
Special Issue SA2022 – Software for Approximation 2022, Volume 15 · 2022 · Pages 109–140

Approximation Techniques with MATLAB®*

Paolo Panarese a

Abstract

MATLAB® software allows to analyze many approximation techniques that are fundamental for research
and teaching in Numerical Computation, Applied Math and Engineering applications. In this paper, we
illustrate MATLAB programming environment to proficiently tackle a broad spectrum of approximation
topics, such as function approximation, multiresolution wavelet analysis, radial basis functions, mul-
tivariate scattered interpolation, surrogate optimization, kernelized support vector machines, and neural
networks to build universal approximators and state estimators.

1 Introduction
MATLAB® (MATrix LABoratory) is a powerful environment to probe and delve into computational mathematics techniques. In
this paper, we illustrate both numerical and symbolic features of MATLAB language to cover key topics in approximation area.
The paper is structured as follows. In Section 1.1 we provide a brief description of MATLAB software. In Section 2, we get
started with 1D function approximation using classical polynomials, i.e. Bernstein, Jacobi and Fourier. The symbolic engine
integrated in MATLAB plays a key role to check orthogonality and compute expansion coefficients. In Section 3, we discuss
time-frequency analysis using wavelet transforms and multiresolution analysis. MATLAB has both functions and interactive apps
to help decomposition of signals into approximation and detail components. In Section 4, we focus on Radial Basis Functions
(RBF) to implement multivariate scattered interpolation. MATLAB integrates RBFs also in other algorithms, such as in surrogate
global optimization, where an RBF interpolator is used to build a surrogate of the objective function, and support vector machines
with RBF kernels, for both classification and regression. In Section 5, we design Neural Networks (NN) models from scratch, i.e.
to build universal approximators and estimate the state of a nonlinear dynamic system, such as an Extended Kalman Filter. We
first see how a NN model can be trained in MATLAB to learn its optimal weights, and then exported into Simulink environment
for more complex system simulation. In the last Section 6, we provide a list of resources to use MATLAB for teaching, research
and in the Cloud. All MATLAB code in this paper has been tested in MATLAB® R2022a and is downloadable from GitHub.

1.1 MATLAB environment and ecosystem

MATLAB® is a comprehensive computational platform, suitable for scientists and engineers to analyze large dataset, develop
complex models and design innovative systems. MATLAB has a rich and continuously updated documentation with plenty of
working examples that help get started easily. The MATLAB environment includes:

• the MATLAB® programming language, matrix-based and natively designed to "speak Math", allowing state-of-art numerical
linear algebra, symbolic math and the most natural expressions of computational mathematics, as well as supporting
different computational paradigms (Parallel/GPU/Cloud Computing, etc.) and algorithm deployment options;

• the Simulink® environment suitable for modeling and simulate dynamic systems, represented by either block diagrams
or other paradigms, such as physical multi-domain (SimscapeTM) or finite-state machines (Stateflow®), and supporting
Model-Based Design methodology, System Engineering tools, automatic code generation, real-time simulation, and testing;

• a variety of add-on libraries, called ToolboxesTM, specialized in a broad spectrum of scientific disciplines (Optimization,
Statistics, Econometrics, Machine Learning, Deep Learning, Signal Processing, Wavelet, Image Processing, System Identific-
ation, Fuzzy Logic, etc.), key applications (Artificial Intelligence, Computer Vision, Robotics and Autonomous Systems,
Robust Control Systems, Embedded Systems, Power Electronics, Predictive Maintenance, Wireless Communications, etc),
and top industries (Automotive, Aerospace, Finance, Energy, Chemical, Biomedical,etc).

Moreover, the wide MATLAB ecosystem includes also:

• interoperability and coexecution with open source frameworks, such as C/C++, Python, PyTorch, TensorFlow, Keras, etc.
and automatic code generation tools for C/C++, CUDA, HDL, etc.

• multiple cloud-based solutions to access MATLAB anywhere, anytime: MATLAB OnlineTM, MATLAB DriveTM, MathWorks
Cloud Center, MATLAB Parallel Server clusters. We can also use containerized image of MATLAB on Docker® using MATLAB
Dockerfile on Docker Hub and mpm Package Manager to install toolboxes of choice in our container.

• file sharing with MATLAB File Exchange fed by an active MATLAB community, many support packages with Add-on Explorer,
and tools for Open Science, like MATLAB Live Scripts and Jupiter Notebooks with MATLAB kernel;

*The preface of this special issue to which the article belongs is given in [6].
aPh.D., EDU Customer Success Engineer, MathWorks Academia – MathWorks srl, via Bertola 34, 10122 Torino - Italy

https://github.com/ppanares2/Approximation-with-MATLAB
https://matlab.mathworks.com/
https://drive.matlab.com/
https://cloudcenter.mathworks.com/resource/
https://cloudcenter.mathworks.com/resource/
https://hub.docker.com/r/mathworks/matlab
https://hub.docker.com/r/mathworks/matlab
https://github.com/mathworks-ref-arch/matlab-dockerfile/blob/main/MPM.md
https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/products/matlab/add-on-explorer.html
https://www.mathworks.com/discovery/open-science.html
https://www.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-or-function.html
https://github.com/Calysto/matlab_kernel

Panarese 110

• integration with Science Gateways portals, like European Grid Infrastructure (EGI), making scientific methodologies and
output (such as publications, data, and software) transparent and broadly accessible. MATLAB code can be uploaded on
several reproducibility platforms hosting web-based MATLAB, such as Code Ocean or nanoHUB where users can interact
with the code, irrespective of whether they are licensed or not.

In Table 2, at the end of this paper, there is a list of useful resources to continue a proficient and deeper usage of MATLAB.

2 Function Approximation
In this section we use MATLAB to compute approximation of 1-D functions through classic polynomials, such as Bernstein, Jacobi,
and Fourier series. We leverage here on some of the symbolic capabilities integrated into the numerical MATLAB environment.

2.1 Bernstein Polynomials

For every positive integer N , Bernstein basis polynomials are N + 1 polynomials of degree N defined on the real interval [0, 1]:

bN ,i (x) =
�

N
i

�

x i (1− x)N−i , x ∈ [0, 1] , i = 0, 1,2, , N (2.1.1)

For any N ≥ 1 bernsteinMatrix(N,x) command will compute all N + 1 Bernstein basis polynomials: it returns a symbolic
(row) array, whose (i+1)-th component is the i-th Bernstein polynomial. For example, for N = 10, B=bernsteinMatrix(10,x)
is an array with 11 polynomials, all of degree 10, where B(1) is (x − 1)10 and B(11) is x10:

Listing 1: bernsteinMatrix command

1 N = 10; syms x real % N is double , while x is a symbolic object
2 B = bernsteinMatrix(N,x) % B is an array of symbolic objects of size 1x(N+1)
3 B(1), B(11) % B(i+1) = i-th Bernstein polynomial , i =0,1,2,..., N
4 Bex = expand(B)’ % expand symbolic polynomials

Figure 1: Bernstein basis polynomials for N = 10. On the left: the graphs of N +1 polynomials. On the right: the expanded algebraic expressions.

Any real-valued continuous function f can be uniformly approximated by a weighted combination of Bernstein basis
polynomials. Putting fi := f

�

i
N

�

, the Bernstein polynomial approximation of f is

BN (f) (x) :=
N
∑

i=0

fi bN ,i (x)
N→∞
−→ f (x) , uniformly on [0,1] (2.1.2)

The larger N , the better the approximation. bernstein command efficiently evaluates the Bernstein polynomial at any fixed
x by means of the numerically stable de Casteljau’s recursive algorithm: ∀x ∈ [0,1]

�

f (0)i := fi

f (j)i := (1− x) · f (j−1)
i + x · f (j−1)

i+1 , i = 0,1, . . . , N , j = 1, 2, . . . , N
(2.1.3)

Listing 2: bernstein command

1 N = 10; syms x real
2 f = cos (4*pi*x).*exp(-x); % f is continuous on [0 1] (another symbolic object)
3 Bf = bernstein(f, N, x) % using de Casteljau ’s algorithm
4 fplot(Bf , [0 ,1])

Dolomites Research Notes on Approximation ISSN 2035-6803

https://sciencegateways.org/partner-details-about-mathworks
https://www.egi.eu/case-study/mathworks/
https://blogs.mathworks.com/loren/2018/11/21/code-ocean-matlab-and-sharing-reusable-code/
https://nanohub.org/tags/matlab

Panarese 111

Figure 2: Bernstein polynomial approximation of a given function f with increasing number of terms N = 10, 20, 50, 90. Convergence is generally
slow, so we need to take large N to get closer to the function.

Application of Bernstein polynomials to Computer Graphics. Bernstein basis polynomials are useful to build Bézier curves, after
the French engineer Pierre Bézier who used them in the 1960s for designing curves for the bodywork of Renault cars. Given
N + 1 control points in Rd , with d = 2 or d = 3, we can compute Bézier curves by simply multiplying the Bernstein matrix B,
which is a 1x(N + 1) row, by the control points coordinates C P, which is (N + 1)xd.

Listing 3: Bézier curves with d = 2

1 CP = [0 1; 2 4; 6 3; 5 1; 0 1]; %(N+1)xd double matrix of control points (CP)
2 N = size(CP ,1)-1; % N = (number of CP) - 1
3 syms t real , B = bernsteinMatrix(N,t); % B is 1x(N+1) symbolic row
4 phi = simplify(B*CP)’; % B*CP is 1xd Bezier curve in R^d
5 fplot(phi(1), phi(2), [0, 1])

Interestingly, the algebraic multiplication B ∗ C P of symbolic array B by numerical matrix C P returns the parametric
representation of the Bézier curve ϕ(t) = (ϕ1(t), ...,ϕd(t)). For example, with d = 2, the Bézier curve for 5 control points, having
the last point equal to the first, is a closed loop with parametric equations of degree 4 as follows. See Fig. 3 (left)

ϕ(t) =
�

4 t
�

2 t3 − 7 t2 + 3 t + 2
�

12 t3 − 24 t2 + 12 t + 1

�

(2.1.4)

2.2 Orthogonal Polynomials

MATLAB Symbolic Math Toolbox allows to compute the most widely used families of orthogonal polynomials. Any two distinct
polynomials en and em are orthogonal with respect to a particular weight function ω(x) defined on a real interval Ω ⊂ R:

en⊥em⇔
∫

Ω

en(x)em(x)ω(x)d x = 0, ∀n ̸= m (2.2.1)

Orthogonal Polynomial Interval Ω Weight ω(x)
jacobiP(n,a,b,x) [−1,1] (1− x)a(1+ x)b

gegenbauerC(n,a,x) [−1,1] (1− x2)a−1/2

chebyshevT(n,x) [−1,1] (1− x2)−1/2

chebyshevU(n,x) [−1,1] (1− x2)1/2

legendreP(n,x) [−1,1] 1
laguerreL(n,x) [0,∞) e−x

hermiteH(n,x) (−∞,∞) e−x2

Jacobi polynomials (known also as hypergeometric polynomials) form a complete set of orthogonal functions on the interval
[−1, 1] with respect to the weight function ω(x) = (1− x)a(1+ x)b, with a, b > −1. So, Jacobi polynomials are described by two

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 112

Figure 3: Bézier curve for a given set of control points in R2. On the left: 5 control points. By choosing the last point equal to the first, Bezier
curve will be a closed loop. On the right: 11 control points. The more points we add, the more Bézier curve gets closer to the convex hull.

parameters a, b and can be represented as:

J (a,b)
n (x) =

1
2n

n
∑

k=0

�n+ a
k

�

�

n+ b
n− k

�

(x − 1)n−k (x + 1)k , n= 0,1, 2, ..., N (2.2.2)

Chebyshev and Legendre polynomials are just a special case, with a = b = ±1/2 and a = b = 0, respectively. See Fig. 4 and
note that the weight function ω(x) is symmetric when a = b, while it is skewed to the left when a > b. jacobiP is a vectorized
command: it means that it can compute all Jacobi polynomials with increasing degree from 0 to N with a single line:

Listing 4: Jacobi Polynomials with respect to a weight function

1 a = 6; b = 6; syms x
2 w = (1-x)^a*(1+x)^b; fplot(w, [-1 1]) % weight
3 N = 5; J = jacobiP (0:N, a, b, x) % Jacobi polynomials of degree 0,1,2,...,N
4 figure , fplot(J,[-0.6 ,0.6]) , legend(string (0:N))

Figure 4: Jacobi polynomials. On the left: the weight function ω(x) = (1− x)a ∗ (1+ x)b , with different a and b. On the right: the first N + 1
Jacobi polynomials with N = 5 and a = b = 6, zoomed in on the interval [−0.6, 0.6].

