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Abstract. A. Besse posed a conjecture that a solution of a critical point
equation is Einstein. The aim of our paper is to prove the conjecture for
K-paracontact metrics.
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1 Introduction

Let M be a n-dimensional compact oriented manifold and M be the set of all Rieman-
nian metrics of unit volume on M. The scalar curvature r, is a non-linear function
of the matric g. The differential at the point ¢ in the direction of a (0,2) tensor field
h is given by [2]

(1.1) r;(h) = —Ay(trgh) + 84(6gh) — g(Sy, h),

where A, is the negative Laplacian operator, d, is the divergence operator and Sy is
Ricci tensor of g. The L*-adjoint (r)* of 7/, is given by the formula

(12) (rg)™y = —(AgM)g + Vgy — 7S

for any C'*°-function v on M, where Vg is the Hessian operator of g.

Definition 1.1. Let (M", g), n > 2 be a compact Riemannian manifold with
boundary OM. Then g is called a critical metric if there exists a smooth function A
on M™ such that

(1.3) (r'Y'A=g
on M and A =0 on OM. The function A is known as the potential function.

The metrics which satisfy (1.3) are known as Miao-Tam critical metrics and we refer
equation (1.3) as Miao-Tam equation. In [4], Miao-Tam equation has been studied
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on almost Kenmotsu manifolds. Miao and Tam[6] themselves have classified Einstein
and conformally flat Riemannian manifolds satisfying Miao-Tam equation. In [5], the
authors studied certain contact metric manifolds satisfying Miao-Tam equation.

The total scalar curvature functional I' : M — R is defined by

I'(g) = /M rgdvg

where rg is the scalar curvature and dv, the volume form determined by the metric
and orientation. The Euler-Lagrange equation of the functional I' restricted over
{g € M : ry = constant} on a compact orientable manifold (M, g) can be written as
critical point equation

(1.4) (ri)* A = 2

where z, denotes the traceless Ricci tensor of M and A is a C°°-function on M. If
A\ is constant then from (1.4) we see that the metric g is Einstein. In this paper we
consider A is a non-constant function. The equation (r})*A = 0 is known as Fischer-
Marsden equation.

In [2], A. Besse posed a conjecture that the solution of critical point equation is
Einstein. In the paper [1], the authors proved that the conjecture is true for half
conformally flat case. In [3], the authors proved that a K-contact metric satisfying
critical point equation is Einstein and isometric to a unit sphere. They also proved
that a (k, u)-contact metric satisfying critical point equation is flat and isometric to
Entl x S"(4).

In this paper we would like to study K-paracontact manifolds satisfying Miao-Tam
equation and critical point equation. After the introduction we give required pre-
liminaries in Section 2. Section 3 contains the study of K-paracontact manifolds
satisfying Miao-Tam equation. In Section 4, we study K-paracontact manifolds sat-
isfying Euler-Lagrange equation of total scalar curvature. The last section contains
supporting example.

2 Preliminaries

Let M be a manifold of dimension (2n + 1). Let ¢ be a (1,1) tensor field, £ a vector
field and 1 a 1-form on M. Then the triple (p,&,n) is called an almost paracontact
structure on M, if the following conditions are satisfied :

i) X =X —n(X)§, n(§) =1,
i) (&) =0, nop=0,

iii) the eigendistributions D+ and D~ of ¢ corresponding to the eigenvalues 1 and
—1, respectively have equal dimension n.

If an almost paracontact manifold admits a pseudo-Riemannian metric such that

(2.1) 9(@X,9Y) = —g(X,Y) +n(X)n(Y),
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for all X, Y € x(M), the set of all smooth vector fields on M, then we say that
(M, ¢,&,m,g) is an almost paracontact metric manifold. Form (2.1) we have

(2.2) g(PX,Y) = —g(X,9Y), n(X)=g(X,%),

for all X € x(M).

The fundamental 2-form of an almost paracontact metric manifold (M, ¢, &, n, g)
is defined by F(X,Y) = g(X, ¢Y). If dy = F, then the manifold (M, ¢, &,n, g) is said
to be paracontact metric manifold.

