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Abstract. In this paper, we studyN(k)−contact metric manifolds. Firstly,
we characterize the N(k)−contact metric manifold endowed with a con-
circular vector field. Then, we discuss N(k)−contact metric manifolds
admitting quasi-Yamabe solitons and obtain some necessary conditions
for an N(k)−contact metric manifold to be Sasakian. Finally, we inves-
tigate N(k)−contact metric manifolds satisfying the curvature conditions
R.h = 0, h.R = 0, R.Q = 0 and Q.R = 0.
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1 Introduction

The first study on N(k)−contact metric manifolds was given by Tanno in [21]. In this
paper, Tanno obtained that if the structure vector field ξ belongs to the k−nullity
distribution on an Einstein compact Riemannian manifold M of dimension 2n+1 ≥ 5,
then k = 1 and M is Sasakian. Then, Blair et al. extended N(k)−contact metric
manifolds to the (k, µ)−contact metric manifolds in 1995 [5]. Further, N(k)−contact
metric manifolds and (k, µ)−contact metric manifolds have been studied by many
mathematicians (e.g., see [10]-[12], [16], [17], [20] and [22]).

The notion of Yamabe soliton in Riemannian geometry was introduced by Hamil-
ton as special solutions of the Yamabe flow [13]. Yamabe solitons naturally arise
as limits of dilations of singularities in the Yamabe flow. A Yamabe soliton is a
Riemannian manifold (M, g) if it admits a vector field V such that

(£V g)(X,Y ) = (λ− r)g(X,Y ),(1.1)

where £V g is the Lie-derivative of the metric tensor g in the direction vector field
V , which is called soliton field of the Yamabe soliton (M, g), λ is a real number,
r is the scalar curvature of M , and X,Y are the vector fields on M . A Yamabe
soliton which satisfies (1.1) is denoted by (M, g, V, λ). Also, a Yamabe soliton is
called a gradient if the soliton field V is the gradient of a smooth function −β (i.e.,
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V = −∇β) and is called shrinking, steady or expanding depending on λ < 0, λ = 0
or λ > 0, respectively. If £V g = 0 and £V g = ρg, then the soliton field V is said to
be Killing and conformal Killing, respectively, where ρ is a function.

In [9], Chen and Deshmukh introduced the notion of quasi-Yamabe soliton (as a
generalization of Yamabe soliton) on a Rimannian manifold (M, g), as follows:

(£V g)(X,Y ) = (λ− r)g(X,Y ) + µV ⋆(X)V ⋆(Y ),(1.2)

where V ⋆ is the dual 1−form of V , λ is a real number and µ is a smooth function
on M . The vector field V is also called soliton field for the quasi-Yamabe soliton. A
quasi-Yamabe soliton is denoted by (M, g, V, λ, µ).

On the other hand, a vector field v on a Riemannian manifold (M, g) is called
concircular if it satisfies

∇Xv = fX(1.3)

for any X ∈ Γ(TM), where ∇ is the Levi-Civita connection on M and f is a smooth
function on M . If f is equal to one in (1.3), then v is called a concurrent vector field.
Moreover, if f vanishes identically in (1.3) the vector field v is called a parallel vector
field [6]. Concircular vector fields play an important role in the theory of projective
and conformal transformations. The integral curves of concircular vector fields are
geodesics. Therefore, such vector fields are known as geodesic fields in literature
[18]. There has been several works about concircular and concurrent vector fieds in
literature (see [6]-[8], [14], [15], [19] and [24]).

The present paper is organized as follows:
Section 1 is concerned with introduction. In section 2, we give some basic no-

tions about almost contact metric manifolds and N(k)−contact metric manifolds. In
section 3, we deal with N(k)−contact metric manifolds endowed with a concircular
vector field and obtain some results about this manifold. In section 4, we investi-
gate N(k)−contact metric manifolds admitting quasi-Yamabe soliton and give some
characterizations for such a manifold. In last section, we study N(k)−contact metric
manifolds satisfying certain curvature conditions.

2 Preliminaries

In this section, we recall some fundamental notations and formulas of almost contact
metric manifolds from [2] and [3].