Orthogonality can be checked out by using the int command to compute the definite integral on [−1, 1]: ∀a, b and ∀n ̸= m

Listing 5: Jacobi: check orthogonality with symbolic integration

1 a = 6; b = 6; n = 3; m = 4; syms x real ,
2 w = (1-x)^a*(1+x)^b;
3 orth = int(jacobiP(n,a,b,x)* jacobiP(m,a,b,x)*w, x,-1,1) % returns 0

The squared norm of J (a,b)
n , or simply Jn (dropping a and b, for short) is given by

C2
n = ||J n||2ω =

2k

2n+ k
Γ (n+ a+ 1) Γ (n+ b+ 1)

n! Γ (n+ k)
(2.2.3)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 113

where Γ (x) is the Gamma function and k = a+ b+ 1. As a consequence of completeness of the orthogonal basis {Jn}n∈Z, every
function f can be approximated by a weighted sum of normalized Jacobi polynomials, the weights φn being inner products:

f (x)≈
N
∑

n=0

φn Jn(x), φn = 〈 f , Jn〉ω =
1
C2

n

∫ 1

−1

f (x) Jn (x) ω (x) dx (2.2.4)

Jacobi approximation of a given function can be implemented in few steps: choose the number N of approximating terms;
compute all symbolic Jacobi polynomials from 0 to N ; evaluate them on a numerical array discretizing [−1, 1]; iterate on each
Jacobi polynomial to compute squared norm and inner product by using vpaintegral; finally, perform weighted sum by matrix
multiplication:

Listing 6: Jacobi approximation of a function

1 syms x real , fun = sin (2*pi*x)*exp(-x);
2 a = 6; b = 6; w = (1-x)^a*(1+x)^b; % weight function
3 N = 5; J = jacobiP (0:N, a, b, x); % J is sym with N+1 Jacobi polyn
4 k = a+b+1;
5 phi = zeros(1,N+1); % preallocation of (N+1) double coeff
6 for n = 0:N
7 Cn_2 = 2^k/(2*n+k)*gamma(n+a+1)* gamma(n+b+1)/(factorial(n)*gamma(n+k)); % squared norm
8 phi(n+1) = vpaintegral(fun * J(n+1)*w,x,-1,1)/Cn_2; % numerical integration
9 end

10 JacobiMatrix = subs(J, x, -1:0.01:1); % evaluate J on a numerical array
11 fun_approx = phi*JacobiMatrix; % phi is 1x(N+1), JacobiMatrix is (N+1) x201

Fig. 5 illustrates how Jacobi sums approximate the function better and better as we increase the number of terms.

Figure 5: Jacobi approximation of a given function f for increasing number of terms.

Application of Jacobi polynomials in Robotics. Jacobi polynomials have been used in [2] (with a = b = 6) to parametrize the
trajectory coordinates of a multi-joint robot arm and simulate discrete movements, such as reaching, grasping, throwing or kicking.
On the contrary, rhythmic movements, such as walking, chewing or scratching, have been simulated by trigonometric polynomials
(Fourier series, described in next section). Using Jacobi and Fourier approximation has the great advantage of leading to a low
dimensional representation of the arm movements in terms of expansion coefficients.

2.3 Fourier Series

On the interval [0, L], for some L > 0, we define the set of orthogonal functions

en(x) := sin(λn x), λn :=
nπ
L

, ∀n= 1, 2, ... (2.3.1)

Orthogonality is given by integral inner product:

en ⊥ em ⇔ 〈en, em〉 :=
∫ L

0

em (x) en (x) dx= 0 if m ̸= n (2.3.2)

To check orthogonality, we can use assume command to specify assumptions on L, m, n and int to compute the integral on
[0, L]. Moreover, the simplify command will perform algebraic simplification of the returned symbolic integral:

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 114

Listing 7: Fourier: check orthogonality and squared norm

1 syms x m n L % define symbolic objects
2 assume(L, "positive ")
3 assume ([m n], [" integer" "positive "]), assumeAlso(m~=n) % assume m~=n
4 lambda(n) = n*pi/L;
5 e(n) = sin(lambda(n)*x)
6 I = simplify(int(e(m)*e(n), 0, L)) % inner product <e(n),e(m)> returns 0
7 squared_norm = simplify(int(e(n)*e(n), 0, L)) % squared norm <e(n),e(n)> returns L/2

||en||2 = 〈en, en〉=
L
2
∀n= 1, 2, ... (2.3.3)

Now, let us consider a piecewise-continuous function f : [0, L]→ R, possibly with some jump discontinuity. So, f can be
projected on the orthogonal set {en}n=1,2,...,N and approximated by the finite weighted sum:

f (x)≈ fN (x) =
N
∑

n=1

bn en(x), bn = 〈 f , en〉=
2
L

∫ L

0

f (x) en (x) dx (2.3.4)

In MATLAB we can compute Fourier coefficients bn with the symbolic integration command int and implement the symbolic
sum with symsum command. As an example, consider a sawtooth function with a jump:

f (x) =

�

x , if x ∈ [0, L/2)
x − L/2, if x ∈ [L/2, L]

(2.3.5)

Listing 8: Fourier approximation of a sawtooth function

1 syms x n, L = 1; % x,n are symbolic objects
2 assume(n, [" integer" "positive "])
3 f(x) = piecewise(x<L/2, x, x>=L/2, x-L/2); % define sawtooth function
4 b(n) = simplify (2/L* int(f(x) * sin(n*pi/L * x), 0, L)) % Fourier coefficients
5 b(1:10) % display the first 10 coeff
6 fplot(f, [0 L], "r"), axis equal , hold on
7 for N = [10 30]
8 f_approx = symsum(b(n) * sin(n*pi/L*x), n, 1, N) % symbolic sum of N terms
9 fplot(f_approx , [0 L]);

10 end
11 legend(’f(x)’, ’N=10’, ’N=30’, ’Location ’, ’NW’), title(’Fourier approximation ’)

Note that, since n is a symbolic object, b(n) becomes automatically a symbolic function. More importantly, n must be
restricted to be positive integer in order to get good expressions of Fourier coefficients. For instance, for the sawtooth function
(2.3.5), MATLAB returns the following:

b(n) = −
(−1)n/2
�

(−1)n/2 + 1
�2

2 nπ
n= 1,2, ..., N (2.3.6)

With N = 10 we can observe the first ten Fourier coefficients b(1:10):
�

1
π 0 1

3π − 1
2π

1
5π 0 1

7π − 1
4π

1
9π 0
�

and Fourier approximation of (2.3.5), truncated at the first N = 10 terms, is:

f10 (x) =
sin (π x)
π

+
sin (3π x)

3π
−

sin (4π x)
2π

+
sin (5π x)

5π
+

sin (7π x)
7π

−
sin (8π x)

4π
+

sin (9π x)
9π

(2.3.7)

Of course, with a larger number N of terms, we can get better approximation. Compare with N = 30 in Fig. 6.

3 Wavelets and Multiresolution Approximation
Fourier Transform is localized only in frequency, not in time. This is a drawback when we need to describe non-stationary and
spiky signals, typically occurring in medical sciences (ECG, EEG), earth sciences (seismography, climatology, etc), or finance
(stock prices, trading signals, etc). Wavelets instead are well localized both in time and frequency, so they can track frequencies
changing over time. Just like a "mathematical microscope", they allow to zoom in/out singularities at different resolution.

There are two types of Wavelet Transforms: Continuous and Discrete. The Discrete Transform requires a discrete sampling
grid and an orthonormal basis, that can be created by the key framework of multiresolution analysis (MRA).

After the initial ideas due to Haar in 1909, wavelets and MRA were developed by the fruitful collaboration in the 80’s and
90’s among mathematicians, physicists, engineers: Grossman, Morlet, Mallat [15], Meyer [18], Daubechies [8] (see also [22]
and [17]). Since then many different kind of wavelets have been developed suitably for specific applications, i.e. audio/image
compression, denoising, edge detection. Wavelet techniques can be efficiently implemented in MATLAB.

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 115

Figure 6: Fourier approximation of the sawtooth function f with jump at x = 0.5, comparing N = 10 and N = 30

3.1 From Fourier Transform to Continuous Wavelet Transform

We compare different transforms by discussing their localization properties. From signal theory, recall that:

• any ψ(t) ∈ L2(R) is a signal (t ∈ R for time), with finite energy E = ||ψ||2 =
∫ +∞
−∞ |ψ(t)|

2d t and Fourier Transform given

by: Òψ(ξ) =
∫ +∞
−∞ ψ(t)e−iξt d t ∈ L2(R) (ξ ∈ R for frequency);

• given ψ with ||ψ||= 1, and its Fourier Transform Òψ, we consider their means µψ and µ
Òψ (see *) and variances:

(∆t)2
ψ
= var(|ψ|2) =
∫ +∞

−∞
(t −µψ)2|ψ(t)|2d t, (∆ f)2

ψ
= var(|Òψ|2) =
∫ +∞

−∞
(ξ−µ
Òψ)

2|Òψ(ξ)|2dξ. (3.1.1)

We call (∆t)ψ and (∆ f)ψ the efficient duration and efficient band, respectively (i.e. where most energy is concentrated).

• the Heisenberg’s Inequality states that (∆t)ψ(∆ f)ψ ≥ C must hold for some constant C > 0, i.e. as the frequency content
of a signal is resolved more finely, we lose information about when in time these events occur, and viceversa.

If λ ∈ Rd , d = 1,2, and ψλ is a function parametrized by λ (typically obtained from ψ by translation, modulation or dilation),
we can build a "transform" from the t-domain to the λ-domain by: φ(t) 7→ (Tφ)(λ) =

∫ +∞
−∞ φ(t)ψλ(t)d t. The transform is said

"localized in time" if the corresponding (∆t)λ is small, or "localized in frequency" if (∆ f)λ is small.

Transform λ ψλ (∆t)λ (∆ f)λ
Time series λ= τ ψτ(t) = δ(t −τ) 0 ∞
FFT (Fast Fourier Transform) λ=ω ψω(t) = e−iωt ∞ 0
Short-Time FFT (Gabor Transform) λ= (ω,τ) ψω,τ(t) = g(t −τ)e−iωt (∆t)ω,τ = (∆t)g (∆ f)ω,τ = (∆ f)g
CWT (Continuous Wavelet Transform) λ= (a, b) ψa,b(t) = a−1/2ψ(t−b

a) (∆t)a,b = a(∆t)ψ (∆ f)a,b = a−1(∆ f)ψ

Comparing different transforms, we can see that FFT is perfectly localized in frequency (∆ f = 0), but totally blind to when
the frequency occurred in time (∆t =∞). Short-time FFT and CWT are both localized in time and frequency. Short-time FFT,
based on a given window g, has constant ∆t and ∆ f (see Fig. 7 on the left). On the contrary, CWT has resolution windows
changing with scale parameter a (see Fig. 7 on the right).

Let us discuss now CWT in detail. A function ψ(t) ∈ L1(R)∩ L2(R) (real or complex valued), with ||ψ||L2 = 1, is called a
wavelet or mother wavelet if its Fourier transform Òψ satisfies the following admissibility condition:

0< Cψ =

∫ +∞

0

|Òψ(ξ)|2

|ξ|
dξ <∞ (3.1.2)

As ψ ∈ L1(R), Òψ(ξ) is continuous. So, from (3.1.2), it follows that Òψ(0) = 0, i.e every mother wavelet has zero mean:
∫ +∞

−∞
ψ(t)d t = 0. (3.1.3)

*µψ = E(|ψ|2) =
∫ +∞
−∞ t|ψ(t)|2d t and µ

Òψ = E(|Òψ|
2) = 1

2π

∫ +∞
−∞ ξ|Òψ(ξ)|2dξ

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 116

Figure 7: Coverage of Time-Frequency domain: (on the left) by Short-Time FFT, with fixed resolution windows; (on the right) by wavelets: it
provides higher frequency-resolution at low frequencies f = f ′; it provides higher time-resolution at high frequencies to capture a peak at t = t ′.

Given a mother wavelet ψ, we define a 2-parameter family of scaled and translated functions (called child wavelet):

ψa,b(t) =
1
p

a
ψ

�

t − b
a

�

, a > 0, b ∈ R (3.1.4)

where a > 0 is the scale or dilation parameter, and b ∈ R is the shift or translation parameter.
The Continuous Wavelet Transform (CWT) of a function f ∈ L2(R) is given by the inner product with ψa,b:

CW Tψ(f)(a, b) =

f ,ψa,b

�

=

∫ +∞

−∞
f (t)ψa,b(t) d t, (a, b) ∈ R+\{0}xR (3.1.5)

where ψa,b denotes the complex conjugate of ψa,b in case of a complex wavelet. Remarkably, if (3.1.2) holds, CWT is invertible
(Calderón-Grossman-Morlet theorem):

f (t) =
1

Cψ

∫ +∞

−∞

∫ +∞

0

CW Tψ(f)(a, b)
1
p

a
ψ

�

t − b
a

�

1
a2

da d b (3.1.6)

Examples of wavelets used in CWT. "Mexican Hat" wavelets and Morlet wavelets are real, symmetric and can be defined by an
explicit formula. Morse wavelets are analytic, i.e. complex-valued and described through their Fourier transforms, which must be
supported only on the positive real axis. Here are some examples of frequently used wavelets:

ψ(t) =
2

p
3 π1/4

(1− t2)e−t2/2 Mexican Hat or Ricker

ψ(t) = cos (5t) e−t2/2 Morlet (3.1.7)

Òψ(ξ) = Cγ,P ξ
P2/γ e−ξ

γ
, ξ≥ 0 Morse

where in the Morse wavelet, γ≥ 1 controls the symmetry, P2 ∈ [γ, 40γ] is the time-bandwidth product, and Cγ,P is a normalizing
constant. When γ = 3, Morse wavelet is symmetric, closely approximates Morlet wavelet, and has the minimum Heisenberg area.

In MATLAB waveinfo command returns some information on the wavelets. The wavefun command allows to visualize
numerical approximations of wavelets: inputs are the wavelet name, and number of iterations; outputs are the values of ψ, and a
grid of points where ψ is evaluated:

Listing 9: Wavelets used for CWT: Mexican Hat and Morlet

1 waveinfo(’mexh’), waveinfo(’morl’) % wavelets information
2 [psi1 ,xval1] = wavefun(’mexh’ ,10); % Mexican Hat wavelet
3 [psi2 ,xval2] = wavefun(’morl’ ,10); % Morlet wavelet
4 figure , subplot (1,2,1), plot(xval1 , psi1)
5 subplot (1,2,2), plot(xval2 , psi2)

Example of CWT and comparison with FFT. In the following example, we show that wavelets have better localization properties
than FFT and short-time FFT. We define two sampled signals s1, s2, starting from the same frequency values 10, 30, 50, 100Hz, but
with different frequency distribution over time: s1 contains all the 4 frequencies at any time; s2 is defined with a single frequency
in each of 4 distinct intervals. Moreover, both signals last 1 second and have a peak at t = 0.5.

