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Abstract. Let M be a real hypersurfaces in a complex space form Mn(c),
c ̸= 0, whose Lie derivative of shape operator in the direction of the
Reeb vector field coincides with the covariant derivative of it in the same
direction. In this paper, we characterize such real hypersurfaces of Mn(c).
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1 Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional cur-
vature c is called a complex space form, which is denoted by Mn(c). As is well-known,
a complete and simply connected complex space form is complex analytically isomet-
ric to a complex projective space PnC, a complex Euclidean space Cn or a complex
hyperbolic space HnC, according to c > 0, c = 0 or c < 0.

In this paper we consider a real hypersurface M in a complex space form Mn(c),
c ̸= 0. Then M has an almost contact metric structure (ϕ, g, ξ, η) induced from the
Kaehler metric and complex structure J on Mn(c). The Reeb vector field ξ is said
to be principal if Aξ = αξ is satisfied, where A is the shape operator of M and
α = η(Aξ). In this case, it is known that α is locally constant ([3]) and that M is
called a Hopf hypersurface.

Typical examples of Hopf hypersurfaces in PnC are homogeneous ones, namely
those real hypersurfaces are given as orbits under subgroup of the projective unitary
groups PU(n+1). R.Takagi [12] completely classified homogeneous real hypersurfaces
in such hypersurfaces as six model spaces A1, A2, B, C, D and E. On the other hand,
real hypersurfaces in HnC have been investigated by Berndt [1], Montiel and Romero
[7] and so on. Berndt [1] classified all homogeneous Hopf hyersurfaces in HnC as four
model spaces which are said to be A0, A1, A2 and B. A real hypersurface of A1 or
A2 in PnC or A0, A1, A2 in HnC, then M is said to be a type A for simplicity.

As a typical characterization of real hypersurfaces of type A, the following is due
to Okumura [11] for c > 0 and Montiel and Romero [7] for c < 0.
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Theorem A ([7,11]) Let M be a real hypersurface of Mn(c), c ̸= 0, n ≥ 2. It
satisfies Aϕ− ϕA = 0 on M if and only if M is locally congruent to one of the model
spaces of type A.

For the shape operator A on M , we define the Lie derivative Lξ by (LξA)X =
[ξ,AX] − A[ξ,X] for any vector field X on M . With regard to Lie derivative, the
study of real hypersurfaces in the complex space form is one of the very interesting
and important problems that are being studied by many geometricians (see [6],[8],[9],
etc). The Lie derivative and covariant derivative of the structure Jacobi operator with
respect to ξ was investigated by Perez and Santos (see [10]). More precisely, they
classified real hypersurfaces in PnC, whose structure Jacobi operator satisfies LξRξ =
∇ξRξ. Panagiotidou and Xenos(see [9]) classified real hypersurfaces satisfying the
same condition in P2C and H2C. As for the Lie derivative, Ki, Kim and Lim (see [5])
have proved the following.

Theorem B ([7,12]) Let M be a real hypersurface of Mn(c), c ̸= 0. Then it
satisfies RξLξg = 0 if and only if M is locally congruent to one of the model spaces
of type A.

In this paper, we shall study a real hypersurface in a nonflat complex space form
Mn(c) with Lie derivative and covariant derivative of shape operator A and give some
characterizations of such real hypersurface in Mn(c).

All manifolds in the present paper are assumed to be connected and of class C∞

and the real hypersurfaces supposed to be orientable.