A differentiable manifold M of dimension (2n+1) is said to be an almost contact
metric manifold if it admits an almost contact metric structure (φ, ξ, η, g) and the
Riemannian metric g satisfies the following relations:

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ)(2.1)

and

g(φX, ϕY ) = g(X,Y )− η(X)η(Y ), g(φX, Y ) = −g(X,φY )(2.2)

for any X,Y ∈ Γ(TM), where ξ is a vector field of type (0, 1), (which is so-called
the characteristic vector field), 1− form η is the g−dual of ξ of type (1, 0) and φ is a
tensor field of type (1, 1) on M .
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On the other hand, in [2], D.E. Blair defined the fundamental 2−form Φ of M as
follows:

Φ(X,Y ) = g(X,φY )

for any X,Y ∈ Γ(TM). Furthermore, an almost contact metric manifold M is called
a contact metric manifold if it satisfies

Φ(X,Y ) = dη(X,Y ).

The Nijenhuis tensor field of φ is defined by

Nφ(X,Y ) = [φX,φY ] + φ2[X,Y ]− φ[X,φY ]− φ[φX, Y ]

for all X,Y ∈ Γ(TM). If M is an almost contact metric manifold and the Nijenhuis
tensor of φ satisfies

Nφ + 2dη ⊗ ξ = 0

then, M is called a normal contact metric manifold. A normal contact metric manifold
M is called Sasakian. An almost contact metric manifold M is Sasakian if and only
if

(∇Xφ)Y = g(X,Y )ξ − η(Y )X).

For a Sasakian manifold, we also have

∇Xξ = −φX,

R(X,Y )ξ = η(Y )X − η(X)Y,

where ∇ and R are the Levi-Civita connection and the Riemannian curvature tensor
on M , respectively.

The (k, µ)−nullity distribution on contact metric manifolds was introduced by
Blair et al. and defined in [5]

N(k, µ) : p → Np(k, µ) = {Z ∈ TpM |R(X,Y )Z

= (kI + µh)(g(Y, Z)X − g(X,Z)Y )},(2.3)

where (k, µ) ∈ R2, I is an identity map and h is the tensor field of type (1, 1) defined

by h =
1

2
£ξφ. This tensor field satisfy

hξ = 0, hφ+ φh = 0, ∇Xξ = −φX − φhX,(2.4)

and

g(hX, Y ) = g(X,hY ),(2.5)

η(hX) = 0.(2.6)

A contact metric manifold M is called a (k, µ)−contact metric manifold, if ξ belongs
to (k, µ)−nullity distribution N(k, µ). If µ vanishes identically in (2.3), then the
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(k, µ)−nullity distribution N(k, µ) reduces to k−nullity distribution N(k) and is given
by [21]

N(k) : p → Np(k) = {Z ∈ TpM |R(X,Y )Z

= k(g(Y, Z)X − g(X,Z)Y )}.

If ξ ∈ N(k), then a contact metric manifold M is called an N(k)−contact metric
manifold [21]. Also, if k = 1, an N(k)−contact metric manifold is Sasakian. If k = 0,
then the manifold is locally isometric to the product En+1×S4 for n > 1 and flat for
n = 1 [4]. For an N(k)−contact metric manifold, the followings are satisfied [4]:

h2 = (k − 1)φ2,(2.7)

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )hX,(2.8)

R(X,Y )ξ = k(η(Y )X − η(X)Y ),(2.9)

R(ξ,X)Y = k(g(X,Y )ξ − η(Y )X),(2.10)

S(X,Y ) = 2(n− 1)g(X,Y ) + 2(n− 1)g(hX, Y )

+[2nk − 2(n− 1)]η(X)η(Y ), n ≥ 1(2.11)

S(X, ξ) = 2nkη(X),(2.12)

Qξ = 2nkξ,(2.13)

r = 2n(2n− 2 + k),(2.14)

where r stands for the scalar curvature, S is the Ricci tensor and Q is the Ricci
operator defined by S(X,Y ) = g(QX,Y ).

On the other hand, a Riemannian manifold (M, g) is called η−Einstein if there
exists two real constants a and b such that the Ricci tensor field S of M satisfies

S = ag + bη ⊗ η.

If the constants b and a are equal to zero, then M is called Einstein and a special
type of η−Einstein, respectively ([1], [23]). Also, on a Riemannian manifold (M, g),
we have the followings

g(∇β,X) = X(β),(2.15)

Hβ(X,Y )) = g(∇X(∇β), Y ),

where ∇β and Hβ are the gradient of a function β on M and the Hessian of β,
respectively [8].