In MATLAB we can use fft, spectrogram and cwt commands to compute Fast Fourier transform, short-time FFT and
Continuous Wavelet Transform, respectively. Note that in the code:

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 117

Figure 8: Wavelets ψ(t) used for CWT: Mexican Hat (on the left) and Morlet wavelet (on the right).

• we can apply fft just once to compute the FFT of all signals if stored in the columns of a matrix (we say fft is "vectorized"
and can operate down along each column), while we have to loop over each signal to apply spectrogram and cwt.

• spectrogram with no output arguments plot time-frequency diagram, with frequency along x-axis by default. We can
specify sample rate as the 5th input and the frequency location (y-axis) as 6-th input for better comparison.

• cwt command uses the analytic Morse wavelet (with parameters γ= 3 and P2 = 60) by default. Morlet wavelet can also
be optionally used. cwt with no output arguments plot a scalogram with log of frequency along y-axis by default. To avoid
the log of frequency we have to run cwt with 2 output arguments and then create a surface.

In Fig. 9, we clearly see that FFT is unable to capture the difference of the two signals (column 2) and totally blind to the
peak. On the contrary, short-time FFT and CWT (Column 3 and 4) are able to show the change of frequency across the time.
CWT can capture the instant of the peak more accurately.

Listing 10: Wavelets: comparing FFT vs spectrogram vs CWT

1 f = [10 30 50 100]; Fs = 1000; % same 4 frequencies
2 t = (0:1/Fs:1)’; N = numel(t); N2= floor(N/2);
3 fvec = (0:N2 -1)*Fs/N;
4 mask = [t<0.25 (t >=0.25&t<0.5) (t >=0.5&t <0.75) (t >0.75)]; % logical matrix
5 harmonics = cos(2*pi*t*f); % matrix with harmonics in 4 columns
6 signals = zeros(numel(t),2); % preallocate matrix for 2 signals
7 signals (:,1) = sum(harmonics ,2); % build signal_1
8 signals (:,2) = sum(harmonics .* mask ,2); % build signal_2
9 signals = signals + 5*(t >=0.5&t <=0.501); % add peak at t = 0.5

10 F = abs(fft(signals)).^2/N; % FFT of all signals
11 figure , tiledlayout (2,4)
12 for i = 1:size(signals ,2)
13 nexttile ,plot(t, signals(:,i)), ylim([-4 10]) % plot signals in time
14 ax(1)= nexttile;, plot(F(1:N2,i), fvec) % plot FFT
15 ax(2)= nexttile;, spectrogram(signals(:,i),[],[],[],Fs ,’yaxis’) % short -time FFT
16 colorbar ("off") % get rid of colorbar
17 [cfs ,frq] = cwt(signals(:,i), ’morse’, Fs); % compute CWT
18 ax(3)= nexttile;, surface(t,frq ,abs(cfs)), shading flat % scalogram
19 set(ax,’YLim’,[0, 150]) % set common range
20 end

3.2 Discrete Wavelet Transform and Multiresolution Analysis

The CWT (3.1.5) is continuously defined for any scale a > 0 and time-shift b ∈ R, so it can be numerically approximated through
any sampling of the scale-shift plane. The Discrete Wavelet Transform (DWT) actually refers to a particular choice of sampling, i.e.

1. DWT uses a standard dyadic lattice in (3.1.4) and (3.1.5) with: a = 2 j and b = n2 j , for any j, n ∈ Z (see †)

2. DWT uses particular mother wavelets ψ generating orthonormal (or biorthogonal) bases of L2(R):

Bψ =
�

ψ j,n(t) = 2− j/2 ψ
�

2− j t − n
�

: n ∈ Z, j ∈ Z
	

(3.2.1)

3. DWT uses mother wavelets ψ that must be compactly supported (hence the entire family (3.2.1) is compactly supported).

†This is the choice done in MATLAB and in most engineering and applied sciences. In mathematical literature, we can find a = 2− j and b = n2− j , so that (3.2.1)
becomes ψ j,n(t) = 2 j/2 ψ

�

2 j t − n
�

. In this case, the approximation spaces described in the item 2. would be Vj+1 ⊃ Vj .

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 118

Figure 9: Comparison of FFT, Short-Time FFT and CWT. The two signals on the left (Column 1) contain exactly the same frequencies 10, 30, 50, 100
Hz, but differently distributed over time. Moreover, they both contain a spike at time t = 0.5. FFT (Column 2) just shows the same 4 frequencies,
ignoring the different time-distribution and the peak. On the contrary, Short-time FFT and CWT (Column 3 and 4) are able to capture the change
of frequency across the time. Moreover, CWT is able to identify the instant of the peak more precisely.

Under these conditions, there is an efficient DWT implementation with a fast (pyramid) algorithm using only finite impulse
response (FIR) filters, i.e. the Fast Wavelet Transform, with O(N) complexity, if N is the number of points in the signal (see [23]).

To built such special orthonormal bases (ONB) made of wavelets, Mallat [15] and Meyer [18] developed in 1989 a key
framework called multiresolution analysis (MRA). Let us review briefly the key elements of MRA.

1. There are two types of wavelet: father and mother. The father wavelet ϕ, called also scaling function, with non-zero mean,
is responsible to represent the smooth approximation and low-frequency parts of signal, while the mother wavelet ψ, with
zero mean, is responsible to describe the detail and high-frequency components:

∫ +∞

−∞
ϕ(t)d t = 1,

∫ +∞

−∞
ψ(t)d t = 0 (3.2.2)

2. The father wavelet ϕ "generates" nested closed spaces Vj , called approximation spaces, that behave like "zooming grids" at
multiple resolution levels j. More precisely, the couple

��

Vj

	

n∈Z , ϕ ∈ V0

�

is called a multiresolution analysis (MRA) of
L2(R) if, by definition, the following conditions hold:

• Vj+1 ⊂ Vj ⊂ Vj−1 and
⋃

n∈Z Vj is dense in L2(R)
• Vj ’s are self-similar in scale, i.e. f (t/2) ∈ Vj+1⇔ f (t) ∈ Vj⇔ f (2t) ∈ Vj−1

• Bϕj =
�

ϕ j,n(t) = 2− j/2 ϕ
�

2− j t − n
�

: n ∈ Z
	

is a "Riesz basis" ‡ of Vj .

As ϕ1,0 ∈ V1 ⊂ V0 = span{ϕ(t − n) : n ∈ Z}, we get the refinement or two-scale equation for the father wavelet:

ϕ(t) =
p

2
∑

n∈Z

hnϕ(2t − n) (3.2.3)

where hn are called low-pass filter coefficients.

3. The mother wavelet ψ "generates" mutually orthogonal spaces Wj ∈ L2(R), called detail spaces. More precisely, given an
MRA, we define Wj⊥Vj the orthogonal complement, i.e. Wj ⊕⊥ Vj = Vj−1, and ψ ∈W0 is defined, on top of ϕ §, such that:

•
⊕⊥

j∈ZWj is dense in L2(R), i.e. Wj ’s are an orthogonal decomposition of L2(R)
• Bψj =
�

ψ j,n(t) = 2− j/2 ψ
�

2− j t − n
�

: n ∈ Z
	

is an ONB of Wj . Remarkably, Bψ =
⋃

j∈ZB
ψ

j is ONB for L2(R).

As ψ ∈W0 ⊂ V−1 = span{
p

2ϕ(2t − n)}, we get the refinement or two-scale equations for the mother wavelet:

ψ(t) =
p

2
∑

n∈Z

gnϕ(2t − n) (3.2.4)

where gn are called high-pass filter coefficients.

‡{ek} is a Riesz basis if ∃A, B > 0 such that ∀ f ∈ L2(R) A|| f ||2 ≤
∑

k < f , ek >
2≤ B|| f ||2. Riesz basis is a generalization of orthonormal basis (for which A= B = 1).

Their advantage is that they are easier to be found.
§Fourier Transform of (3.2.3) shows that bϕ(ξ) = H(ξ/2) bϕ(ξ/2), with H(ξ) := 1/

p
2
∑

n∈Z hne−inξ. If we define Òψ(ξ) := H1(ξ/2) bϕ(ξ/2), with H1(ξ) = eiξH(ξ+π),
we can prove that <ψ,ϕ(t − n)>= 0 ∀n ∈ Z, so ψ ∈W0. Moreover, Bψ0 = {ψ(t − n) : n ∈ Z} is an ONB for W0.

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 119

4. The low-pass and high-pass filter coefficients satisfy
∑

n

hn =
p

2,
∑

n

h2
n = 1,
∑

n

gn = 0,
∑

n

g2
n = 1,
∑

n

hn gn = 0. (3.2.5)

Now, by applying Vj−1 =Wj ⊕⊥ Vj recursively, we get that for any resolution level J ≥ 1

V0 =W1 ⊕⊥ V1 =W1 ⊕⊥ (W2 ⊕⊥ V2) =W1 ⊕⊥W2 ⊕⊥ . . .⊕⊥ (WJ ⊕⊥ VJ) (3.2.6)

It follows that for any f ∈ V0 and J ≥ 1, we can decompose f = d1+d2+ ...+dJ +aJ , where d j = PWj
f ∈Wj is the detail obtained

by the projection operator PWj
on Wj and aJ = PVJ

f ∈ VJ is the approximation obtained by projection PVJ
on VJ :

d j(t) = PWj
f (t) =
∑

n∈Z

< f ,ψ j,n >ψ j,n(t), aJ (t) = PVJ
f (t) =
∑

n∈Z

< f ,ϕJ ,n > ϕJ ,n(t). (3.2.7)

When choosing a compactly-supported wavelet (like Daubechies), the coefficients < f ,ψ j,n > (same for < f ,ϕJ ,n >) are the
Discrete Wavelet Transform (DWT) of f :

DW Tψ(f)(j, n) =

f ,ψ j,n

�

=

∫ +∞

−∞
f (t)ψ j,n(t) d t (3.2.8)

If we put Dj f (t) := 2− j f (2− j t), then ψ j,n(t) = 2 j/2Djψ(t − 2 j n). So d j(t) = 2 j
∑

n∈Z < f (u), Djψ(u− 2 j n)> Djψ(t − 2 j n),
where the DWT coefficients can be rewritten

< f (u), Djψ(u− 2 j n)>=

∫ ∞

−∞
f (u)Djψ(u− 2 j n)du= (f ∗ Djψ(−u))(ζ)

�

�

�

ζ=2 j n
(3.2.9)

i.e. with engineer’s language, the detail operator PWj
can be expressed as a convolution (or high-pass filter) followed by a

downsampling. Similarly, the approximation operator PVJ
can be expressed as a convolution (or low-pass filter) followed by a

downsampling. Fig. 10 illustrates this idea.

Figure 10: Left: Approximation and detail operators can be represented by filters, low-pass and high pass, respectively, followed by a dyadic
downsampling. Right: iterated decomposition at Level 5: f ≈ d1 + a1 = d1 + (d2 + a2) = ...= d1 + d2 + d3 + d4 + (d5 + a5).

In MATLAB we can choose among many discrete wavelets. Each one has specific properties which make is suitable for
specific applications. The most important properties we may take care of are: the number of vanishing moments (⇒ sparsity of
coefficients), symmetry (⇒ linear phase), and orthogonality (⇒ energy preserving). For instance, the wavelet families in the
following list are all compactly supported, orthogonal and widely used in practical analysis:

• Haar: compactly supported wavelet, symmetric and orthogonal, but not continuous (the oldest and the simplest wavelet).
Application: edge detection, feature extraction. Example: haar, db1

• Daubechies: compactly supported wavelets, with extremal phase and highest number of vanishing moments for a given
support width. Quite asymmetric (non linear phase). Associated scaling filters are minimum-phase filters. Application:
image denoising. Examples: db2, db3, db4, ..., db45.

• Symlet: compactly supported wavelets, built to be as nearly symmetric as possible, and with the highest number of
vanishing moments for a given support width. Associated scaling filters are near linear-phase filters. Application: ECG.
Examples: sym2, sym3, sym4, sym5,

• Coiflet: compactly supported wavelets, symmetric, with highest number of vanishing moments for both φ and ψ for a
given support width. Examples: coif2, coif3, coif4, coif5.

• Biorthogonal: compactly supported, biorthogonal spline wavelets for which symmetry and exact reconstruction are possible
with FIR filters (in orthogonal case it is impossible except for Haar). Application: image compression and reconstruction.
Examples: bior3.5, bior3.7, bior3.9, bior4.4, bior6.8,

To get a list of all the wavelet families available in MATLAB, we can type » waveinfo or » wavemngr(’read’,[]). For a
particular wavelet family, i.e. wnamefam = ’db’, and a particular wavelet, i.e. wname = ’db4’, we can use the following
commands:

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 120

• waveinfo(wnamefam) to get detailed information about a wavelet family;

• [ϕ,ψ, x i] = wavefun(wname,iter) to compute scaling ϕ and mother wavelet ψ;

• [LoD,HiD] = wfilters(wname) to compute the Lowpass and Highpass filter coefficients for Decomposition;

• [LoD,HiD,LoR,HiR] = wfilters(wname) to compute lowpass and highpass filter for Reconstruction as well.