2 Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c), and N be

a unit normal vector field of M . By ∇̃ we denote the Levi-Civita connection with
respect to the Fubini-Study metric tensor g̃ ofMn(c). Then the Gauss and Weingarten
formulas are given respectively by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

for any vector fields X and Y tangent to M , where g denotes the Riemannian metric
tensor of M induced from g̃, and A is the shape operator of M in Mn(c). For any
vector field X on M we put

JX = ϕX + η(X)N, JN = −ξ,

where J is the almost complex structure of Mn(c). Then we see that M induces an
almost contact metric structure (ϕ, g, ξ, η), that is,

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)(2.1)

for any vector fields X and Y on M . Since the almost complex structure J is parallel,
we can verify from the Gauss and Weingarten formulas the followings :
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∇Xξ = ϕAX, (∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.(2.2)

Since the ambient manifold is of constant holomorphic sectional curvature c, we
have the following Gauss, Codazzi equations and operator of Lie derivative respec-
tively :

R(X,Y )Z = c
4{g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

−2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,(2.3)

(∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},(2.4)

for any vector fields X, Y and Z on M , where R denotes the Riemannian curvature
tensor of M .

Let Ω be the open subset of M defined by

Ω = {p ∈ M | Aξ − αξ ̸= 0}.(2.5)

where α = η(Aξ). We put

Aξ = αξ + µW,(2.6)

where W be the unit vector field orthogonal to ξ and µ does not vanish on Ω.

3 Real hypersurface satisfying LξA = ∇ξA.

Let M be a real hypersurface in a complex space form Mn(c), c ̸= 0, satisfying
LξA = ∇ξA. In this section, we assume that the open set Ω given in (2.5) is not
empty. Then the above the condition together with (2.2) and Lie derivative in the ξ
implies that

(ϕA2 −AϕA)X = 0(3.1)

or equivalently

(AϕA−A2ϕ)X = 0.(3.2)

for any vector field X on M . Now, we prove the following Lemma.

Lemma 3.1Let M be a real hypersurface in a complex space form Mn(c), c ̸= 0
satisfying LξA = ∇ξA. If the open set Ω is not empty, then we have

AW = µξ − αW, AϕW = 0,(3.3)

α2 + µ2 = 0(3.4)

on Ω.
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Proof. If we put X = ξ into (3.1) and make use of (2.5)and (2.6), Then we have

(Aϕ− ϕA)W = αϕW.(3.5)

Putting X = ξ into (3.2) and using (2.5) and (2.6), we get AϕW = 0 and hence the
second equation of (3.3) on Ω. If we substitute the second equation of (3.3) into (3.5)
then we get ϕAW = −αϕW , or equivalentiy, the first equation of (3,3). It follows
immediately from X = W into (3.1) or X = ϕW into (3.2) and using (2.6) and the
first equation (3.3) that the equation (3.4) is given. �

Differentiating the smooth function µ = g(Aξ,W ) along any vector field X on M
using (2.2),(2.4),(2.6) and (3.3), we have

Xµ = g((∇ξA)W +
c

4
ϕW,X).

Since we have (∇ξA)W = ∇ξ(µξ−αW )−A∇ξW , we see from the above equation
that the gradient vector field ∇µ of µ is given by

∇µ = −(A+ αI)∇ξW + (ξµ)ξ − (ξα)W + (µ2 +
c

4
)ϕW.(3.6)

where I indicates the identity transformation on M . If we differentiate α =
g(Aξ, ξ) along vector field X and take account of (2.2),(2.4),(2.6) and the second
equation (3.3), then we obtain ∇α = (∇ξA)ξ and hence

∇α = µ∇ξW + (ξα)ξ + (ξµ)W + (αµ)ϕW.(3.7)

As a similar argument above, we can see that the gradient vector field of −α =
g(AW,W )

∇α = (A = αI)∇WW − (Wµ)ξ + (Wα)W + αµϕW.(3.8)

Comparing (3.7) and (3.8), we can verify that

µ∇ξW − (A+ αI)∇WW = −{(ξα) +Wµ)}ξ + {(Wα)− (ξµ)}W.