Example 2.1. [11] We consider the three-dimensional manifold

M = {(x, y, z) ∈ R3, (x, y, z) ̸= (0, 0, 0)},

where (x, y, z) are the Cartesian coordinates in R3. Let e1, e2 and e3 be the linearly
independent vector fields in R3 which satisfies

[e1, e2] = (1 + λ)e3, [e1, e3] = −(1− λ)e2 and [e2, e3] = 2e1,
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where λ is a real number. Let g be the Riemannian metric defined by

g(ei, ei) = 1

g(ei, ej) = 0 for i ̸= j.

Also, let η, φ be the 1− form and the (1, 1)−tensor field, respectively defined by

η(Z, e1) = 1, φ(e2) = e3, φ(e3) = −e2, φ(e1) = 0

for any Z ∈ Γ(TM). Furthermore,

he1 = 0, he2 = λe2, and he3 = −λe3.

On the other hand, using Koszul’s formula for the Riemannian metric g, we have:

∇e1e1 = ∇e1e2 = ∇e1e3 = ∇e2e2 = ∇e3e3 = 0,

∇e3e2 = −(1− λ)e1, ∇e3e1 = (1− λ)e2

∇e2e1 = −∇e2e3 = −(1 + λ)e3.

Therefore, (M,φ, ξ, η, g) is a 3−dimensional a contact metric manifold. Using the
above equations, one has

R(e1, e2)e3 = 0, R(e1, e3)e2 = 0, R(e2, e3)e1 = 0,

R(e1, e2)e2 = (1− λ2)e1, R(e1, e2)e1 = −(1− λ2)e2,

R(e1, e3)e3 = (1− λ2)e1, R(e1, e3)e1 = −(1− λ2)e3,

R(e2, e3)e3 = −(1− λ2)e2, R(e2, e3)e2 = (1− λ2)e3.

Hence, The manifold M is a 3−dimensional N(k)−contact metric manifold.

3 N(k)−contact metric manifolds endowed with a
concircular vector field

In this section, we deal with an N(k)−contact metric manifold endowed with a con-
circular vector field and obtain some important characterizations such a manifold.

Now, we begin to this section with the following:

Proposition 3.1. Let M be an N(k)−contact metric manifold. Then, the charac-
teristic vector field ξ cannot be the gradient ∇β of a function β on M .

Proof. Let us assume that the structure vector field ξ is the gradient ∇β of a function
β on M , that is, ∇β = ξ. From (2.4), the Hessian Hβ of β satisfies

Hβ(X,Y ) = g(∇X(∇β), Y )

= g(∇Xξ, Y )

= −g(φX, Y )− g(φhX, Y )(3.1)

for any X,Y ∈ Γ(TM). Since the Hessian Hβ of β is a symmetric in X and Y , from
(3.1) one has

−g(φX, Y )− g(φhX, Y ) = −g(φY,X)− g(φhY,X).(3.2)
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From (2.2), (2.4) and (3.2), we get

2g(φX, Y ) = 0

and hence

dη(X,Y ) = 0.(3.3)

Removing X,Y in equation (3.3), we have

dη = 0.

Since dη ̸= 0, this is a contradiction. Therefore, the proof is completed. �

Now, we shall give an important theorem of this section.

Theorem 3.2. Let M be an N(k)−contact metric manifold. Then, the characteristic
vector field ξ is not concircular on M .

Proof. Let us assume that the structure vector field ξ is a concircular on M . Then,
we write

∇Xξ = fX(3.4)

for any X ∈ Γ(TM). With the help of (2.4) and (3.4), one has

fX = −φX − φhX.(3.5)

Taking the inner product of (3.5) with vector field φY , we get

fg(X,φY ) = −g(φX,φY )− g(φhX,φY ).(3.6)

Also, interchanging the roles of X and Y in (3.6) gives

fg(Y, φX) = −g(φY, φX)− g(φhY, φX).(3.7)

Adding (3.6) and (3.7) and using (2.1), (2.2), (2.4)-(2.6), we have

g(φX,φY ) = −g(hX, Y ).(3.8)

Replacing X by hX in (3.8), we write

g(φhX,φY ) = −g(h2X,Y ).(3.9)

From (2.1), (2.2), (2.6) and (2.7) we get

−g(φ2hX, Y ) = −g((k − 1)φ2X,Y ).

and hence

g(hX, Y ) = (k − 1)g(φX,φY ).(3.10)
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Combining (3.8) with (3.10) yields

kg(hX, Y ) = 0(3.11)

Again, replacing X by hX in (3.11) and making use of (2.2), (2.7) one has

k(k − 1)g(φX,φY ) = 0,

equivalent to

k(k − 1)dη(φX, Y ) = 0.