The following code visualize father ϕ, mother ψ, high-pass and low-pass filters for 3 Daubechies wavelets db2, db4, db16:

Listing 11: Wavelets: comparison of Daubechies wavelets db2, db4 and db16

1 waveinfo(’db’) % Daubechies family (include 45 wavelets)
2 figure , wname = ["db2", "db4", "db16 "]; % compare some Daubechies wavelets
3 Nw = length(wname);
4 for i = 1:Nw
5 [phival ,psival ,tval] = wavefun(wname(i) ,10); % compute phi and psi
6 [Low ,High] = wfilters(wname(i)); % compute filters coefficients
7

8 subplot(3,Nw,i), hold on, plot(tval , phival , "r") % plot scaling phi
9 plot(tval , psival , "b") % plot mother psi

10 title(wname(i)), legend ("\ phi","\psi")
11 subplot(3,Nw,Nw+i), stem(High ,"b") % plot highpass filter
12 subplot(3,Nw ,2*Nw+i), stem(Low ,"r") % plot lowpass filter
13 end

Figure 11: Daubechies wavelets dbN, with N vanishing moments and filter length of 2N : compare db2, db4, d16 (from left to right). Top row:
the scaling φ (in red) and mother wavelet ψ (in blue). Central row: high-pass filter coefficients. Bottom row: low-pass filter coefficients.

Daubechies orthogonal wavelets dbN are widely used because they also have compact support, N vanishing moments, i.e.
∫

xnψd bN (t)d t = 0 for n = 0, 1, 2, ..., N , and filter length 2N , i.e only finitely many hn, n = 0, 1, ..., (2N−1) are nonzero. Moreover,
gn = (−1)(n+1)h(2N−1)−n, n = 0, 1, 2, 3, with hn and gn defined in (3.2.4) and (3.2.3). For example, db2 has 2 vanishing moments,
filter length 4 and the low-pass filter coefficients hn, n= 0, 1,2, 3 are exactly:

h0 =
1−
p

3

4
p

2
h1 =

3−
p

3

4
p

2
h2 =

3+
p

3

4
p

2
h3 =

1+
p

3

4
p

2
(3.2.10)

while g0 = −h3, g1 = h2, g2 = −h1, g3 = h0. The values returned by wfilters command allow to verify the theory and all the
relations (3.2.5):

Listing 12: Wavelets: low-pass and high-pass filters for Daubechies db2

1 >> [h,g] = wfilters ("db2")
2 h =
3 -0.1294 0.2241 0.8365 0.4830 % h0, h1 , h2 , h3
4 g =
5 -0.4830 0.8365 -0.2241 -0.1294 % g0=-h3, g1 = h2 , g2 = -h1 , g3=h0
6

7 >> [sum(h) sum(h.^2) sum(g) sum(g.^2) h*g’]
8 ans =
9 1.4142 1.0000 -0.0000 1.0000 0

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 121

In MATLAB we can verify (3.2.6) and compute approximation AJ ∈ VJ and detail components Dj ∈Wj , j = 1,2, ...J , of 1D
signals x in many ways:

• DWT and inverse DWT (at a single level):

– [A,D] = dwt(x,waveletname)
– x = idwt(A,D,waveletname)

• Decomposition at level J : [CJ , LJ] = wavedec(x,J,waveletname)
• Reconstruction at any level j = 1,2, ..., J :

– A j = wrcoef(’a’,CJ , LJ,waveletname,j)
– Dj = wrcoef(’d’,CJ , LJ,waveletname,j)

where LJ=[length(A), length(DJ), ..., length(D1), length(x)] is the bookkeeping vector (used to parse decom-
position vector CJ). See also appcoef and detcoef. Similarly, we have functions for 2D images: dwt2, idwt2, wavedec2,
wrcoef2, appcoef2, detcoef2.

Listing 13: Wavelets: approximation and detail decomposition with wrcoef

1 load sumsin , ydata = sumsin ’; J = 5;
2 figure , plot(ydata)
3 [C,L] = wavedec(ydata , J, ’db4’); % J-level decomposition using db4
4 figure
5 A = zeros(numel(ydata), J);
6 D = zeros(numel(ydata), J);
7 for j = 1:J
8 A(:,j) = wrcoef(’a’, C, L,’db4’,j); % approximation Aj in Vj
9 D(:,j) = wrcoef(’d’, C, L,’db4’,j); % detail Dj in Wj

10 subplot(J,2,2*j-1), plot(A(:,j))
11 ylim([-3 3]), title ("A_"+j+"\in V_"+j)
12 subplot(J,2,2*j), plot(D(:,j))
13 ylim([-3 3]), title ("D_"+j+"\in W_"+j)
14 end
15 % Check that Aj = A(j+1)+D(j+1) as Vn=V(n+1)+W(n+1)
16 max(abs(ydata - (A(:,1) + D(: ,1)))) % f = A1 + D1 (err =7.35e-12)
17 max(abs(A(:,1) - (A(:,2) + D(: ,2)))) % A1 = A2 + D2 (err =4.44e-16)
18 max(abs(A(:,2) - (A(:,3) + D(: ,3)))) % A2 = A3 + D3 (err =8.88e-16)
19 max(abs(A(:,3) - (A(:,4) + D(: ,4)))) % A3 = A4 + D4 (err =1.11e-15)
20 max(abs(A(:,4) - (A(:,5) + D(: ,5)))) % A4 = A5 + D5 (err =1.33e-15)
21

22 J = 5; % check that ydata = AJ+(D1+...+ DJ) any J =1,2,...,5
23 max(abs(ydata - (A(:,J) + sum(D(:,1:J) ,2)))) % (err =7.35e-12)
24

25 % Optional: Extract the coarse scale approximation
26 A5 = appcoef(C,L,’db4’);
27 % Extract only one detail signal at a specific level
28 D5 = detcoef(C,L,5);
29 % Extract all detail signals
30 [D1 ,D2 ,D3,D4,D5] = detcoef(C,L ,1:5);

We can also compute Maximal Overlap DWT (also known as undecimated DWT) and its multiresolution analysis by modwt
and modwtmra commands. Both use sym4 wavelet by default. Moreover:

• E = modwt(x,wname,J) is energy-preserving, i.e. modwt partitions a signal’s energy across detail and scaling coefficients.

• M = modwtmra(E,wname) accepts the matrix E returned by modwt as input and returns a matrix M with J +1 rows. The
j th row of M is the projection d j ∈Wj of the signal onto the detail subspace Wj , for j = 1, 2, ..., J . The last row M(J + 1, :)
corresponds to the approximation aJ ∈ VJ . This means that the original signal can be recovered by a column-wise sum of
all the projections stored on the rows.

Listing 14: Wavelets: Multiresolution Analysis with modwt and modwtmra

1 load wecg.mat wecg , ydata = wecg; % load ECG signal , sampling frequency 180 Hz
2 tdata = (0: numel(ydata) -1)/180; % (1xN) samples , with N = 2048
3 % DWT and MRA
4 wname = ’db4’; J = 6; % choose Daubechies wavelet db4 and J=6
5 E = modwt(ydata , wname , J); % compute Maximal Overlap DWT
6 mraMatrix = modwtmra(E, wname); % compute MRA (J+1) x N matrix
7 ydata_mra = sum(mraMatrix); % sum down along columns , getting (1 x N) row
8

9 % Visualize original and reconstructed signals
10 figure , plot(tdata ,ydata ,’b--.’, LineWidth=1, MarkerSize =8);
11 hold on, plot(tdata ,ydata_mra ,’r’, LineWidth =1);

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 122

Figure 12: Multiresolution of a signal f ∈ V0 at Level J = 5. See (3.2.6). First row: The signal f is decomposed as f = A1 + D1. Second row:
A1 is decomposed as A1 = A2 + D2. Third row: A2 is decomposed as A2 = A3 + D3, and so on. Hence, the original signal is decomposed into
f = D1 + D2 + ...+ D5 + A5, with Dj ∈Wj and aJ ∈ VJ .

12 % Visualize decomposition
13 alldata = [tdata ’, mraMatrix ’]; % transpose and concatenate to get N x (J+2)
14 T = array2table(alldata , VariableNames =[" time","D"+Level :-1:1," Approx "]);
15 figure , stackedplot(T, "XVariable", 1) % plot the approximation and N details

Figure 13: Multiresolution of a signal at Level J = 6, see (3.2.6) using modwt and modwtmra with db4 wavelet.

We can perform MRA also by using the interactive App called Signal Multiresolution Analyzer (from the App tab of MATLAB
desktop or by typing » signalMultiresolutionAnalyzer). We can quickly import a signal, choose a wavelet, pick the
approximation level, and visualize the decomposition. For each level, the app allows to explore the energy percentage for each

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 123

component and select which levels we would like to include (typically those with highest energy content) to reconstruct the
signal. The App allows also to export the reconstructed signal, the decomposition matrix or automatically generate the MATLAB
script with the commands. In the example in Fig. 14 we can see that, after a decomposition at level 6, the top three levels with
the highest relative energy are:

• approximation (projection on space V6) with the highest energy 58.46%

• detail at level 3 (projection on space W3) with energy 12.37%

• detail at level 4 (projection on space W4) with energy 8.42%.

Figure 14: Signal Multiresolution Analyzer App in MATLAB: decomposition of an ECG signal (with frequency 150Hz) has been computed at level
6 with db4 wavelet; we can see corresponding energy for each level on the left panel. We can select the levels with the highest energy, i.e. the
approximation + detail at level 3 + detail at level 4 , and observe the reconstruction by including only these terms on the right plot.

4 Radial Basis Functions
Radial basis functions (RBF) are a means to approximate multivariable functions that are too hard or too time consuming to be
evaluated, so they can be sampled (or measured) only in a finite number of points. Since RBFs are radially symmetric functions
that are shifted by points in a multidimensional normed linear space, they form a convenient data-dependent approximation
space (as suggested by the Mairhuber-Curtis theorem). RBFs have many advantages: scalable to any dimension, high accuracy,
fast convergence, no need for triangulation. RBFs are also used in machine learning, surrogate optimization and neural networks,
as we will briefly see in the following sections.

4.1 Multivariate Scattered interpolation

We consider the problem of interpolating scattered data X = {xk}Nk=1 and F = { fk}Nk=1, with xk ∈ Rd and fk ∈ R. We assume:

• xk are multivariate (d ≥ 1), pairwise distinct, and meshless (i.e. they don’t need to form a regular grid)

• fk = f (xk) are the only known (or sampled) values for some unknown (or too complex) function f

• We look for a simpler model Pf interpolating f , i.e. satisfying N conditions Pf (xk) = fk k = 1,2, ..., N .

The fundamental model for Pf is a linear combination of radial basis functions, dependent on the distance from each xk:

Pf (x) =
N
∑

k=1

λk φ (||x − xk ||) , Pf (x i) = fi ∀i = 1, 2, ..., N (4.1.1)

where || · − xk|| is any norm-induced distance (Euclidean, Minkowski, Mahalanobis, etc.) and φ : [0,∞)→ R is a radially
symmetric function, chosen among:

φ(r) = r (linear)

φ(r) = r3 (cubic)

φ(r) = r2 log(r) (thin-plate spline) (4.1.2)

φ(r) =
Æ

1+ (εr)2 (multiquadric)

φ(r) = e−(εr)2 (Gaussian)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 124

Data are shaped such that X is N xd matrix and F is a N x1 column. If DX is the d xd symmetric square matrix of all pairwise
distances, i.e.

DX =

0 ||x1 − x2|| ||x1 − x3|| · · · · · · · · · ||x1 − xN ||
||x2 − x1|| 0 ||x2 − x3|| · · · · · · · · · ||x2 − xN ||

...
...

...
...

...
...

...
||xN − x1|| ||xN − x2|| ||xN − x3|| · · · · · · · · · 0

(4.1.3)

the problem (4.1.1) becomes equivalent to the linear system

φ(DX) λ= F (4.1.4)

where φ is applied to any entry of DX . The linear system (4.1.4) can be efficiently solved in MATLAB.
To implement this method in MATLAB, we consider the following scattered data in the unit square [0,1]x[0,1]:

• xk: Quasi-random (low-discrepancy) 2D sequence, i.e. a Halton sequence

• fk: Franke’s bivariate test function (implemented in MATLAB with 2 input arguments)

Listing 15: RBF: Halton quasi-random dataset for testing

1 d = 2; % d=space dimension
2 N = (2^4+1)^2; % N=number of scattered points in R^d
3 % Generate quasi -random Halton set (see MATLAB Doc for Skip and Leap properties)
4 p = haltonset(d,’Skip’,1e3 ,’Leap’,1e2); % define quasi -random object in d-dim
5 p = p.scramble(’RR2’); % use scramble method (reverse -radix)
6 X = p.net(N); % use net method to generate N points in R^d
7 F = franke(X(:,1), X(: ,2)); % compute Franke ’s test function
8 scatter3(X(:,1),X(:,2),F), view ([70 35])

We can now create the RBF interpolator in MATLAB with three simple steps:

1. choose a distance and compute pairwise distance matrix DX (4.1.3) by using pdist command;

2. choose an RBF φ (4.1.2) and apply it to each entry of the distance matrix;

3. solve the linear system (4.1.4) by using backslash operator (Gauss direct methods):

λ= φ(DX) \ F (4.1.5)

Listing 16: RBF: Build the RBF interpolator

1 dist_name = ’Euclidean ’; % define a distance
2 phi = @(r) r.^3; % define an RBF
3 D = pdist(X, dist_name); % 1) compute pairwise distances
4 A = squareform(phi(D)); % 2) apply RBF to distances
5 lambda = A\F % 3) solve linear system A*lambda = F

To visualize the interpolating surface, we need to prepare uniform mesh for each dimension, stretch them into columns and
compute pairwise distances between these uniform points and the original scattered ones by using pdist2 command:

Listing 17: Visualization of the RBF interpolator

1 n = 30; % mesh size
2 gridx = linspace (0,1,n);
3 gridy = linspace (0,1,n);
4 [xe ,ye] = meshgrid(gridx , gridy); % d uniform meshes (nxn)
5 eX = [xe(:), ye (:)]; % stretch into n^2 x d
6 eDist = pdist2(eX,X, dist_name); % pairwise distances to get n^2 x N
7 eA = phi(eDist); % apply RBF
8 f_interp = eA*lambda; % multiply by lambda (Nx1) to get n^2 x 1
9 f_interp_mat = reshape(f_interp ,n,n); % reshape into nxn

10 figure , hold on
11 scatter3(X(:,1),X(:,2),F, "b", "filled ")
12 surf(xe ,ye ,f_interp_mat), view ([70 35])
13 shading interp , colormap hot , alpha (0.5)

Another useful model is the scattered interpolator with polynomial precision, able to exactly reproduce a linear interpolator
when the original data are already linear. It can be obtained from (4.1.1) by adding polynomial terms to the RBFs. For simplicity
let us formulate the model in R2 and add a polynomial of degree 1 in 2 variables:

Pf (x) =
N
∑

k=1

λk φ (||x − xk ||) + C1 + C2 x (1) + C3 x (2)
︸ ︷︷ ︸

polynomial precision

, x =
�

x (1), x (2)
�

∈ R2 (4.1.6)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 125

Figure 15: Scattered data interpolation: on the left: with cubic radial basis function for Franke’s test function; on the right: with cubic radial
basis function and linear polynomial precision for some linear data

As we have 3 more unknowns, we can add 3 more conditions. For details, see [9]. If we put P =
�

1 x (1) x (2),
�

we obtain an
augmented linear system, similar to (4.1.4):

�

φ(Dx)N xN PN x3
(PT)3xN 03x3

��

λN x1
C3x1

�

=
�

FN x1
03x1

�

(4.1.7)

MATLAB code for solving the augmented linear system (4.1.7) is straightforward. See Fig. (15) (on the right).