If we take inner product of ξ and W respectively, we find

ξα = −Wµ and Wα = ξµ(3.9)

by the virtue of the equation (3.3) on Ω, and hence the initial equation is reduced
to

µ∇ξW − (A+ αI)∇WW = 0.(3.10)
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By means of (2.2),(2.6) and (3.3), we can verify that

(∇WA)ξ = ∇W (Aξ)−A∇W ξ = µ∇WW + (Wα)ξ + (Wµ)W − α2ϕW.

and

(∇ξA)W = ∇ξ(AW )−A∇ξW = −(A+ αI)∇ξW + (ξµ)ξ − (ξα)W + µ2ϕW.

Therefore it follows from the equation (2.4) of Codazzi and making use of (3.9)
that

µ∇WW + (A+ αI)∇ξW = {al2 + µ2 − c

4
}ϕW.(3.11)

If we compare (3.10) and (3.11), we can verify that

{A2 + 2αA+ (α2 − µ2)I}∇ξW = αµ(α2 + µ2 − c

4
)ϕW.(3.12)

4 Some Lemmas.

In this section we assume that M is a real hypersurface satisfying LξA = ∇ξA in a
complex space form Mn(c), c ̸= 0, and the open set Ω given in (2.5) is not empty.
Then we may consider from (3.4) in Lemma 3.1 that we have α2 + µ2 = 0 on Ω. We
shall prove some Lemmas, which will be used later.

Lemma 4.1If M be a real hypersurface in a complex space form Mn(c), c ̸= 0
satisfying LξA = ∇ξA. If the open set Ω is not empty, then the vector field ∇α, ∇µ,
∇ξW and ∇WW are expressed in terms of the vector fields ξ, W and ϕW only on Ω.

Proof. Let D be the distribution spanned by the unit vector field ξ, W and
ϕW on Ω, that is, Dp = span{ξ,W, ϕW}P for any point p on Ω. Then we see from
(2.6) and (3.3) that D is invariant under the shape operator A and the structure
tensor field ϕ. Also, since A is symmetric we can choose a local orthogonal frame
field {ξ,W, ϕW,X4, · · · , X2n−1} on Ω such that AXi = λXi for 4 ≤ i ≤ 2n− 1. The
vector field ∇ξW can be expressed as

∇ξW −
2n−1∑
i=4

aiXi ≡ 0 (modD).(4.1)

It follows from (3.6) and (4.1) that

∇µ+

2n−1∑
i=4

ai(λi + α)Xi ≡ 0 (modD).(4.2)

and from (3.7) and (4.1) that

∇α−
2n−1∑
i=4

aiXi ≡ 0 (modD).(4.3)
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We can verify from (3.11) and (4.1) that

µ∇WW +

2n−1∑
i=4

ai(λi + α)Xi ≡ 0 (modD).

Using this equation, (3.8) is reduced to

µ∇α+

2n−1∑
i=4

ai(λi + α)2Xi ≡ 0 (modD).(4.4)

Since, by (3.4), the scalar function α2 + µ2 = 0 on Ω, we can substitute (4.2) and
(4.4) into α∇α+ µ∇µ = 0 yields

2n−1∑
i=4

ai{µ2(λi + α) + α(λi + α)2}Xi ≡ 0 (modD).(4.5)

for 4 ≤ i ≤ 2n− 1 on Ω. Next, substituting (4.2) and (4.3) into α∇α+ µ∇µ = 0, we
can get

2n−1∑
i=4

ai{α− µ(λi + α)Xi ≡ 0 (modD).(4.6)

If we compare (4.5) with (4.6), Then we have

α

2n−1∑
i=4

ai{µ+ (λi + α)2}Xi ≡ 0 (modD).

If α is zero in the above equation and make use of (3.4), Then we get µ = 0 and hence
it is a contradiction. Therefore, the above equation is rewritten as

2n−1∑
i=4

ai{µ+ (λi + α)2}Xi ≡ 0 (modD).(4.7)

If we substitute (4.3) into (3.12) and using (4.7), then we obtain

(1 + µ)

2n−1∑
i=4

aiXi ≡ 0 (modD).(4.8)

If we take inner product of this equation with Xi, then we have ai = 0 for 4 ≤ i ≤
2n− 1 provided µ ̸= −1.

