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1. Introduction
In 1960, Opial [21] established the following integral inequality:

Theorem 1.1. Suppose f € C'[0,h] satisfies f(0) = f(h) =0 and f(x) > 0 for all x € (0, h).
Then the integral inequality holds

i [rwrelac< [y

where this constant h/4 is best possible.

Opial’s inequality and its generalizations, extensions and discretizations play a funda-
mental role in establishing the existence and uniqueness of initial and boundary value
problems for ordinary and partial differential equations as well as difference equations
[2,4,7,18,19]. The inequality (1.1) has received considerable attention and a large number
of papers dealing with new proofs, extensions, generalizations, variants and discrete ana-
logues of Opial’s inequality have appeared in the literature [9-13, 15, 16,20,22-28,30]. For
an extensive survey on these inequalities, see [2, 19]. For Opial type integral inequalities
involving high-order partial derivatives see [1,3,5,6,17,32].

The main purpose of the present paper is to establish some new Opial-type inequalities
involving higher order partial derivatives by a extension of Das’s idea [14]. Our results in
special cases yield some of the recent results on Opial’s type inequalities and provide some
new estimates on such types of inequalities.
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2. Main results

Letn > 1,k > 1. Our main results are given in the following theorems.

Theorem 2.1. Let x(s,1) € C"~1"=1)((0,a] x [0,b]) be such that (9*/ds)x(s,t)|s=0 =
0,0 <k <n—1and (d*)dt*)x(s,1)|,=0 = 0,0 < A <m— 1. Further, let (9" /ds")((d"'/
"™ Dx(s,t)) and (3" /ds" 1) ((d™/dt™)x(s,t)) are absolutely continuous on [0,a] x
[0,b], and let 1/p+1/q=1,p > 1 and [y fob |(9"™ /95" dt™)x(s,1)|? dsdt, exist. Then

ak-&-k a;1+m
/ / Dyrarn 5 G (s:1) dsdr
2.1 "y
<C n7K71+2/pbmf)Lfl+2/p a rb| gntm qd J q q
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where
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_pln—x =)+ )(p(n—x = 1) +2)(p(m =4 — 1) + )(p(m—A 1) +2)]"'/7
2V4(n—x—1)!(m—A —1)! '

Proof. From the hypotheses of the Theorem 2.1, we have for 0 < k <n—1,0< A <m—1
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Multiplying both sides of (2.2) by |(9"1™ /ds" 1™ )x(s,t)| and using the Holder inequality,
we have
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Thus, integrating both sides of (2.3) over ¢ from 0 to b first and then integrating the resulting
inequality over s from O to ¢ and applying the Holder inequality again, we obtain

< 1
T n—xk—-D!m=-A-D(p(n—x —1)+1)( (m—2A—1)+1)]/p

(/ / Sp n—k—1) +1tp(m A— 1)+1dsdt>
q :
( ( c,7) dcdr) dsdt)

On the other hand, from the hypotheses of Theorem 2.1 and in view of the following facts
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From (2.4), (2.5) and (2.6), we have
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This completes the proof. 1

Remark 2.1. Taking for p =¢ =2,k =A =0in (2.1), (2.1) becomes to

2
dsdt,

n+m
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Let x(s,7) reduce to s(¢) and with suitable modifications, then (2.7) becomes the following
inequality:

1
2.8) /\x Nldr < o (Zn ) /\x ) Pdr.

This is just an inequality established by Das [14]. Obviously, for n > 2, (2.8) is sharper than
the following inequality established by Willett [29]

/|x ()|de < & Ja / W (0)2dr.

Remark 2.2. Takingforn=m=1,kx=A=0andp=¢g=2in (2 1), (2 1) reduces to

(2.9) // aa x(5,1) dsdt<—b// .

Let x(s,) reduce to s(¢) and with suitable modifications, then (2.9) becomes the following
inequality:
If x(¢) is absolutely continuous in [0,a] and x(0) = 0, then

(0)
/|x (1)]dr < & /\x 1)[2dr.

This is just an inequality established by Beesack [8].

s,t)- dsdt

Theorem 2.2. Let [ and m be positive numbers satisfying | +m > 1. Further, let x(s,t) €

C=1m=1)(10,a] x [0,b]) be such that (9 /ds*)x(s,t)|s=0 = 0,0 < k <n— 1 and (3* /dt*)

x(s,0)|=0=0,0< A <m—1, (9"/9s") (™' /t™ )x(s,t)) and (3"~ /ds"~ 1) ((9™/t™)
x(s,t)) are absolutely continuous on [0,a) x [0,b), and [ fé’ |(8”+m/8s"8tm)x(s,t)|l+m dsdt,
exist. Then
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Proof. From the hypotheses of the Theorem , we have for 0 <k <n—1,0<A <m—1
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By Holder’s inequality with indices [ 4+ m and (I 4+m)/(I+m— 1), it follows that
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Multiplying the both sides of above inequality by |(9""/ds"dt™)x(s,t)|" and integrating
both sides over ¢ from 0 to b first and then integrating the resulting inequality over s from 0
to a, we obtain
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Now, applying Hélder’s inequality with indices (I 4+ m) /Il and (I +m)/m to the integral on
the right side, we obtain
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=C* (n—x)! m Al ot l+md d
=Lumicad 8s"8t’” St) sat,
where
1
S TRy [ | LS ! s
nm,K,A (n—x—1)(m—A-1) [(”_K)!(m—l)!}l’ Im
This completes the proof. 1

Remark 2.3. Taking for k = A = 0 in (2.10), (2.10) reduces to

(211)//|x

where
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Let x(s,#) reduce to s(z) and with suitable modifications, then (2.11) becomes the fol-
lowing inequality:

2.12) AaﬂMﬂWWormgém@(m;}?)l RN

This is an inequality given by Das [14]. Taking for n = 1 in (2.12), we have

(2.13) /a ()| | (1) |™dr < Mal /a W ()" i
' 0 T l4m 0 ’

For m,l > 1 Yang [31] established the following inequality:
2.14 1)|mdr < 1) ar.
.14 [ rorora < d [
Obviously, for m,l > 1, (2.13) is sharper than (2.14).
Remark 2.4. Taking forn =m =1and k = A = 01in (2.10), (2.10) reduces to

(2.15) //|x ﬁ o)

Let x(s,t) reduce to s(¢) and with suitable modifications, (2.15) becomes the following
inequality:

m—+l

x(s,t)|  dsdt.

88t

[ @< gnra [ oran &= m)
0 0

This is just an inequality established by Yang [31].
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