Listing 18: RBF: Cubic RBF interpolator with linear polynomial precision

1 D = squareform(pdist(X, "euclidean ")); % compute distance matrix
2 phi = @(r) r.^3; % define cubic RBF
3 A = phi(D); % apply RBF to Distance matrix
4 P = [ones(N,1), X]; % define P=[1 xi yi] as N x 3
5 A0 = [A P; P’ zeros (3)]; % define augmented interpolation matrix
6 F0 = [F; zeros (3 ,1)]; % add zeros to F
7 lambda0 = A0\F0; % solve linear system A0*lambda0 = F0

4.2 Surrogate Optimization

A surrogate is a simpler function that approximates another function and takes less time to evaluate. RBF interpolators can be
used to generate a surrogate of the objective function in a constrained optimization problem. Surrogate optimization is best-suited
when we have a time-consuming objective function (i.e. expensive to evaluate, nonsmooth or kind of black-box with no analytical
input/output expression): to search for a point that minimizes the objective function, simply evaluate its surrogate on thousands
of points randomly chosen in a limited box, and take the best value as an approximation to the minimizer of the objective function.

Surrogate optimization attempts to find a global minimum of the constrained optimization problem:

x∗ = argmin
x∈Ω⊆Rn

f (x) such that

lb≤ x ≤ ub
x i integer for some i
Ax ≤ b
Aeq x = beq
c (x)≤ 0

(4.2.1)

where x ∈ Ω ⊂ Rn (optionally, some x i ’s can be assumed to be integer); l b and ub are lower and upper bounds, respectively;
Ax ≤ b and Aeq = beq are linear inequalities and equalities; c(x)≤ 0 are non-linear constraints.

In MATLAB, surrogateopt function implements a derivative-free algorithm to solve (4.2.1) by approximating the objective
f (x) with a surrogate s(x) given by a cubic RBF interpolator with linear tail as described in Section 4.1 (which also minimizes a
measure of bumpiness as defined by H.M. Gutmann in [11]):

f (x)≈ s(x) =
N
∑

k=1

λk ||x − xk||3 + (cx + d) (4.2.2)

The merit function is a convex combination of two terms: a scaled surrogate and a scaled distance

µω(x) :=ω
s(x)− smin

smax − smin
+ (1−ω)

dmax − d(x)
dmax − dmin

(4.2.3)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 126

where d(x) is the minimum distance of the point x from trial points. A small value ofω looks at points that are far from evaluated
points, leading the search to new regions. A large value of ω gives importance to the surrogate values, causing the search to
minimize the surrogate. Typically, ω cycles through the values: 0.3, 0.5, 0.8, and 0.95 (see MATLAB Documentation [19] for
details). The surrogate optimization algorithm alternates between two phases (see Fig. 16):

• Phase A: Construct Surrogate

1. Sample within the bounds by generating a small amount of quasi-random sample points and evaluate the objective
function at these trial points (MinSurrogatePoints, default is max(20, 2n)).

2. Create a surrogate model of the objective function by using an RBF interpolator (4.2.2) through these trial points.
Identify the best point (found since the last surrogate reset). This point is called incumbent point

• Phase B: Search for Minimum

3. Sample with a large number of pseudorandom points (about 102−103) near the incumbent point. Evaluate the merit
function (4.2.3) at these trials, but not at any point within MinSampleDistance of a previously evaluated point
(default is 10−6). The point with the lowest merit function value is called the adaptive point.

4. Evaluate the objective at the adaptive point, and update the surrogate based on this point and its value. If the
objective function value at the adaptive point is sufficiently lower than the incumbent value, then the solver deems
the search successful (success=success+1) and sets the adaptive point as the new incumbent. Otherwise, the
solver deems the search unsuccessful (failure = failure+1) and does not change the incumbent.

5. Update the dispersion of the sample distribution upwards if 3 successes occur before max(n, 5) failures. Update the
dispersion downwards if max(n, 5) failures occur before 3 successes.

6. Continue from step 3 until all trial points are within MinSampleDistance of the evaluated points. At that time,
reset the surrogate by discarding all adaptive points from the surrogate, reset the scale, and go back to step 1 to
create MinSurrogatePoints new random trial points for evaluation.

Figure 16: The two phases of Surrogate Optimization algorithm: 1) Construct the surrogate; 2) Search for Minimum

In MATLAB, the interface to call surrogateopt is

[x, fval, exitflag] = surrogateopt(@objconstr,lb,ub,intcon,A,b,Aeq,beq,options),

where l b and ub are mandatory finite bound constraints for all variables and @objconstr is a function handle pointing at
the objective function with signature: function S = objconstr(x). The output S must be a structure array with 2 fields:
S.Fval and S.Ineq, the objective value and the nonlinear inequality constraints c(x), respectively. Note that the non-linear
constraints must be incorporated together with the objective function.

Solving a problem with surrogate optimization. As an example, let us try to solve the following problem where the object-
ive requires to solve a system of ordinary differential equations (ODE): change the position and angle of a bow to throw an arrow
as far as possible beyond a fixed wall and staying below a ceiling. The decision variable is x = (x1, x2) ∈ R2, where x1 = the
initial distance of the bow from the wall, and x2 = the initial angle of the arrow. Suppose we are given the following data:

• the wall is 20 m high. (Fix the origin of coordinate system on the base of the wall.);

• the ceiling is 60 m high;

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 127

• nonlinear air resistance slows the arrow proportionally to the square of velocity, with constant µ= 0.01;

• gravity acts on the arrow, accelerating it downward with constant g = 9.81 m/s2;

• the arrow has an initial velocity of v0 = 85 m/s;

• initial conditions (initial distance from wall, initial angle): x (0) = [−50;π/6];

• bound constraints: −200 ≤ x1 ≤ −1 and 0.05 ≤ x2 ≤
π
2 − 0. 05;

• wall constraint: if the trajectory crosses the wall at a height less than 20, the trajectory is infeasible;

• ceiling constraint: if the trajectory crosses the ceiling at height 60, the trajectory is infeasible.

Figure 17: Surrogate Optimization problem: find position A and angle of a bow to throw an arrow as far as possible beyond a wall and staying
below a ceiling. As a first guess, taking initial position x (0)1 = −50 and initial angle x (0)2 = π/6, we can achieve the distance 101.75. After

optimization, getting a little closer x (f inal)
1 = −23.38 and increasing the initial angle x (f inal)

2 = 0.73, we will achieve the best distance 125.77

As ODE solvers require the model to be a first-order system, we define a 4-dim state column vector q = (q1, q2, q3, q4)T , with
(q1, q2) for the position in the plane and (q3, q4) for the velocities, so the dynamics of the arrow is given by:

d
d t

q (t) =

q3 (t)
q4 (t)

−µ

�

q3 (t) , q4 (t)
�

 q3 (t)
−µ

�

q3 (t) , q4 (t)
�

 q4 (t)− g

(4.2.4)

To solve the problem in MATLAB, we define a structure array with all the problem parameters:

Listing 19: Surrogateopt: defining a structure for problem parameters

1 param.wallheight = 20;
2 param.peak = 60;
3 param.resistancecoeff = 0.01;
4 param.initialspeed = 85;
5 param.lb = [-200; 0.05];
6 param.ub = [-1; pi/2 -0.05];
7 param.gravity = 9.81;
8 param.x0 = [-50; pi/6];
9 param.stoptime = 15;

We also define three functions:

• ModelEquations: a nested function defining the ODE system (4.2.4);

• ModelSolver: a function calling ode45 solver to return the ODE solution;

• ObjectiveConstr: the main function for surrogate optimization returning a structure S with two special fields:

– S.F val: returns the negative distance to be minimized;
– S.Ineq: returns the two constraints (height ≥ WALL and peak ≤ CEILING).

Listing 20: Surrogateopt: ODE solver calling a nested function

1 function sol = ModelSolver(x,param)
2 % x(1) = distance from wall , x(2) = angle. Change initial 2-D point x to 4-D q0
3 q0 = [x(1);0; param.initialspeed*cos(x(2)); param.initialspeed*sin(x(2))];
4 % Solve ODE
5 sol = ode45(@ModelEquations ,[0, param.stoptime],q0);
6

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 128

7 function dq = ModelEquations (~,q) % NESTED function
8 dq = zeros (4 ,1); % initialize state q as 4D
9 v = norm(q(3:4)); % norm of the velocity

10 dq(1) = q(3);
11 dq(2) = q(4);
12 dq(3) = -param.resistancecoeff *v*q(3); % horizontal accel
13 dq(4) = -param.resistancecoeff *v*q(4) - param.gravity; % vertical accel
14 end
15 end

Note that:

• ModelEquations is a nested function in ModelSolver, so that it shares the param structure from the parent workspace.
Because we are using nested functions, all functions must be terminated by end;

• ModelSolver is responsible to convert 2D input x into 4D q as required by ModelEquations;

• ObjectiveConstr calls fzero twice to determine both the achieved distance when the trajectory height is zero and the
achieved height when the arrow passes over the wall. To find the peak of trajectory, it calls fminbnd.

Listing 21: Surrogateopt: objective function (distance) including the nonlinear constraints (wall and ceiling)

1 function S = ObjectiveConstr(x, param)
2 sol = ModelSolver(x,param);
3 horiz_pos = @(t) deval(sol ,t,1);
4 vert_pos = @(t) deval(sol ,t,2);
5

6 % Find time t when trajectory height = 0 and horizontal position at that time
7 t0_height0 = fzero(vert_pos ,[1e-2,param.stoptime]);
8 dist = horiz_pos(t0_height0);
9

10 % What is the height when the arrow crosses the wall at x = 0?
11 if horiz_pos (15) > 0
12 t0_wall = fzero(horiz_pos ,[0,param.stoptime]);
13 height = vert_pos(t0_wall);
14 else
15 height = vert_pos(param.stoptime);
16 end
17

18 % What the maximum height achieved?
19 t0_peak = fminbnd(@(t) -vert_pos(t), 1e-2,param.stoptime , optimset(TolX=1e-8));
20 peak = vert_pos(t0_peak);
21

22 % define output structure
23 S.Fval = -dist; % Objective: negative of distance
24 S.Ineq (1) = param.wallheight - height; % height >= WALL , ie WALL -height <= 0
25 S.Ineq (2) = peak - param.peak; % peak <= CEILING , ie peak -CEILING <=0
26 end

Finally, we are ready to run the surrogate optimization:

• we change interface of @(x) ObjectiveConstr(x,param) by embedding the param structure, and obtaining a
function depending only on x , which is exactly what surrogateopt needs;

• PlotFcn=’surrogateoptplot’ and Display=’iter’ are useful training options to visualize how the algorithm is
progressing;

• the option UseParallel=true allows to start a parallel pool of workers able to maintain a queue of points on which to
evaluate the objective function; a scheduler takes points from the queue in a FIFO fashion and assigns them to workers as
they become idle, asynchronously.

More options can be explored with » optimoptions("surrogateopt") or » doc surrogateopt.

Listing 22: Surrogateopt: defining options and running surrogateopt

1 new_interface = @(x) ObjectiveConstr(x,param); % embed param to change interface
2

3 opts = optimoptions(’surrogateopt ’, InitialPoints=param.x0 ,...
4 PlotFcn=’surrogateoptplot ’, Display=’iter’, ...
5 MaxFunctionEvaluations =500, MinSurrogatePoints =30, MinSampleDistance =1e-8,...
6 UseParallel=true);
7

8 [xsolution ,distance ,exitflag ,output] = ...
9 surrogateopt(new_interface ,param.lb ,param.ub,opts)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 129

Figure 18: Surrogate Optimization algorithm: PlotFcn=’surrogateoptplot’ provided this graphic showing the two phases. 1) Construct
the surrogate (4.2.2), with random sampling and incumbent points (the best of surrogate); 2) Search for global minimum, with random sampling
around incumbent point and adaptive points (points with the lowest merit function (4.2.3) since last surrogate reset)

4.3 Kernelized Support Vector Machines

Support Vector Machines (SVM) are versatile machine learning models proposed by V. Vapnik, for both classification (1992)
and regression (in 1996), both linear and nonlinear. They can be easily implemented in MATLAB with fitcsvm and fitrsvm
functions (fitc*** is for classification, fitr*** is for regression).