If ¢ is a Killing vector field i.e. h = %.,6’54,0 = 0, where £ is the Lie derivative,
then (M, p,&,n,g) is called K-paracontact manifold. In a K-paracontact manifold
the following relations hold :

(2.3) Vx&=—pX,

(2.4) R(X, )€ = —X +n(X)¢,

(2.5) R(& X)Y = (Vxp)Y,

(2.6) (Vexp)pY — (Vx @)Y =29(X,Y)E — (X +n(X)&n(Y)

forall X, Y, Z € x(M), where V is the Levi-Civita connection of the pseudo-Riemannian
metric and R is the Riemannian curvature tensor. For details see [7].

Lemma 2.1 In a K-paracontact manifold (M, ¢, &, 7, g),
(2.7) Q€ = —2n¢

where @) is the Ricci operator.

Proof : From Proposition 2.4 of [7], we have

20((Vxp)Y.Z) = —g(NU(Y,2),0X) - 2dn(¢Z, X)n(Y)
+  2dn(eY, X)n(Z)

for all X, Y, Z € x(M), where N(Y, Z) = @*[Y, Z]+[pY, 0 Z]—¢lpY, Z]—¢[Y, 0 Z] -
2d0(Y, Z)¢.
Using (2.5) in the above equation and noting that dn(X,Y) = g(X, ¢Y), we obtain

(28)  g(R(X.0Y.2) = LoNO(Y, 2),0X) — g(X, Z)(Y) + (X, V().

Let {e1,e2, - ,en, €}, €5, -+ e, &} be a local orthogonal ¢-basis with g(e;,e;) =
dij, gle,€s) = —dij, e} = pe; where i,j € {1,2,---,n}. Contracting (2.8) over X

and Z with respect to this ¢-basis we get (2.7).
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Lemma 2.2. [4] Let a Riemannian manifold (M™,g) satisfies the Miao-Tam
equation. Then the curvature tensor R can be expressed as

R(X,Y)DA = (XA)QY — (YARQX +A(VxQ)Y — (VyQ)X)
(2.9) + (XY -(¥YHX

for any vector fields X,Y on M, where f = “\%11 and D is the gradient operator.
Moreover,

(2.10) VxDA=AQX + fX,
for all vector fields X on M.
Lemma 2.3. [3] Let (g, \) be a non-trivial solution of the critical point equation

(1.4) on an n-dimensional Riemannian manifold M. Then the curvature tensor R can
be written as

ROX,Y)DA = (XN)QY ~ (YHQX + (A + 1)(VxQ)Y
(2.11) - A+ D(VyQX +(X)HY - (V)X
for all vector field X and Y on M, f =—r ( %) and 7 is the scalar curvature
of g. Also
(2.12) VxDA=(A+1)QX + fX.

for all vector fields X on M.

3 K-paracontact manifolds satisfying Miao-Tam equa-
tions.

In this section, we study K-paracontact manifolds satisfying Miao-Tam equation.
Here we prove the following:

Theorem 3.1. Let (M, ¢,£,n,9) be a K -paracontact manifold of dimension (2n+1).
If there is a function A : M — R such that (g, \) satisfies the Miao-Tam equation,
then it is Einstein.

Proof : Since ¢ is Killing vector field, £:Q = 0. By (2.3) this equation gives
(3.1) (VeQ)X = QuX — pQX

for all X € x(M). Taking covariant derivative of (2.7) along an arbitrary vector field
X, we get

(3.2) (VxQ)E = QpX + 2npX.
Putting X = ¢ and replacing Y by X in (2.9) and using (3.1) and (3.2), we have
R(E,X)DN = (ENQX +2n(XN)E — ApQX — 2nApX

(3.3) + (ENHX = (XS
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Taking inner product of (3.3) with an arbitrary vector field Y and using (2.5), we get

9(Vxe)Y, D) + (EN)g(QX,Y) + 2n(XA\)n(Y)
(3.4) — M(PRX,Y) —2nAg(pX,Y) + (£f)g9(X,Y) — (X f)n(Y) = 0.

