F̃ are equal.
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Lemma 4.2. Let F and F̃ be two conformal Finsler metrics on a manifold M and,

RicHF and R̃ic
H

F̃ their respective associated horizontal Ricci tensors. If F̃ = ϕ−1F

and R̃ic
H

F̃ = RicHF , then

Hϕ(eb, êb) = − 1

n

[(
∆Hϕ

)
g
]

(eb, êb)

+
n

n− 2

1

ϕ

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAbbc

− 1

n− 2

1

ϕ

n∑
b=1

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAbbc

− ϕ

n− 2

n∑
a=1

[g(Θ(êb,h(Θab)), êa)− g(Θ(êa,h(Θbb)), êa)]

+
ϕ

n(n− 2)

n∑
a,b=1

[g(Θ(êb,h(Θab)), êa)− g(Θ(êa,h(Θbb)), êa)]

− ϕ

(n− 2)

n∑
a=1

[g((∇êbΘ)ab, ea)− g((∇êaΘ)bb, ea)]

+
ϕ

n(n− 2)

n∑
a,b=1

[g((∇êbΘ)ab, ea)− g((∇êaΘ)bb, ea)] ,(4.1)

where {ea}a=1,...,n is the special g−orthonormal basis sections for the vector bundle

π∗TM and where the quantities ψr and Aabc are given by ψr := 1
F

∂
∂yi (

F 2

2 g
ir − yiyr)

and Aabc := uiau
j
bu
k
cA( ∂

∂xi ,
∂
∂xj ,

∂
∂xk

) with uia, u
j
b, u

k
c the C∞-functions on T̊M .

Proof. Let {eb}b=1,...,n be the special g−orthonormal basis sections for the pulled-back

bundle π∗TM . Then, on the one hand, if R̃ic
H

F̃ = RicHF we have

B̃H
F̃

(eb, êb) =

[
R̃ic

H

F̃ −
1

n

(
n∑
a=1

R̃ic
H

F̃ (ẽa,h(ẽa))

)
g̃

]
(eb, êb)

= BH
F (eb, êb).(4.2)

On the other hand, from Theorem 3.1 we get

B̃H
F̃

(eb, êb) = BH
F (eb, êb)

− (n− 2)

n
∆Hu+

(n− 1)(n− 2)

n
||Ou||2g − (n− 2)Hu(eb, êb)

+(2− n)g(Ou,Θbb)− 2g(Θ(h(Ou), êb), eb)

+

n∑
a=1

[
2

n
g(ea,Θ(êa,h(Ou))) +

(n− 2)

n
g(Θaa,Ou)

]
gbb

+Ku(4.3)
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where

Ku =

n∑
a=1

[g(Θ(êb,h(Θab)), ea)− g(Θ(êa,h(Θbb)), ea)]

+

n∑
a=1

[g((∇êbΘ)ab, ea)− g((∇êaΘ)bb, ea)]

− 1

n

n∑
a,b=1

[g(Θ(êb,h(Θab)), ea)− g(Θ(êa,h(Θbb)), ea)]

− 1

n

n∑
a,b=1

[g((∇êbΘ)ab, ea)− g((∇êaΘ)bb, ea)] .(4.4)

Combining (4.2) and (4.3), we get

(n− 2)Hu(eb, êb) =
(n− 1)(n− 2)

n
||Ou||2g −

(n− 2)

n
∆Hu

+(2− n)g(Ou,Θbb)− 2g(Θ(h(Ou), êb), eb)

+

n∑
a=1

[
2

n
g(ea,Θ(êa,h(Ou))) +

(n− 2)

n
g(Θaa,Ou)

]
+Ku.(4.5)

Since eu = ϕ−1, we have Ou = − 1
ϕOϕ, Hu = − 1

ϕHϕ + 1
ϕ2Oϕ⊗ Oϕ and

∆Hu = − 1
ϕ∆Hϕ − 1

ϕ2Oϕ ⊗ Oϕ. Thus, by the Lemma (4.1) we have the following
transformations

•

B = − 1

ϕ

∂ϕ

∂xr
ψr

∂

∂xi
⊗ dxi(4.6)

with ψr = ∂
∂yi

(
yiyr − F 2

2 g
ir
)
. Then

B(êa) = − 1

ϕ

∂ϕ

∂xr
ψrea.(4.7)

•

g (Ou,Θaa) = −A (B (h(Ou)) , ea, ea) + 2A(Ou,B(êa), ea)

=
1

ϕ2

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAaac.(4.8)

So (4.5) transforms to

Hϕ(eb, êb) = − 1

n
∆Hϕ+

n

n− 2

1

ϕ

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAaac

− 1

n− 2

1

ϕ

n∑
a=1

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAaac −

ϕ

n(n− 2)
Ku.(4.9)

Hence from equation (4.9) we btain the relation in (4.1). �
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Now we prove the following

Theorem 4.3. Let F and F̃ be two conformal Finsler metrics on a closed, oriented

manifold M of dimension n ≥ 3 and, RicHF and R̃ic
H

F̃ their respective associated

horizontal Ricci tensors. If F̃ = ϕ−1F and R̃ic
H

F̃ = RicHF then ϕ is constant. In
other words, on a closed manifold, two conformal Finsler metrics that have the same
horizontal Ricci tensor must be homothetic.