Support Vector Classification (C-SVM) is an approximation of the decision boundary between two classes: the boundary not
only separates the two classes, but also stays as far away from the closest training instances as possible. SVM-classifier fits the
widest possible "street" separating two classes. This is called large margin classification. The decision boundary is fully determined
by the instances located on the edge of the street, called support vectors. If we strictly impose that all instances be off the street
and on the correct side (no misclassification at all), this is called hard margin classification. This would be ideal, but there are
issues: it only works if the dataset is linearly separable, and it is quite sensitive to outliers. More realistically, we’d better look for
a good balance between keeping the street as large as possible and limiting margin violations (i.e. instances that end up in the
middle of the street or even on the wrong side). This is called soft margin classification.

Given a dataset of N points with n features, {x (i) ∈ Rn}i=1,2,...,N , assume data belong to one of two classes ("positive" or
"negative") and that the two classes are linearly separable. Then we look for a linear boundary of the form y = w · x + b, where
w ∈ Rn is an unknown "slope" vector and b ∈ R is an intercept. We define t(i) = 1⇔ w · x (i) + b is "positive"; t(i) = −1⇔
w · x (i) + b is "negative". The soft margin problem is a quadratic programming (QP) problem, whose primal problem is:

min
w∈Rn , b∈R, ζ∈RN

1
2

w′ ·w+ C
N
∑

i=1

ζ
i

(4.3.1)

subject to t(i)(w · x (i) + b)≥ 1− ζ
i

and ζi ≥ 0 for i = 1, 2, ..., N

where ζi are N slack variables to measure how much i th instance is allowed to violate the margin, C is a hyperparameter (Box
Constraint) trading off between two conflicting objectives: making the slack variables as small as possible to reduce margin
violations, and making the norm of w as small as possible to increase the margin. The dual problem is:

min
α∈RN

1
2

N
∑

i=1

N
∑

j=1

αiα j t
(i) t(j) < x (i), x (j) > −

N
∑

i=1

αi (4.3.2)

subject to αi ≥ 0 for i = 1,2, ..., N

where αi are N Lagrange multipliers, αi ̸= 0⇔ x (i) is a support vector. Remarkably, the dual problem depends on inner products
of training data < x (i), x (j) >.

Example 1. The magic of the Kernel Trick.
The kernel trick allows to extend linear SVM to non linearly separable data. RBF kernels play a key role. To see this, generate 200
non linearly separable random points in R2, i.e. 100 "red" points (class "-1") uniformly distributed in the unit disk, and 100 "blue"
points (class "+1") in the ring of rays 1 and 2. These points are NOT linearly separable in R2 (see Fig. 19), but become linearly
separable if embedded in higher dimension space R3 through a feature map like this:

ϕ : R2 −→ R3 : (x , y) 7−→
�

x2,
p

2 x y, y2
�

(4.3.3)

Listing 23: Generate non linearly separable random points in a disk

1 r = sqrt(rand (100 ,1)); % random radius
2 t = 2*pi*rand (100 ,1); % random angle
3 data1 = [r.*cos(t), r.*sin(t)]; % points of class -1 (RED)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 130

4 r2 = sqrt (3* rand (100 ,1)+1); % random radius for ring
5 t2 = 2*pi*rand (100 ,1); % random angle for ring
6 data2 = [r2.*cos(t2), r2.*sin(t2)]; % points of class +1 (BLUE)
7 data3 = [data1;data2]; % concatenate data together
8 theclass = ones (200 ,1); % assign class +/-1
9 theclass (1:100) = -1;

Figure 19: Non linearly separable random points in R2 become linearly separable in R3 by a feature map (4.3.3)

When applying ϕ to the training data, the dual problem (4.3.2) will contain < ϕ(x (i)),ϕ(x (j))>. In general it will be very difficult
(even impossible) to know ϕ. The magic is that the inner product in the feature space boils down to a kernel function on the
original space, so we don’t need to know ϕ:

< ϕ(u),ϕ(v)>= K(u, v). (4.3.4)

For example, the corresponding kernel for (4.3.3) satisfying (4.3.4) is the 2nd degree polynomial K(u, v) = (u′ · v)2. According to
Mercer’s theorem, for every kernel K(u, v) there exists a feature map ϕ satisfying (4.3.4). With Gaussian RBF kernels, ϕ would
actually map data in an∞-dim Hilbert space. Next, we see how to apply the kernel trick in MATLAB.

Example 2. SVM Classification with RBF Kernel Trick and Box Constraint
fitcsvm first solves (4.3.2) to find Lagrange multipliers α, then will solve the primal (4.3.1) with respect to W and b. MATLAB
uses the following solvers: SMO (Sequential Minimal Optimization), ISDA (Iterative Single Data Algorithm), L1QP (L1-quadprog).
See »doc fitrsvm for details. The kernel function can be specified using the KernelFunction option:

• ’rbf’ or ’Gaussian’: K(u, v) = e−||
1
γ u−v||2), with KernelScale parameter γ (γ= 1 by default)

• ’linear’: K(u, v) = u′ · v
• ’polynomial’: K(u, v) = (1+ u′ · v)q, with PolynomialOrder parameter q (q = 3 by default)

• ’myKernel’, if we have our own kernel function with signature K=myKernel(U,V)
The output of fitcsvm is an object, let us say mySVM, belonging to the ClassificationSVM class. Objects are instances of a
class, defined in the sense of OOP (Object Oriented Programming), containing properties and methods. All properties are accessible
with the dot notation, i.e. mySVM.Alpha, mySVM.W, mySVM.Solver, mySVM.IsSupportVector, etc. We can also use the
method predict to extract labels and scores of new data. Both syntaxes predict(mySVM, −) and mySVM.predict(−) are
valid. Scores are useful to visualize the decision boundary as a contour plot.

Listing 24: SVM classification with RBF kernel

1 mySVM = fitcsvm(data3 , theclass , ClassNames =[-1,1], ...
2 KernelFunction =’rbf’, KernelScale = 1, BoxConstraint = 1);
3 alpha = mySVM.Alpha % returns just non null alpha of support vectors
4 supVec = data3(mySVM.IsSupportVector , :) % Identify support vectors
5 % Predict scores over a regular meshgrid to visualize boundary
6 [x1Grid , x2Grid] = meshgrid(min(data3 (: ,1)):0.02: max(data3 (: ,1)) ,...
7 min(data3 (: ,2)):0.02: max(data3 (: ,2)));
8 xGrid = [x1Grid (:), x2Grid (:)];
9 [~, scores] = predict(mySVM ,xGrid);

10 boundary = reshape(scores (:,2),size(x1Grid));
11 % Visualization of data , support vectors and decision boundary
12 figure , gscatter(data3 (:,1),data3 (:,2),theclass ,’rb’,’.’);
13 hold on, ezpolar(@(x) 1);
14 plot(supVec (:,1), supVec (:,2),’ko’, ’MarkerSize ’, 10, ’LineWidth ’ ,1);
15 contour(x1Grid ,x2Grid , boundary , [0 0], ’k’, ’LineWidth ’ ,2);

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 131

BoxConstraint is a (positive) hyperparameter of fitcsvm, useful to balance between hard vs soft implementation. It works
as a regularization knob to control the maximum penalty imposed on margin violations and prevent from overfitting:

• a smaller BoxConstraint means a wider street (soft-margin), but larger number of support vectors and more margin
violations.

• a larger BoxConstraint means a narrower street, fewer support vectors and fewer margin violations (but possibly longer
training times). As an extreme, BoxConstraint=∞ means hard margin classification.

Figure 20: SVM classification with KernelFunction=’rbf’. Left: Soft-margin with BoxConstraint = 1. Right: Hard-margin with
BoxConstraint=∞ .

Example 3: SVM Regression with RBF Kernel and custom kernel. Support Vector Regression (SVR) reverses the objective of
SVM classification: instead of trying to fit the largest possible street (or margin) separating two classes while limiting margin
violations, SVM regression tries to fit as many instances as possible ON the street, while limiting instances OFF the street. The
width of the street is controlled by a hyperparameter ε > 0 (the larger ε, the larger the street). Adding more training instances
within the margin does not affect the model’s predictions; thus the model is said ε-insensitive, also known as L1 loss. SVR relies
on kernel functions. Given a dataset (x i , yi)i , the goal is to find a function f (x) that deviates from yi by a value not greater than
ε for each training point x i , and at the same time is as flat as possible.

In MATLAB, fitrsvm computes SVM regression using ε= iqr(yi)/13.49 by default. It supports kernel functions (’rbf’ by
default) and returns an object in the RegressionSVM class.

Listing 25: SVM Regression with RBF kernel

1 y = franke(data3(:,1), data3 (: ,2));
2 regSVM = fitrsvm(data3 ,y, ’KernelFunction ’,’rbf’, ...
3 ’BoxConstraint ’,10, ’Epsilon ’ ,0.05, ’Standardize ’,true);
4

5 flag = regSVM.ConvergenceInfo.Converged % Check convergence (1 = Converged)
6 num_supVec = numel(regSVM.Alpha) % Number of support vectors (non null Alpha)
7 idx_supVec = regSVM.IsSupportVector; % logical array to localize support vectors

To define a custom kernel, we first define a function with signature K = mysigmoid(U,V), returning the Gram matrix
(4.3.4), and then assign the function name to KernelFunction option. In the following example, a new kernel using the
hyperbolic tangent is defined.

Listing 26: SVM Regression with custom kernel

1 regSVM_mykernel = fitrsvm(data3 ,y, ’KernelFunction ’,"mysigmoid", ...
2 ’BoxConstraint ’,1e4, ’Epsilon ’ ,0.04, ’Standardize ’,true);
3

4 function K = mysigmoid(U,V) % custom kernel definition
5 gamma = 0.5; c = -1;
6 K = tanh(gamma*U*V’ + c); % U mxp , V = nxp , K = mxn
7 end

Finally, we may need to experiment a bit before we identify the values of BoxConstraint, KernelScale and Epsilon
that ensure convergence and best approximation. So, we can consider to find hyperparameters that minimize cross-validation
loss by using automatic hyperparameter optimization. For more details, look into the MATLAB Documentation searching for »doc
BayesianOptimization.

Listing 27: SVM Regression with automatic hyperparameter optimization

1 opt = struct(’AcquisitionFunctionName ’, ’expected -improvement -plus’)
2 regSVM_Optim = fitrsvm(data3 ,y, ’KernelFunction ’, ’rbf’, ...
3 ’OptimizeHyperparameters ’,’auto’, ’HyperparameterOptimizationOptions ’,opt);
4 bestHyperparam = bestPoint(regSVM_Optim.HyperparameterOptimizationResults)

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 132

Figure 21: SVM Regression. Left: KernelFunction=’rbf’, BoxConstrain=10, Epsilon=0.05. Right: Custom Kernel function
BoxConstrain=1e6, Epsilon=0.04

5 Neural Networks
In sessions 5.1 and 5.2 we explain neural networks as universal approximators to approximate any (continuous) map f : Rn→ Rm.
In session 5.3 we see how a neural network can approximate a complex dynamic system for which analytic expressions between
input and output may be hard to find or even may not exist. See [1] and [5] for an introduction to neural networks.

5.1 Universal Approximators

Neural networks can approximate at any accuracy large families of target functions. As proven in 1989 by Cybenko, Hornik,
Stinchcombe, White (see [5]), any continuous function f : X ⊆ Rn→ Y ⊆ Rm can be approximated by a neural network with a
single arbitrary-width hidden layer with nonlinear activation function. We are going to introduce some terminology and then an
example in MATLAB to demonstrate this result.

Neural networks contain unknown parameters θ that must be tuned to get the "best" approximation f̂θ of the unknown f via
a supervised learning process which consists in:

• given a large dataset of input-output pairs XN = (x (i))i=1,2,...,N and YN = (y (i))i=1,2,...,N , drawn from a joint probability
distribution P(X , Y)

• given a loss function L(y, f̂θ (x)) (root mean squared error for regression, or cross-entropy for classification)

determine the best θ ∗ to minimize the expected loss (known also as generalization error or risk):

θ ∗ = argmin
θ

EX (EY |X (L(Y, f̂θ (X)))) = argmin
θ

∫

X

∫

f (X)

L(y, f̂θ (x))P(Y = y|X = x)
︸ ︷︷ ︸

posterior

d y P(X = x)
︸ ︷︷ ︸

marginal

d x (5.1.1)

The architecture of a feed-forward neural network can be defined as a concatenation of layers, each layer made of a number
of artificial neurons characterized by learnable matrix parameters θ = (W, b) and a nonlinear activation function σ: if the i th

layer has p neurons and (i + 1)th layer has q neurons, then the i th layer is described by:

i th layer : η(i) = σ(W (i)ξ(i) + b(i)), ξ(i) ∈ Rp; η(i) ∈ Rq (5.1.2)

where W (i) is a (qx p) weight matrix, b(i) is a (qx1) bias , and σ : Rq → Rq is a scalar nonlinear activation function that can be
applied component-wise.

In MATLAB, many *Layer commands are available to build a neural network from scratch:

• an *InputLayer must come first depending on input type, i.e.featureInputLayer,imageInputLayer, etc

• neuron’s linear part W (i)ξ(i) + b(i) is implemented by fullyConnectedLayer(OutputSize)
• neuron’s activation σ can be implemented with different layers reluLayer, sigmoidlayer,etc

• loss function come at the end, implemented by either regressionLayer or classificationLayer
Table 1 shows the activation layers available in MATLAB. Typically, the most widely used activations for hidden layers are: reLu,
tanh, softPlus; softmax is used after last fully connected layer for classification.

As an example, let us see now how we can build and train a neural network in MATLAB from scratch to approximate a given
map f : Rn→ Rm.