Since dη ̸= 0, k = 0 or k = 1. If k = 1, then h = 0. From (3.8), one can write

dη(φX, Y ) = g(φX,φY ) = −g(hX, Y ) = 0.

This is a contradiction. Therefore, we have k = 0. If we use (2.2) and (3.8) in (3.6),
we get

fg(X,φY ) = fdη(X,Y ) = 0,

which implies that f = 0. Then, from (2.4) and (3.4) we find that

0 = (£ξg)(X,Y ) = 2g(hX,φY )

Since h ̸= 0, this is a contradiction. Thus, the vector field ξ is not concircular on M ,
which completes the proof of the theorem. �

Next theorem is the final result of this section.

Theorem 3.3. Let M be an N(k)−contact metric manifold endowed with a concir-
cular vector field v. If the vector field hv is a concircular on M , then M is either
locally isometric to the product En+1 × S4 for n > 1 and flat for n = 1, or M is
Sasakian.

Proof. Let hv be a concircular vector field on M . Then, we have

∇Xhv = fX(3.12)

for any X ∈ Γ(TM), where f is a function on M . If we take the inner product of
(3.12) with ξ, one has

g(∇Xhv, ξ) = fη(X).(3.13)

Also, using the fact that g(hv, ξ) = 0 and from (2.4) we write

g(∇Xhv, ξ) = −g(hv,∇Xξ)

= g(hv, φX) + g(hv, φhX),

then the equation (3.13) becomes

g(hv, φX) + g(hv, φhX) = fη(X).(3.14)
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Replacing X by hX in (3.14) and using (2.1), (2.6), (2.7), we obtain

g(hv, φhX)− (k − 1)g(hv, φX) = 0.(3.15)

Putting X = hX in (3.15) and (2.7) yields

−(k − 1)g(hv, φX)− (k − 1)g(hv, φhX) = 0.(3.16)

From (3.15) and (3.16), we find

−(k − 1)g(hv, φX)− (k − 1)2g(hv, φX) = 0.

and we further infer

k(k − 1)dη(hv,X) = 0.

Since dη ̸= 0, k = 0 or k = 1. Thus, we get the desired result. �

4 N(k)−contact metric manifolds admitting quasi-
Yamabe solitons

In this section, we characterize N(k)−contact metric manifolds admitting a quasi-
Yamabe soliton defined by (1.2), and obtain some necessary conditions for such man-
ifolds to be Sasakian. We begin with the following:

Theorem 4.1. Let M be an N(k)−contact metric manifold. If M admits a quasi-
Yamabe soliton as its soliton field ξ, then M has either constant scalar curvature, or
M is Sasakian.

Proof. It follows from the definition of the Lie derivative and from (2.2), (2.4), that
we have

(£ξg)(X,Y ) = 2g(hX,φY ),(4.1)

for any X,Y ∈ Γ(TM). Since M is a quasi-Yamabe soliton with soliton field ξ, from
(1.2) and (4.1) one has

2g(hX,φY ) = (λ− r)g(X,Y ) + µη(X)η(Y ).(4.2)

Also, if we replace X by hX in (4.2) and use (2.1), (2.6), (2.7), we get

−2(k − 1)g(X,φY ) = (λ− r)g(hX, Y ).(4.3)

By interchanging the roles of X and Y in (4.3), we obtain

−2(k − 1)g(Y, φX) = (λ− r)g(hY,X).(4.4)

Then (2.2), (2.5), (4.3) and (4.4) yield

0 = 2(λ− r)g(hX, Y ).(4.5)
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Again, replacing X by hX in (4.5) and using the fact that h2 = (k − 1)φ2, we get

0 = (k − 1)(λ− r)g(φX,φY ),

which implies that

0 = (k − 1)(λ− r)dη(φX, Y ).

Since dη ̸= 0, k = 1 or λ = r. This completes the proof of the theorem. �

Using the equality (4.2), we can state the following.

Corollary 4.2. Let M be an N(k)−contact metric manifold admitting a quasi-
Yamabe soliton as its soliton field the structure vector field ξ. If M has constant
scalar curvature r = λ, then the structure vector field ξ is a Killing on M .

Now, we shall give the main theorem of this section.

Theorem 4.3. Let M be an N(k)−contact metric manifold. If M admits a quasi-
Yamabe soliton whose the soliton field V is a pointwise collinear with ξ, then soliton
field V is either a constant multiple of ξ or M is Sasakian.