Replacing X by ¢X and Y by ¢Y in (3.4) and using (2.7), we get

9((Vox@)pY, DA) + (M) g(Qe X, pY)
(3:5)  + A(QpX,Y) +2nAg(0X,Y) — (§)g9(X,Y) + (§f)n(X)n(Y) = 0.

Subtracting (3.5) from (3.4) and using (2.6), we obtain

28(f = Ng(X,Y) + X{(2n+ A — fin(Y)
+ EA = mXnY) + (ENg(QX,Y) — (EN)g(QeX, ¢Y)
— AM(PQRQX.Y) — Ag(QpX.Y) — dng(¢X,Y) = 0.

By antisymmetrization with respect to X and Y in the above equation, we have

X{(2n+ DA = fin(Y) =Y{(2n+ 1A - fin(X)
— 229(QeX,Y) — 2Xg(pQX,Y) — 8nAg(pX,Y) = 0.

Substituting X by ¢X and Y by ¢Y in the above equation and using (2.7), we get
(3.6) Ag(QeX.Y) + g(9QX,Y)] = —dnAg(p X, Y).

Since A does not vanish in the interior of M, the last equation gives

(3.7) QpX + QX = —4npX.
Let {e1,e2, -+ ,en, €l €5, -+ e, &} be a local orthogonal ¢-basis with g(e;,e;) =
dij, glei,€s) = —0ij, e = pe; where i,j € {1,2,---,n}. Using equation (2.1),

9(Qe;,e;) = —g(pQe;, pe;). Using this ¢-basis, (2.7) and (3.7) , we compute the
scalar curvature

n

ro= Y g(Qeiei) = > g(Qpei, ei) + g(QE,€)
i=1

i=1

= =) g(¢Qe;i + Qpe;, pe;) — 2n

i=1
= —2n(2n+1).
From Lemma 2.2, we have f = —Z3FL. Since r = —2n(2n + 1), it follows that
(3.8) @n+1)A—f— —
. =5

Taking inner product of (3.3) with DA and using (3.8), we obtain

(3.9) (EN(QDA +2nDX) + MQeDA + 2npDA) = 0.
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Putting X = DX in (3.7), we have
(3.10) QpDA = —pQDX — dnpDA.
Using (3.10) in (3.9), we get
(3.11) (EN(QDX +2nDX) — M@QDAX + 2npDX) = 0.
Now operating ¢ on the above equation and using (2.7), we obtain
(3.12) MQDX+ 2nDX) — (EXN)(@QDA + 2npDA) = 0.
Combining (3.11) and (3.12), we get

((EN)? = A3)(QDA + 2nD)) = 0.

From the above equation we have either (i) QDA+ 2nDA = 0, or (ii) () = £
Case (i) : In this case QDA + 2nDX = 0.Taking covariant differentiation of this
equation along an arbitrary vector field X and using (2.10), we obtain

(VxQ)DX+AQ*X + (f +2nN)QX +2nfX = 0.
Contracting this equation over X with respect to an orthonormal basis {E;}, we get
9((VE,Q)D, E;) + A\ QI> — 4n?(2n + 1)\ = 0.

Using the formula div@QX = %X r in the above equation and noting that scalar
curvature is constant, we have A\|Q|? — 4n?(2n + 1)A = 0. Since A does not vanish in
interior of M, it follows that |Q|? = 4n2(2n + 1)\.

Now using r = —2n(2n + 1),

2

=QI* -

272 r2

r
=0
2n+1+2n+1

2n+1

1

o

Since the length of the symmetric tensor @ — #—HI vanish, we must have @ — ﬁ] =
0. Since r = —2n(2n + 1), we get QX = —2nX for all X € x(M). This shows that
M is Einstein.
Case (ii) : If €A = A, then £(EX) = EX = A, Also if €A = —), then {(EN) = —EX = A
In either case £(éA) = A. Putting X = £ in (2.10), taking inner product with & and
using (2.7), we have

E(EX) = —2n\ + f.
Since £(EN) = A, using (3.8) the above equation implies i = 0, a contradiction.
Therefore, only Case (i) holds.