To get started, fix the input size n= 10 and the output size m= 20. Let us choose to have a single hidden layer, namely a
fully connected layer, and fix its number of neurons num_neurons = 50. Then we can pick any non linearity, such as a sigmoid.
So, to create a regression network, we can concatenate the main layers into a layer array:

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 133

MATLAB Layer Activation Name Function

sigmoidLayer Sigmoid (or Logistic) σ(x) = 1/(1+ e−x)
softmaxLayer SoftMax σ(x) = ex/

∑

(ex)
softplusLayer SoftPlus σ(x) = log(1+ ex)
tanhLayer Hyperbolic Tangent σ(x) = tanh(x)
swishLayer Swish (or Sigmoid Linear Unit) σ(x) = x/(1+ e−x)

reluLayer ReLU (Rectified Linear Unit) σ(x) =max(x , 0) =

�

x , if x ≥ 0
0, if x < 0

leakyReluLayer(α) Leaky ReLU σ(x) =

�

x , if x ≥ 0
αx , if x < 0

clippedReluLayer(C) Clipped ReLU σ(x) =

C , if x ≥ C
x , if 0≤ x ≤ C
0, if x < 0

eluLayer(α) Exponential Linear Unit σ(x) =

�

x , if x ≥ 0
α(ex − 1), if x < 0

Table 1: Activation layers

Listing 28: Build a neural network by concatenating different layers

1 n = 10; m = 20; num_neurons = 50;
2 layers = [featureInputLayer(n) % Input layer
3 fullyConnectedLayer(num_neurons) % Hidden layer
4 sigmoidLayer % Activation
5 fullyConnectedLayer(m) % Output layer
6 regressionLayer]; % loss layer
7 net = layerGraph(layers);
8 analyzeNetwork(net)

The analyzeNetwork(net) command (see Fig. 22, on the left) helps visualize and understand the architecture of the network,
check that the architecture has been defined correctly, and detect problems before training, including missing or unconnected
layers, incorrectly sized layer inputs, incorrect number of layer inputs, and invalid graph structures. The diagram on the left
shows the layers connections. On the right, we can also check the number of learnable parameters for each layer. In this example,
with input size 10, number of neurons 50 in hidden layer, and output size 20, the first fully-connected layer contains a (50x10)
weight matrix and (50x1) bias, while the second fully-connected layer has a (20x50) weight matrix and (20x1) bias. In total,
1570 learnable parameters.

The deepNetworkDesigner app (see Fig. 22, on the right) allows to import an existing network or build the network from
scratch by dragging the layers from the Layer Library.

Figure 22: (On the left): analyzeNetwork; (on the right) deepNetworkDesigner

Before starting the training, let us generate synthetic data in a random fashion:

Listing 29: Synthetic data to train the Neural Network

1 N = 100; % N = number of samples
2 A = rand(m,n); x = randn(n,N); % n = input size , m= output size
3 b = A*x + 0.1* randn(m,N);
4 xtrain = x’; % xtrain is N x n
5 btrain = b’; % btrain is N x m

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 134

Let us define some options with trainingOptions command. For instance we can choose:

• the solver, among three available options: sgdm (Stochastic Gradient Descent with Momentum), rmsprop (Root Mean
Square Propagation) and adam (Adaptive Moment estimation). The solver is mandatory: depending on the solver we
choose, we get a specific training option object;

• the maximum number of epochs (an epoch corresponds to a full pass over the entire training set)

• the initial learning rate and other properties regarding its schedule;

• the ExecutionEnvironment (choosing among ’auto’, ’cpu’, ’gpu’, ’multi-gpu’, ’parallel’).

• the visualization of training progress by Plots="training-progress".
To start the training, we use the main trainNetwork command: we can visualize the training progress and check if the loss

is decreasing at each iteration (An iteration is one step taken in the solver algorithm towards minimizing the loss function using a
mini-batch). After some computation, the returned object net contains all learnt parameters. For example, we can extract the
weight matrix of the second fully-connected layer with net.La yers(2).Weights

Listing 30: Neural Networks: trainingOptions and trainNetwork

1 opt = trainingOptions ("adam", Plots = "training -progress", MaxEpochs = 1500, ...
2 InitialLearnRate = 0.1, LearnRateSchedule = "piecewise", ...
3 LearnRateDropPeriod = 600, LearnRateDropFactor = 0.5, ...
4 ExecutionEnvironment= "auto ");
5 % run the training
6 net = trainNetwork(xtrain , btrain , layers , opt);
7 W1 = net.Layers (2). Weights % Extract Weights of fc-layer 2
8 B1 = net.Layers (2). Bias
9 W2 = net.Layers (4). Weights % Extract Weights of fc-layer 4

10 B2 = net.Layers (4). Bias

5.2 Radial Basis Function Networks

A Radial Basis Function (RBF) network is another universal approximator of any continuous function f : Ω ⊂ Rd → RQ defined
on any compact subset Ω, first formulated in a 1988 paper by Broomhead and Lowe. It is made of two main layers:

• a hidden layer of neurons with non-linear radial basis activation (typically, Gaussian), whose number of neurons is initially
set to 0 and incremented gradually during the training process to fit the target output until it meets the specified mean
squared error goal;

• an output layer of purely linear neurons.

The weights and biases of each neuron in the hidden layer define the position and width of a radial basis function. For
example, we can use radbas basic command to create a Gaussian RBF. Fig. 23 shows a weighted sum of shifted Gaussian RBFs.

Listing 31: Neural Networks: radbas to compute weighted and shifted Gaussian RBFs

1 x = -3:.1:3; c = [0; 1.5; -2]; % x = row 1x61 , c = column 3x1
2 omega = [1.5 0.5 1]; % omega = row 1x3
3 a = radbas(x-c); % x-c = a matrix 3x61 (implicit expansion)
4 plot(x, omega.*a’), hold on % plot of 3 wighted RBFs
5 plot(x, omega*a,LineWidth =2) % plot of the sum of the 3 RBF

To approximate f : Rd → RQ, given N training points in Rd and N output in RQ, we can define and train an RBF network by
using the newrb command. To predict the value on new M points in Rd , we collect coordinates in a d x M matrix and apply the
RBF network object, returning a new Qx M output array:

• RBFnet = newrb(in, out, MSEgoal, RBFspread, MaxNumNeurons)

The 4th input is the spread parameter of Gaussian RBF: the larger spread is, the smoother the function approximation. Too
large a spread means a lot of neurons are required to fit a fast-changing function. Too small a spread means many neurons are
required to fit a smooth function, and the network might not generalize well. We may need to call newrb with different spreads
to find the best value for a given problem.

In the next example, we take input size d = 2 and output size Q = 2. In this case, after we train the RBF network, we can
make predictions on a uniform grid and visualize Q surfaces. Fig. 24 shows these surfaces.

Listing 32: Neural Networks: training an RBF network to approximate f : R2→ R2

1 N = 100; d = 2; % N input in R^d, d=2
2 in = randn(d,N); % in (dxN), out (QxN)
3 % generate syntehic data for Q=2 outputs
4 Q = 2; % Q = 2 output size
5 out = sin(in(1 ,:)).* exp(-0.5*in(1,:)) + sin(in(2 ,:)).* exp (-0.1*in(2 ,:));
6 out (2 ,:)= cos(2*in(1 ,:)).* exp(-0.1*in(1 ,:))+ cos (3*in(2 ,:)).* exp (-0.2*in(2 ,:));
7 % Train radial Basis Neural network

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 135

Figure 23: Weighted sum of three shifted Gaussian RBFs

8 MSEgoal = 0.02; RBFspread = 1;
9 RBFnet2 = newrb(in , out , MSEgoal , RBFspread); % train the RBF neural network

10 % Prediction on a grid of new points
11 Nx = 20; Ny = 20;
12 xnew = linspace(min(in(1,:)), max(in(1,:)), Nx);
13 ynew = linspace(min(in(2,:)), max(in(2,:)), Ny);
14 [Xnew ,Ynew] = ndgrid(xnew ,ynew); % Nx x Ny uniform grid
15 newIn = [Xnew(:),Ynew (:)]’; % d x M (M=Nx*Ny)
16 newOut = RBFnet2(newIn); % Q x M predictions
17 % Visualization of Q surfaces
18 figure
19 for q = 1:Q
20 subplot(1,Q,q)
21 scatter3(in(1,:), in(2,:), out(q,:), ’filled ’) % plot given data
22 newOut_q = reshape(newOut(q,:),Nx,Ny); % reshape qth predictions
23 hold on, surf(Xnew ,Ynew ,newOut_q) % draw qth surface
24 title (" Target Q=" + q), shading interp
25 end

Figure 24: Radial Basis Neural Networks trained to approximate f : R2→ R2

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 136

5.3 Neural Networks to approximate complex EKF systems

Neural Networks (NN) are "black-box" models that sometimes can be a valid alternative to very complicated "white-box" models.
To illustrate the flexibility of neural networks, we want to describe a real striking application, where a simple neural network is
used to approximate a complex dynamic systems, like a rechargeable battery, and provide an accurate estimate of unmeasurable
quantities, like its State of Charge.

Rechargeable batteries, in particular lithium-ion (Li-ion) batteries, were discovered after intensive research in ’70 and ’80 ¶,
commercialized in 1991 and are now widely used in everything, from electric/hybrid vehicles to portable electronics (laptops,
mobile phones, etc). Battery Management Systems (BMS) are complex electronic systems required to monitor the State Of Charge
(SOC) of the batteries, which is critical information to prevent from system blockage, overcharging, operating outside the safe
operating area. But SOC cannot be measured directly, so an accurate estimate of SOC is key to ensure reliable and affordable
electrified vehicles and devices (see [7]). Moreover, estimation algorithm must guarantee the simplest code implementation.

By definition, SOC is the ratio of the available level of charge Q(t) to the maximum level Qmax available when the battery is
fully charged (also, the maximum capacity expressed by the manufacturer in Amp-hour, Ah). So SOC is a percentage given by
SOC(t) = −Q(t)/Qmax . Taking derivatives and putting I(t) = dQ/d t, we get the SOC differential equation:

d
d t

SOC(t) = −
I(t)

Qmax
(5.3.1)

Estimating SOC is still a significant engineering challenge due to the nonlinear temperature, health, and SOC dependent behavior
of Li-ion batteries, so different estimation methods are available (see [7] for a review). Let us compare three methods: Coulomb
Counting (CC), Extended Kalman Filter (EKF), and Neural Network (NN). In summary, CC turns out to be simple but too poor;
EKF is more accurate, but very complicated and with heavy code implementation; NN is the most efficient approach allowing
similar accuracy as the EKF, but lighter code implementation.

First method: Coulomb Counting method (CC).
Coulomb Counting method is the simplest method to estimate SOC (see [20]), obtained by approximating the derivative in

(5.3.1) with a finite difference. The accuracy of CC method is poor because it ignores all temperature and voltage effects.

SOC(t) = SOC(t −∆t) +
I(t)

Qmax
∆t (5.3.2)

Second method: Extended Kalman Filter (EKF) in Simulink.
The Kalman Filter is a more advanced algorithm, based on an iterative prediction-correction process, that can be applied

to estimate the internal state of a dynamic system, using its model (i.e. its physical laws), and multiple noisy measurements
from sensors. It was introduced by R. Kalman in 1960, first for linear systems, then extend to non linear ones. Because of its
efficiency, it is still widely used nowadays in signal processing, control and navigation systems, econometrics, etc. There exists
some excellent literature such as [10] and [21] addressing derivation and theory behind the Kalman filter. See also MATLAB
Documentation [19].

In this case, to estimate SOC, EKF leverages on three measurements, namely voltage V , current I , and temperature T . Briefly,
voltage is estimated from measured current and temperature, and then compared with the measured voltage, finally the voltage
error is incorporated back into the SOC estimation:

SOC = f̂EKF (I , V, T) (5.3.3)

To implement EKF method, we can leverage on Simulink environment, where the EKF block is already available in the Control
System libraries. Preprocessed input data (I , V, T) for this example have been collected from [14]. Simulink is fed by variables
loaded in MATLAB workspace. We can set automatic ODE solver (variable-step in simulation, or fixed-step‖ for automatic
embedded C code generation). Running the simulation for about 13 hours, the solver efficiently computes the SOC estimation as
shown in Fig. 26.

Third method: Neural Networks (NN).
In contrast to previous EKF approach, which requires precise parameters and knowledge of the battery composition as well

as its physical response, using Neural Networks is a totally data-driven approach that instead requires minimal knowledge of
the battery or its nonlinear behavior. Remember that each neuron operates on input x as y = σ(wx + b), where w and b are
learnable parameters to be optimized and σ is a non-linear activation (see 1). Neurons are aggregated in different kind of layers,
such as Fully Connected Layers. To help the network to estimate SOC better, we provide some additional historical memory by
two more inputs: average current and average voltage:

SOC = f̂NN (I , V, T, Iavg , Vavg) (5.3.4)

Let us see in details three steps required to build a Neural network in MATLAB and then, optionally, reuse it into Simulink.

Step 1: define a feedforward Neural Network from scratch.
Similarly to what we did in section 5.1, we concatenate some layers:

¶Li-ion batteries were discovered by M. S. Whittingham, J. Goodenough and A. Yoshino, who won the Nobel Prize for Chemistry 2019.
‖Note that fixed-step solvers have no zero-crossing and no checking of state error.

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 137

Figure 25: SOC estimation with Extended Kalman Filter in Simulink. Left: the main EKF Block receives voltage V s input and returns SOC estimate.
EKF Block calls two functions: one for the SOC state equation 5.3.1; the other for measurement function. Both have current I and temperature T
as inputs and are implemented with Simulink Function blocks. Right: the EKF block parameters dialog, where we type the two Simulink Function
names.

Figure 26: Simulation of SOC estimator with EKF method in Simulink. Left: 3 input signals, i.e. current, voltage and temperature. Right: SOC
output, and comparison of true SOC with the SOC estimated with EKF.