Proof. Suppose F̃ = ϕ−1F and R̃ic
H

F̃ = RicHF . We have, from the relationship

between the two Chern connections ∇, ∇̃ associated with F and F̃ respectively that

0 =

(
−∆Hϕ

ϕ
g − (n− 1)

ϕ2
||Oϕ||2gg +

(n− 2)

ϕ
Hϕ

)
(eb, êb)

− n

ϕ2

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAaac +

1

ϕ2

n∑
a=1

∂ϕ

∂xi
∂ϕ

∂xr
ψruicAaac

+

n∑
a=1

[g (Θ(êb,h(Θab)), ea)− g (Θ(êa,h(Θbb)), ea)]

+

n∑
a=1

[g ((∇êbΘ)ab, ea)− g ((∇êaΘ)bb, ea)] .(4.10)

Putting (4.1) in (4.10) we obtain

0 = − 2

n
(n− 1)

1

ϕ
∆Hϕ− (n− 1)

ϕ2
||Oϕ||2g

+
1

n

n∑
a,b=1

[g (Θ(êb,h(Θab)), ea)− g (Θ(êa,h(Θbb)), ea)]

+
1

n

n∑
a,b=1

[g ((∇êbΘ)ab, ea)− g ((∇êaΘ)bb, ea)] .(4.11)

In order to compute the equation (4.11),
we set I2 =

∑n
a,b=1 [g (Θ(êb,h(Θab)), ea)− g (Θ(êa,h(Θbb)), ea)]. Then by relations

(4.7) , we have

I2 =

n∑
a,b=1

[g (Θ(êb,h(Θab)), ea)− g (Θ(êa,h(Θbb)), ea)] g(ec, ec)

=

n∑
a,b=1

(
1

ϕ

∂ϕ

∂xr
ψr
)2 [
A2
abc −AaacAbbc

]
.(4.12)

Since Aabc is zero whenever any of its three indices has the value n, by Lemma 4.1,
the relation (4.12) becomes

I2 =

(
1

ϕ

∂ϕ

∂xr
ψr
)2 (

ukcAijk
)2(

F
∂2F

∂yi∂yj

)−2 n−1∑
α,β=1

[
(δαβ)2 − δααδββ

]
= (n− 1) (2− n)

(
1

ϕ

)2

||Oϕ||2g
(
ψkAijk

)2(
F

∂2F

∂yi∂yj

)−2

.(4.13)
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Now set I3 =
∑n
a,b=1 [g ((∇êbΘ)ab, ea)− g ((∇êaΘ)bb, ea)]. By the symmetry of ∇, we

get

I3 =

n∑
a,b=1

[g (eb(Θab)−Θ(∇êbea, eb)−Θ(êa,∇êbeb), ea)

− g (ea(Θbb) + 2Θ(∇êaeb, eb), ea)]

= 0.(4.14)

Putting relations (4.13) and (4.14) in equation (4.11), we obtain

0 = − 2

n
(n− 1)

1

ϕ
∆Hϕ− (n− 1)

ϕ2
||Oϕ||2g

− (n− 1) (n− 2)

n

1

(ϕ)
2 ||Oϕ||

2
g

(
ψkAijk

)2(
F

∂2F

∂yi∂yj

)−2

.(4.15)

Multiplying this last equation by ϕ2 we obtained

(
2ϕ∆Hϕ+ n||Oϕ||2g

)(
F

∂2F

∂yi∂yj

)2

+ (n− 2)||Oϕ||2g
(
ψkAijk

)2
= 0.(4.16)

By integration of equation (4.16) on T̊M and by using integration by parts, we obtain

(4.17) (n− 2)

∫
T̊M

[
|Oϕ|2

((
F

∂2F

∂yi∂yj

)2

+
(
ψkAijk

)2)]
ηF = 0

where ηF := (−1)
n(n−1)

2

n! ∧n dω, is the 2n-form on T̊M called volume form of (M,F )

[7] with ω := ∂F
∂yi dx

i the Hilbert form.

Since n > 2, the integrand in the left hand side of (4.17) is nonnegative. It has to
vanish. In particular |Oϕ| ≡ 0. Hence ϕ is constant. �

5 Conclusions and Suggestions

The trace-free horizontal Ricci tensor is very important in Finsler geometry because
it measures the defaut of a Finsler manifold to be horizontally an Einstein space. In
particular, every (locally) Minkowski space is (locally) horizontally Einstein. Thus
when a Finsler metric is Riemannian, the tensor BH

F reduces to the Riemannian
traceless Ricci curvature [5].

With the trace-free horizontal Ricci tensor, it was classified conformal transfor-
mations preserving pointwise horizontally Finslerian Ricci tensor. By the Theorem
3.1, we are studing Finsler manifolds which are conformally Einstein. Furthermore,
we plan to investigate in the future the second Chern’s curvature tensor for Finsler
non-Riemannian manifolds.

Acknowledgements. The first author would like to thank the German Academic
Exchange Service (DAAD) for financial support.



Prescribed Ricci tensor in Finslerian conformal class 55

References

[1] T. Aikou and L. Kozma, Global aspects of Finsler geometry, Handbook of Global
analysis, Elsevier Sci. B. V., Amsterdam, 2008; 1-39.

[2] T. Aubin, Some nonlinear problems in Riemannian Geometry, Springer-Verlag,
Berlin Heidelberg, 1998; 323-325.

[3] D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemannian-Finsler Geom-
etry, Springer-Verlang New York, 2000; 1-67.

[4] A. Benjancu and H. R. Farran, Geometry of pseudo-Finsler submanifolds, Kluwer
Academic Publishers, Berlin, 2000; 1-67.

[5] A. L. Besse, Einstein Manifolds, Springer-Verlag Berlin Heidelberg, 1987; 1-62.

[6] S. S. Chern and Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathe-
matics 6, Word Scientific Publishing, Singapore, 2005; 51-63.

[7] P. Dazord, Tores finslériens sans points conjugués, Bulletin de la Société
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