4 K-paracontact manifolds satisfying Euler-Lagrange
equation of total scalar curvature.

In this section, we study K-paracontact manifolds satisfying Euler-Lagrange equation
of total scalar curvature. Here, we prove the following:
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Theorem 4.1. Let (M, ,&,n,g) be a K-paracontact manifold of dimension (2n+1).

If there is a function A : M — R such that (g, \) satisfies the critical point equation,

then it is Einstein and (g, \) satisfies Fischer-Marsden equation.

Proof : Putting X = ¢ and replacing Y by X in (2.11) and using (3.1) and (3.2),
we have

R(&,X)DX = (ENQX +2n(XN)E — (A + 1)pQX
(4.1) — 20+ 1)eX + (/)X — (X f)E.

Taking inner product in (4.1) with ¥ and using (2.5), we obtain

9(Tx9)Y; D) + (EN)g(@X,Y) = 2n(A + 1)g(oX, )
(42)  + {20000 = XFn(Y) — A+ Dg(pQX,Y) + (€)g(X, V) =0.

Substituting X by ¢X and Y by ¢Y in (4.1), we get

9((Vox9)pY. DA) + (EN)g(QpX, ¢Y) + 2n(A+ 1)g(X,Y)
(4.3) + A+ Dg(QpX,Y) = (££)g(X,Y) + (£f)n(X)n(Y) = 0.
Subtracting (4.3) from (4.2) and using (2.6), we have

2£§f —})g(& Y) 4+ X{(2n + DA — f}n(NY)
+ LA = nX)n(Y) + (EN)9(QX.Y) — (EN)g(QpX, ¢Y)
— (A 1D){g(eQX,Y) + g(QuX,Y) + 4ng(¢X,Y)} = 0.

Antisymmetrizing the above equation, we get

X{(2n + DA = fin(Y) = Y{(2n+ 1)A — fin(X)
= 20+ D[g(QeX,Y) + g(¢pQX,Y) + 4ng(pX,Y)] = 0.

Setting X = X and Y = ¢Y in the above equation, we have
A+ D[g(QeX,Y) + g(¢QX,Y) + 4ng(pX,Y)] = 0.
Since \ is a non-constant function, the above equation gives
(4.4) QpX + pQX = —4dnpX.
Continuing the same processes as in the proof of Theorem 3.1, we have
r=—-2n(2n+1)
From Lemma 2.3, we get f = —r (% + ﬁ) Since r = —2n(2n+1), it follows that
(4.5) 2n+ 1A —f=—2n
Proceeding in the same way as in proof of the Theorem 3.1, we obtain

{(EN2 = (A +1)>H(QDAX + 2nDX) = 0.
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From the above equation we have either (i) QDX+ 2nDX = 0 or, (ii) £ = £(X + 1).

Case (i) : By similar argument as in the proof of Theorem 3.1, we get g is Einstein
metric. Since g is Einstein, z, = 0. Therefore from (1.4) we have (ry)*A = 0. This

proves that (g, \) satisfies the Fischer-Marsden equation. .
Case (ii) : In this case £A = £(\ + 1). Therefore £(§X) = £(€A) = A + 1. Putting
X = ¢ in (2.12), then taking inner product with &, we get

E(EN) = —2n( A+ 1) + f.

As £(€X) = A+ 1, we arrive in a contradiction by (4.5). So only Case (i) holds.

5 Example

In this section, we construct an example of a K-paracontact manifold which satisfies
Miao-Tam equation, critical point equation and Fischer-Marsden equation.