In the case where µ = −1 and using the covariant differential of equation (3.4),
we get ∇α = 0. By the equation (4.1), we can verify that

2n−1∑
i=4

aiXi ≡ 0 (modD).

If we take inner product of this equation with Xi, then we have ai = 0 for any
4 ≤ i ≤ 2n− 1 and µ = −1 or µ ̸= −1. It follows (3.11), (4.1), (4.2) and (4.3)that the
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vector fields ∇ξW , ∇α, ∇µ and ∇WW are expressed in terms of ξ, W and ϕW only.
�

Lemma 4.2Under the assumption of Lemma 4.1. if α2+µ2 = 0 holds on Ω, then
we have

A∇ξW =
c

4
ϕW.(4.9)

Proof. From the derivative of a given assumption, we get

µ∇µ+ α∇α = 0.(4.10)

If we take inner product of (4.10) with ξ and W , respectively, Then we have

µξµ+ αξα = 0 and µWµ+ αWα = 0.(4.11)

If we substitute (3.6) and (3.7) into (4.10) and using (3.9), (4.1) and the assumption,
Then we get the equation of (4.9) on Ω. �

5 Characterizations of real hypersurfaces in a non-
flat complex space form.

In this section, we shall prove the following Theorems.

Lemma 5.1Let M be a real hypersurface satisfying LξA = ∇ξA in a nonflat
complex space form Mn(c), c ̸= 0. Then M is a Hopf hypersurface in Mn(c).

Proof. Assume that the open set Ω given in (2.5) is not empty. Then we can
consider from (3.4) that α2 + µ2 = 0 holds on Ω. If substitute (4.9) into (3.12) and
using the second equation of (3.3) then we get

(α2 − µ2)∇ξW = αµ(− c

4
)ϕW.

Since we have α2 + µ2 = 0, the above equation is rewritten as

∇ξW = − c

8α
µϕW.(5.1)

Because the shape operator A is invariant underD, if we apply A to (5.1) and by using
the second equation of (3.3) and (4.9), then we obtain c = 0 and it is a contradiction.
Thus, the set Ω is empty, and hence M is a Hopf hypersurface. �

Lemma 5.2Let M be a real hypersurface in a complex space form Mn(c), c ̸= 0.
Then we have LξA = ∇ξA on M if and only if M is locally congruent to one of the
model space of type A.

Proof. By Theorem 5.1, M is a Hopf hypersurface in Mn(c), that is Aξ = αξ.
Therefore the assumption LξA = ∇ξA is equivalent to

(ϕA2 −AϕA)X = 0.(5.2)



Characterization of real hypersurfaces 91

(AϕA−A2ϕ)X = 0.(5.3)

by use of (2.2) and (2.6). On the other hand, if we differentiate Aξ = αξ covariantly
and make use of the Codazzi equation, then we have

AϕA− α

2
(ϕA+Aϕ)− c

4
ϕ = 0.(5.4)

For any vector field X on M such that AX = λX, it follows from (5.4) that

(λ− α

2
)AϕX =

1

2
(αλ+

c

2
)ϕX.(5.5)

If λ ̸= α
2 , then we see from (5,5) that AϕX = 2αλ+c

2(2λ−α)ϕX so that ϕX is also principal

direction and we can write AϕX = µϕX. Assume that there is a point p on M such
that λ(λ − µ) = 0. If λ = 0, then we see from (5.3) that µ = 0 However, since
µ = 2αλ+c

2(2λ−α) , we obtain c = 0 at p and it is a contradiction. Therefore we see that

λ = µ on M and from this result we obtain

ϕA = Aϕ(5.6)

on the whole M .
Conversely if it satisfies (5.6), then it is easily seen that (5.2) or (5.3) holds, that

is LξA = ∇ξA is satisfies on M . Thus, Theorem 5.2 follows from Theorem A. �
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