Proof. Let V be a pointwise collinear with the structure vector field ξ, that is, V = bξ,
where b is a function on M . Then, from (1.2), we have

g(∇Xbξ, Y ) + g(∇Y bξ,X) = (λ− r)g(X,Y ) + µb2η(X)η(Y )(4.6)

for any X,Y ∈ Γ(TM). From (2.2), (2.4) and (4.6), one has

X(b)η(Y ) + Y (b)η(X) + 2g(hX,φY ) = (λ− r)g(X,Y ) + µb2η(X)η(Y ).(4.7)

By replacing X by hX in (4.7) and using (2.1), (2.6), (2.7) we infer

hX(b)η(Y )− 2(k − 1)g(X,φY ) = (λ− r)g(hX, Y ).(4.8)

Interchanging the roles of X and Y in (4.8), we write

hY (b)η(X)− 2(k − 1)g(Y, φX) = (λ− r)g(hY,X).(4.9)

Adding (4.8) and (4.9) and from (2.2), we get

hX(b)η(Y ) + hY (b)η(X) = 2(λ− r)g(hX, Y ).(4.10)

By putting Y = ξ in (4.10) and making use of (2.6), (2.15) gives

g(∇b, hX) = 0.(4.11)

Since the Riemannian metric g is non-degenere, the equation (4.11) implies that
∇b = 0 or hX = 0, which completes the proof. �

Proposition 4.4. Let M be an N(k)−contact metric manifold admitting a quasi-
Yamabe soliton whose soliton field V is a pointwise collinear with the structure vector
field ξ. If M has constant scalar curvature r = λ, then the soliton field V is the
gradient ∇b of a function b provided µ.b = 2, where λ and µ are defined by (1.2).
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Proof. Since M has constant scalar curvature r = λ, then from (4.7) we have

X(b)η(Y ) + Y (b)η(X) + 2g(hX,φY ) = µb2η(X)η(Y ).(4.12)

for any X,Y ∈ Γ(TM). If we take ξ instead of X and Y in (4.12) and use (2.1), (2.4),
then we get

ξ(b) =
1

2
µb2.(4.13)

Also, by subsituting Y = ξ in (4.12) and using (4.13), we get

X(b) =
1

2
µb2η(X)

equivalently,

g(∇b,X) = g(
1

2
µb2ξ,X).(4.14)

Removing X in equation (4.14), one has

∇b =
1

2
µb2ξ.

Using the fact that µ.b = 2 in the above equation, we obtain

∇b = bξ

and hence

∇b = V.

This is the desired result. Therefore, the proof is completed. �

5 N(k)−contact metric manifolds satisfying the cur-
vature conditions R.h = 0, h.R = 0, R.Q = 0 and
Q.R = 0

In this section, we investigate N(k)−contact metric manifolds satisfying certain cur-
vature conditions and give some characterization theorems which classify these man-
ifolds.

The first result of this section is the following:

Theorem 5.1. Let M be an N(k)−contact metric manifold such that the condition
R.h = 0 is satisfied. Then, M is either locally isometric to the product En+1×S4 for
n > 1 and flat for n = 1, or M is Sasakian.

Proof. Let us assume that an N(k)−contact metric manifold satisfies the condition
(R(X,Y ).h)Z = 0, that is,

R(X,Y )hZ − h(R(X,Y )Z) = 0(5.1)



A study on N(k)−contact metric manifolds 137

for any X,Y, Z ∈ Γ(TM), where R denotes the Riemann curvature tensor and h

denotes the tensor field defined by h =
1

2
£ξφ. By setting X = ξ in (5.1), we have

R(ξ, Y )hZ − h(R(ξ, Y )Z) = 0(5.2)

Also, by virtue of (2.4),(2.6), (2.10) and (5.2), we get

k(g(Y, hZ)ξ)− kη(Z)hY )) = 0.(5.3)

By replacing Z by hZ in (5.3) and using (2.2) (2.6), (2.7), we obtain

−k(k − 1)g(φY, φZ) = 0

and hence

k(k − 1)dη(φY,Z) = 0.

Since dη ̸= 0, k = 0 or k = 1. Thus, the proof is completed. �

Theorem 5.2. Let M be an N(k)−contact metric manifold such that the condition
h.R = 0 is satisfied. Then, M is either locally isometric to the product En+1×S4 for
n > 1 and flat for n = 1, or M is Sasakian.