We consider the three dimensional manifold M = {(z,y,2) : (z,y,2) € R?}, where
(7,9, z) are the standard coordinates in R3. Define the almost paracontact structure

(¢.&,n) on M by
ple1) =e2, @(e2) =e1, wle3) =0, E=e3, n=—dz

where e; = ez%, ey = €7 (% — 6%) , e3 = —%. e1, €2, e3 are linearly independent

at each point of M. we have
[e1,e2] =0, fer,e3] =e1, ez, e3] = ea.
Let g be the Riemannian metric defined by
gler,e1) = —g(ez,e2) = gles,e3) =1, glei,e5) =0,i #j

where 7,5 = 1,2, 3.
By the linearity property of g and ¢, we have

9(pX,0Y) = —g(X,Y) + n(X)n(Y).

It is easy to verify that, (M, ¢,&,n,g) is a K-paracontact manifold. Let V be the
Levi-Civita connection with respect to g. Then by Koszul formula

v8161 = —e€s3, v61€2 = Oa v6163 = €1,

ve261 = O, v52€2 = e3, Ve2€3 = €2,
Vegel = 0, V63€2 = 07 V6363 =0.

The components of the curvature tensor R(X,Y)Z are

R(ei,ez)er = e2, R(ei,ea)ea =e1, R(er,ez)es =0,
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R(ei,e3)er =e3, R(er,esz)ea =0, R(e,es)es = —er,
R(ez, 63)61 = 0, R(eg, 63)62 = —€3, R(eg, 63)63 = —€9.

The Ricci tensor is given by
S(X,Y) = g(R(e1, X)Y, e1) — g(R(e2, X)Y, e2) + g(R(e3, X)Y, e3)

for all X,Y € x(M). Using the components of the curvature tensor in the above, we
have
S(e1,e1) = —S(e2,e2) = S(es, e3) = —2,
5(61762) = 5(62,63) = 5(61,63) =0.

In view of above relation,
S(X,Y)=-29(X,Y), and r = —6

for all X,Y € x(M). So the manifold is Einstein.
Let A\=e %+ % By direct computation we have

1 1
D)\z()\—2>egandAg)\:3<>\—2>

Also VxDX = (A— 1) X, for all X € x(M). Hence
—(AgN)g(X,Y) +g(VxDAY) = AS(X,Y) = g(X,Y)

for all X,Y € x(M). This implies that g satisfies Miao-Tam equation and the example
varifies Theorem 3.1.

Again taking A=e¢7, similarly it can be verified that

—(ANg(X,Y) + g(VxDAY) = AS(X,Y) = 2z, = 0,

for all X,Y € x(M). This implies that g satisfies critical point equation. Also g
satisfies Fischer-Marsden equation. Hence the example verifies Theorem 4.1.

Acknowledgements. The second author is financially supported by UGC, Ref. ID.
423044.

References

[1] A. Barros, E. Ribeiro Jr., Critical Point Equation on four-dimensional compact
manifolds, Math. Nachr. 287 (2014), 1618-1623.

[2] A. Besse, Einstein Manifolds, Springer-Verlag, New York (2008).

[3] A. Ghosh, D. S. Patra, The critical point equation and contact geometry,
arXiv:1711.05935v1 [math.DG] 16 Nov 2017.

[4] D. S. Patra, A. Ghosh, Certain almost Kenmotsu metrics satisfying the Miao-
Tam Equation, arXiv:1701.04996v1 [math.DG] 18 Jan 2017.

[5] D. S. Patra, A. Ghosh, Certain contact metrics satisfying the Miao-Tam critical
condition, Ann. Polon. Math. 116 (2016), 263-271.



126 Avijit Sarkar and Gour Gopal Biswas

[6] P. Miao, L.-F. Tam, On the volume functional of compact manifolds with bound-
ary with constant scalar curvature, Calc. Var. PDE. 36 (2009), 141-171.
[7] S. Zamkovoy, Canonical connections on para-contact manifolds, Ann. Global

Anal. Geom. 36 (2009), 37-60.

Authors’ address:

Avijit Sarkar

Department of Mathematics,
University of Kalyani,
Kalyani, Pin-741235,

West Bengal, India.

Email: avjaj@yahoo.co.in

Gour Gopal Biswas
Department of Mathematics,
University of Kalyani,
Kalyani, Pin-741235,

West Bengal, India.

Email: ggbiswas6@gmail.com