• an input layer with 5 input features (I , V, T, Iavg , Vavg);

• one hidden fully-connected layer with 64 neurons;

• some non-linear activation layers, like reluLayer (see Table 1);

• a fully connected layer with 1 single output (for SOC) and a regression layer to compute loss function.

Listing 33: Neural Networks: define the layer architecture for SOC estimation

1 numFeatures = 5;
2 numResponses = 1;
3 numHiddenNeurons = 64; % Number of hidden neurons
4 % Define network architecture
5 layers = [featureInputLayer(numFeatures ," Normalization "," zerocenter ") % 5 inputs
6 fullyConnectedLayer(numHiddenNeurons) % 1st hidden layer
7 reluLayer
8 fullyConnectedLayer(numResponses) % output layer (1 single output for SOC)
9 reluLayer

10 regressionLayer]; % loss function (RMSE)

Step 2: Specify training options and run the training.

• Use trainingOptions command to set multiple options: the solver (i.e. "adam" for ADAptive Moment), the gradient
threshold, the number of epochs, the minibatch size, the initial learning rate, the learning rate drop factor, a learning rate
drop period, the validation data, the validation frequency, the execution environment (GPU vs CPU), etc.

• Use trainNetwork to run the training to optimize all learnable parameters.

net = trainNetwork (trainX , trainY ,layers , options).

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 138

Listing 34: Neural Networks: train the network for SOC estimation

1 % Define training options
2 options = trainingOptions ("adam", Plots = "training -progress", ...
3 MaxEpochs = 1200, Shuffle = "every -epoch", ...
4 MiniBatchSize = 128, GradientThreshold = 1, ...
5 InitialLearnRate = 0.01, LearnRateSchedule = "piecewise", ...
6 LearnRateDropFactor = 0.1, LearnRateDropPeriod = 400, ...
7 ValidationData = {valX , valY}, ValidationFrequency = 30, ...
8 ExecutionEnvironment = "auto ");
9 % Run training

10 net = trainNetwork(trainX ,trainY ,layers ,options);
11

12 % save network for reuse in Simulink
13 save net.mat net % save the network in a mat file
14

15 % Use test dataset to estimate RMSE
16 Y_predicted = predict(net ,testX);
17 residuals = testY - Y_predicted;
18 RMSE = sqrt(mean(residuals).^2);

Note: the Experiment Manager App can help set up the training options as it allows to automatically run many tests with
different training options, and check which one yields the best performance. Search in MATLAB Documentation for details.

Step 3: (optional) Reuse the trained neural network in Simulink.
As an option, the trained NN could be integrated into Simulink to take advantage of the system-level simulation environment and
the automatic code generation feature (i.e. the Simulink model could be converted automatically into C/C++ code by using
Embedded Coder®). To do this, we can do the following:

• save the trained network net into a .mat file, i.e. save net.mat net
• check you have installed MATLAB Coder Interface for Deep Learning Libraries add-on to call optimized libraries, like

MKL-DNN. If not, click on Add-Ons→Get Add-Ons from Home of MATLAB Desktop and search for this add-on name

• open the Simulink Editor (from MATLAB Home, click on New→Simulink Model→Blank Model). Then click on Library
Browser, scroll down to Deep Learning Toolbox→Deep Neural Networks, and drag the Predict Block

• double click on the block to open its Block Parameter dialog, and in the File Path field type the mat filename where the
trained network was saved (see Fig. 27 and Fig. 28).

Figure 27: Simulink Library Browser and the Predict Block in Deep Learning Toolbox (on the left); the dialogue of Predict Block (on the right)

Figure 28: Left: Block diagram in Simulink with the Predict Block. Right: comparison of SOC estimations (true, NN and EKF).

Dolomites Research Notes on Approximation ISSN 2035-6803

Panarese 139

Resources Research Teaching Links

MATLAB® Code of this paper ✓ ✓ github.com/ppanares2/Approximation-with-MATLAB
MATLAB® Academia ✓ ✓ www.mathworks.com/academia
Campus-Wide License ✓ ✓ www.mathworks.com/products/matlab-campus
MATLAB Documentation ✓ ✓ www.mathworks.com/help
MATLAB Discover How to Solve ✓ ✓ www.mathworks.com/discovery
MATLAB-based Books ✓ ✓ www.mathworks.com/academia/books
MATLAB File Exchange ✓ www.mathworks.com/matlabcentral
MATLAB Add-Ons ✓ www.mathworks.com/products/matlab/add-on-explorer
MATLAB Communities ✓ .../matlabcentral/content/communities
The MATLAB Blog ✓ https://blogs.mathworks.com/matlab/
MATLAB for Research ✓ www.mathworks.com/academia/research
MathWorks Excellence in Innovation ✓ github.com/mathworks/MathWorks-Excellence...
MathWorks® Books Program ✓ www.mathworks.com/academia/books/join
MATLAB in Science Gateways ✓ .../academia/research/science-gateways
MATLAB for Open Science ✓ ✓ www.mathworks.com/discovery/open-science
Using MATLAB with Python ✓ ✓ .../products/matlab/matlab-and-python
MATLAB in the Cloud ✓ www.mathworks.com/solutions/cloud
MATLAB OnlineTM ✓ ✓ matlab.mathworks.com/
MATLAB DriveTM ✓ ✓ drive.matlab.com
MATLAB Cloud Center ✓ ✓ cloudcenter.mathworks.com/
MathWorks Reference Architectures ✓ github.com/mathworks-ref-arch
MATLAB Dockerfile ✓ hub.docker.com/r/mathworks/matlab
MATLAB for Teaching ✓ www.mathworks.com/academia/educators
MATLAB GraderTM ✓ grader.mathworks.com/
MATLAB GraderTM for LMS ✓ .../products/matlab-grader/lms.html
MATLAB Courseware ✓ www.mathworks.com/academia/courseware
MATLAB Onramp Training ✓ matlabacademy.mathworks.com/#getting-started
Textbooks by Cleve Moler ✓ www.mathworks.com/moler
Cleve Moler on Mathematics ✓ blogs.mathworks.com/cleve
MATLAB for Computational Thinking ✓ .../discovery/computational-thinking
Mathematical Modeling ✓ .../solutions/mathematical-modeling
MathWorks Math Modeling Challenge ✓ .../mathworks-math-modeling-challenge
MATLAB Hackathons ✓ github.com/mathworks/awesome-matlab-hackathons
MATLAB Student Competition ✓ ✓ www.mathworks.com/academia/student-competitions

Table 2: Resources available in MATLAB Ecosystem for research and teaching

6 Conclusion
MATLAB environment offers a unique platform to explore a variety of algorithms for approximation tasks, using commands or
interactive apps. In this paper, we have included snippets of MATLAB code to see how to implement different topics:

• function approximation through orthogonal polynomials and Fourier series;

• wavelet analysis and multiresolution decomposition;

• multivariate scattered interpolation with radial basis functions;

• surrogate global optimization via a cubic RBF interpolator with linear precision;

• kernelized support vector machines for both regression and classification;

• universal approximators with neural networks or RBF networks;

• neural networks to approximate an Extended Kalman Filter (to estimate the state of charge of a rechargeable battery).

MATLAB, with its broad spectrum of Toolboxes, included in the Campus-Wide License available in most of Universities, is a great
tool able to inspire cutting-edge research and engaging lectures.

In Table 2 there is a list of additional resources from MATLAB ecosystem to continue a proficient and deeper usage of MATLAB.

Acknowledgements
The author wishes to warmly thank Prof. Alessandra De Rossi for the precious collaboration and support.

Dolomites Research Notes on Approximation ISSN 2035-6803

https://github.com/ppanares2/Approximation-with-MATLAB
https://www.mathworks.com/academia/
https://www.mathworks.com/products/matlab-campus.html
https://www.mathworks.com/help
https://www.mathworks.com/discovery.html
https://www.mathworks.com/academia/books.html
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/products/matlab/add-on-explorer.html
https://www.mathworks.com/matlabcentral/content/communities.html
https://blogs.mathworks.com/matlab/
https://www.mathworks.com/academia/research
https://github.com/mathworks/MathWorks-Excellence-in-Innovation
https://www.mathworks.com/academia/books/join.html
https://www.mathworks.com/academia/research/science-gateways
https://www.mathworks.com/discovery/open-science
https://www.mathworks.com/products/matlab/matlab-and-python.html
https://www.mathworks.com/solutions/cloud.html
https://matlab.mathworks.com/
https://drive.matlab.com/
https://cloudcenter.mathworks.com/
https://github.com/mathworks-ref-arch
https://hub.docker.com/r/mathworks/matlab
https://www.mathworks.com/academia/educators.html?s_tid=acb_edu
https://grader.mathworks.com/
https://www.mathworks.com/products/matlab-grader/lms.html
https://www.mathworks.com/academia/courseware.html
https://matlabacademy.mathworks.com/#getting-started
https://www.mathworks.com/moler.html
https://blogs.mathworks.com/cleve/
https://www.mathworks.com/discovery/computational-thinking.html
https://www.mathworks.com/solutions/mathematical-modeling.html
https://www.mathworks.com/academia/student-competitions/mathworks-math-modeling-challenge.html
https://github.com/mathworks/awesome-matlab-hackathons
https://www.mathworks.com/academia/student-competitions.html

Panarese 140

References
[1] C. C. AGGARWAL, Neural Networks and Deep Learning: A Textbook. Springer, 2018, ISBN-13: 978-3319944623

[2] A. BIESS, M. NAGURKA, T. FLASH, Simulating discrete and rhythmic multi-joint human arm movements by optimization of nonlinear performance
indices. Biological Cybernetics (95), 2006, pp. 31-53

[3] S. L. BRUNTON, J. N. KUTZ, Data Driven Science and Engineering: Machine Learning, Dynamical Systems and Control. Springer Series in the
Data Sciences, 2019, ISBN-13: 978-1108422093

[4] M. D. BUHMANN, Radial Basis Functions: Theory and Implementation. Cambridge Monogr. Appl. Comput. Math., vol. 12, Cambridge Univ.
Press, Cambridge, 2003.

[5] O. CALIN, Deep Learning Architectures: A Mathematical Approach. Springer Series in the Data Sciences, 2020, ISBN-13: 978-3030367206

[6] R. Cavoretto, A. De Rossi. Software for Approximation 2022 (SA2022). Dolomites Res. Notes Approx., Special Issue SA2022, 15:i–ii, 2022.

[7] W. Y. CHANG, The State of Charge Estimating Methods for Battery: A Review. ISRN Applied Mathematics, Vol. 2013, Article ID 953792

[8] I. DAUBECHIES, Ten Lectures on Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. Philadelphia, PA: Society for
Industrial and Applied Mathematics, 1992, ISBN-13: 978-0898712742

[9] G. E. FASSHAUER, Meshless Approximation Methods with MATLAB. World Scientific Publishing Co., Interdisciplinary Mathematical Sciences,
Vol.6, 2007, ISBN-13: 978-9812706331

[10] M. S. GREWAL, A. P. ANDREWS, Kalman Filtering: Theory and Practice with MATLAB. Wiley-IEEE Press, 4th Edition, 2015, ISBN-13:
978-1118851210

[11] H. M. GUTMANN, A Radial Basis Function Method for Global Optimization. Journal of Global Optimization (19), 2001, pp. 201-227

[12] S. HUBBERT, Q. T. LÊ GIA, T. M. MORTON, Spherical radial basis functions: theory and applications. Springer Briefs in Mathematics, 2015,
ISBN-13: 9783319179384

[13] A. ISKE, Approximation Theory and Algorithms for Data Analysis. Springer, Texts in Applied Mathematics (68), 2018, ISBN-13: 978-
3030052270

[14] P. KOLLMEYER, C. VIDAL, M. NAGUIB, M. SKELLS, LG 18650HG2 Li-Ion Battery Data and Example Deep Neural Network XEV SOC Estimator
Script. Mendeley, 2020, https://doi.org/10.17632/CP3473X7XV.3

[15] S. G. MALLAT, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 11, No. 7, 1989, p. 674-693

[16] S. G. MALLAT, A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 1999, ISBN-13: 978-0124666061

[17] M. MEHRA, Wavelets Theory and Its Applications. A First Course. Forum for Interdisciplinary Mathematics, Vol. 37, Springer, 2018, ISBN-13:
978-9811325946

[18] Y. MEYER, Wavelets and Operators. Cambridge Studies in Advanced Mathematics, Vol. 37, Cambridge University Press, 1995, ISBN-13:
978-0521458696

[19] MATHWORKS, MATLAB Documentation. www.mathworks.com/help

[20] K. S. NG, C. S. MOO, Y. P. CHEN, Y. C. HSIEH, Enhanced Coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion
batteries. Applied Energy, 2009, vol. 86, no. 9, pp. 1506-1511

[21] D. SIMON, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. Wiley-Interscience, 2006, ISBN-13: 978-0471708582

[22] G. STRANG, T. NGUYEN, Wavelets and Filter Banks. Wellesley-Cambridge Press, 1996, ISBN-13: 978-0961408879

[23] A. TEOLIS, Computational signal processing with wavelets. BirkhÃ¤user, 1998, ISBN-13: 978-1461286721

Dolomites Research Notes on Approximation ISSN 2035-6803

https://doi.org/10.17632/CP3473X7XV.3
https://www.mathworks.com/help

	Introduction
	MATLAB environment and ecosystem

	Function Approximation
	Bernstein Polynomials
	Orthogonal Polynomials
	Fourier Series

	Wavelets and Multiresolution Approximation
	From Fourier Transform to Continuous Wavelet Transform
	Discrete Wavelet Transform and Multiresolution Analysis

	Radial Basis Functions
	Multivariate Scattered interpolation
	Surrogate Optimization
	Kernelized Support Vector Machines

	Neural Networks
	Universal Approximators
	Radial Basis Function Networks
	Neural Networks to approximate complex EKF systems

	Conclusion