Proof. Let us assume that an N(k)−contact metric manifold satisfies the condition
(h.R)(X,Y )Z = 0, namely

h(R(X,Y )Z)−R(hX, Y )Z −R(X,hY )Z −R(X,Y )hZ = 0(5.4)

for any X,Y, Z ∈ Γ(TM). Putting X = ξ in (5.4) and using (2.4) lead to

h(R(ξ, Y )Z)−R(ξ, hY )Z −R(ξ, Y )hZ = 0.(5.5)

Furthermore, if we employ (2.10) in (5.5) and use (2.4)-(2.6), then the equation (5.5)
becomes

2kg(hY, Z) = 0.(5.6)

By replacing Y by hY in (5.6) and by making use of (2.2), (2.7), the equation (5.6)
reduces to

2k(k − 1)g(φY, φZ) = 0,

that is,

k(k − 1)dη(φY,Z) = 0.

Since dη ̸= 0, k = 0 or k = 1. This result ends the proof of the theorem. �

Theorem 5.3. Let M be an N(k)−contact metric manifold such that the condition
R.Q = 0 is satisfied. Then, M is either locally isometric to the product En+1 × S4

for n > 1 and flat for n = 1, or M is an Einstein.
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Proof. Let us suppose that an N(k)−contact metric manifold satisfies the condition
(R(X,Y ).Q)Z = 0, that is,

R(X,Y )QZ −Q(R(X,Y )Z) = 0(5.7)

for any X,Y, Z ∈ Γ(TM), where Q stands for the Ricci operator defined by S(X,Y ) =
g(QX,Y ). Substitution of X = ξ in (5.7) gives

R(ξ, Y )QZ −Q(R(ξ, Y )Z) = 0.(5.8)

Moreover, by virtue of (2.10) and (5.8), we write

k(g(Y,QZ)ξ − η(QZ)Y )−Q(k(g(Y, Z)ξ − η(Z)Y )) = 0.(5.9)

Taking the inner product of (5.9) with the vector field T and using (2.1), (2.12), we
have

kS(Y, Z)η(T )− 2nk2η(Z)g(Y, T )− 2nk2g(Y, Z)η(T )

+kη(Z)S(Y, T ) = 0.(5.10)

Putting T = ξ in (5.10) and making use of (2.1), (2.12), we derive

kS(Y, Z)− 2nk2g(Y, Z) = 0.

Therefore, we have

k(S(Y, Z)− 2nkg(Y, Z)) = 0

which implies that

k = 0

or

S(Y, Z) = 2nkg(Y, Z).

Hence, we get the requested result. �

Theorem 5.4. Let M be an N(k)−contact metric manifold such that the condition
Q.R = 0 is satisfied. Then, M is either locally isometric to the product En+1 × S4

for n > 1 and flat for n = 1, or M is a special type of η−Einstein.

Proof. Let us assume that an N(k)−contact metric manifold satisfies the condition
(Q.R)(X,Y )Z = 0, namely

Q(R(X,Y )Z)−R(QX,Y )Z −R(X,QY )Z −R(X,Y )QZ = 0(5.11)

for any X,Y, Z ∈ Γ(TM). Substituting X = ξ in (5.11), one has

Q(R(ξ, Y )Z)−R(Qξ, Y )Z −R(ξ,QY )Z −R(ξ, Y )QZ = 0.(5.12)
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For the first and second term of (5.12), using (2.10) and (2.13) we have

Q(R(ξ, Y )Z) = 2nk2g(Y, Z)ξ − kη(Z)QY,(5.13)

R(Qξ, Y )Z = 2nk2g(Y, Z)ξ − 2nk2η(Z)Y.(5.14)

For the third and fourth term of (5.12), after using (2.10) and (2.12), we derive

R(ξ,QY )Z = kS(Y, Z)ξ − kη(Z)QY,(5.15)

R(ξ, Y )QZ = kS(Y, Z)ξ − 2nk2η(Z)Y.(5.16)

If we use the equations (5.13)-(5.16) in (5.12), we obtain

−2kS(Y, Z)ξ + 4nk2η(Z)Y = 0.(5.17)

Also, taking the inner product of (5.13) with ξ, we get

4nk2η(Z)η(Y )− 2kS(Y, Z) = 0

which yields

−2k(S(Y, Z)− 2nkη(Z)η(Y )) = 0.

Hence,

k = 0

or

S(Y, Z) = 2nkη(Z)η(Y )

which completes the proof of the theorem. �
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