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Abstract

In this work we discuss generalizations of the classical Bernstein and Markov type inequalities for
polynomials and we present some new inequalities for the kth Fréchet derivative of homogeneous
polynomials on real and complex Lp(µ) spaces. We also give applications to homogeneous polynomials
and symmetric multilinear mappings in Lp(µ) spaces. Finally, Bernstein’s inequality for homogeneous
polynomials on both real and complex Hilbert spaces has been discussed.

1 Introduction and notation
We recall the basic definitions needed to discuss polynomials from X into Y , where X and Y are real or complex Banach spaces. We
denote by BX and SX the closed unit ball and the unit sphere of X respectively. A map P : X → Y is a (continuous) m-homogeneous
polynomial if there is a (continuous) symmetric m-linear mapping L : X m → Y for which P(x) = L(x , . . . , x) for all x ∈ X . In
this case it is convenient to write P = bL. We let P(mX ; Y ), L(mX ; Y ) and Ls(mX ; Y ) denote respectively the spaces of continuous
m-homogeneous polynomials from X into Y , the continuous m-linear mappings from X into Y and the continuous symmetric
m-linear mappings from X into Y . If K is the real or complex field we use the notations P(mX ), L(mX ) and Ls(mX ) in place of
P(mX ;K), L(mX ;K) and Ls(mX ;K) respectively. More generally, a map P : X → Y is a continuous polynomial of degree ≤ m if

P = P0 + P1 + · · ·+ Pm ,

where Pk ∈ P(kX ; Y ), 1 ≤ k ≤ m, and P0 : X → Y is a constant function. The space of continuous polynomials from X to Y of
degree at most m is denoted by Pm(X ; Y ). If Y =K, then we use the notation Pm(X ) instead of Pm(X ;K). We define the norm of
a continuous (homogeneous) polynomial P : X → Y by

‖P‖BX
= sup{‖P(x)‖Y : x ∈ BX } .

Similarly, if L : X m→ Y is a continuous m-linear mapping we define its norm by

‖L‖Bm
X
= sup{‖L(x1, . . . , xm)‖Y : x1, . . . , xm ∈ BX } .

When convenient we shall denote ‖L‖Bm
X

by ‖L‖ and ‖P‖BX
by ‖P‖. Note that P(mX ; Y ) and L(mX ; Y ) are Banach spaces.

The classical Bishop-Phelps theorem [13] asserts that the collection of norm attaining continuous linear functionals on a
Banach space X is norm dense in X ∗ := L(1X ), the space of all continuous linear functionals on X . However, in contrast to
the linear case, the set of norm attaining continuous symmetric m-linear forms (m ≥ 2) on a Banach space X is not generally
norm dense in the Banach space of all continuous symmetric m-linear forms on X , and the set of norm-attaining continuous
m-homogeneous polynomials on X is not generally norm dense in the Banach space of all continuous m-homogeneous polynomials
on X [1]. In fact, an example of a Banach space X was given in [1] such that the set of norm-attaining bilinear forms on X × X is
not dense in the space of all continuous bilinear forms. We refer to [45] for the relationship between the norm-attaining condition
for a continuous homogeneous polynomial on a Banach space and the norm-attaining condition for its associated continuous
symmetric multilinear form.

If P ∈ Pm(X ; Y ) and x ∈ X , then Dk P(x), 2≤ k ≤ m, denotes the kth Fréchet derivative of P at x . Recall that Dk P(x) would
be, in fact, a symmetric k-linear mapping on X k, whose associated k-homogeneous polynomial will be represented by bDk P(x). So,
bDk P(x) :=ÛDk P(x). We just write DP(x) for the first Fréchet derivative of P at x . If bL ∈ P(mX ; Y ), for any vectors x , y1, . . . , yk in
X and any k ≤ m the following identity (see for instance [19, 7.7 Theorem]) holds

1
k!

Dk
bL(x)(y1, . . . , yk) =

�

m
k

�

L(xm−k, y1, . . . , yk) . (1)
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In particular, for x , y ∈ X
1
k!
bDk
bL(x)y =

�

m
k

�

L(xm−k yk) (2)

and for k = 1
DbL(x)y = bDbL(x)y = mL(xm−1 y) . (3)

Here, L(xm−k yk) denotes L(x , . . . , x
︸ ︷︷ ︸

(m−k)

, y, . . . , y
︸ ︷︷ ︸

k

). For general background on polynomials, we refer to [19] and [24].

Finally, observe that by composing P ∈ Pm(X ; Y ) with a given linear functional and applying the Hahn-Banach theorem, the
upper bounds for ‖Dk P(x)‖ and ‖bDk P(x)‖ to be determined are unchanged when Y is replaced by R or C. Therefore, in proving
Bernstein and Markov-type inequalities on real or complex Banach spaces, without loss of generality we can restrict ourselves to
scalar-valued polynomials.

Let rn(t) = sign(sin 2nπt) be the nth Rademacher function on [0,1]. The Rademacher functions (rn) form an orthonormal set
in L2([0, 1], d t) where d t denotes Lebesgue measure on [0,1]. The next formula expresses a well known polarization formula in
a very convenient form (see [51, Lemma 2]):

L(x1, . . . , xm) =
1

m!

∫ 1

0

r1(t) · · · rm(t)bL
� m
∑

n=1

rn(t)xn

�

d t . (4)

Therefore, each bL ∈ P(mX ) is associated with a unique L ∈ Ls(mX ) with the property that bL(x) = L(x , . . . , x). In many
circumstances [22, 23, 46, 58] it is of interest to compare the norm of L ∈ Ls(mX ) with the norm of bL ∈ P(mX ). It follows from
(4)(see [24]) that

‖bL‖ ≤ ‖L‖ ≤
mm

m!
‖bL‖ ,

for every L ∈ Ls(mX ). However, the right hand inequality can be tightened for many Banach spaces, see for instance [24, 30, 51],
and we call

K(m, X ) = inf
�

M > 0 : ‖L‖ ≤ M‖bL‖, ∀L ∈ Ls(mX ;K)
	

the mth polarization constant of the Banach space X . We shall write R(m, X ), C(m, X ) instead of K(m, X ), if the space X is real,
complex respectively.

For Lp(µ) spaces we also set
K(m, p) = sup{K(m, Lp(µ)) : µ is a measure} .

It is an interesting fact that K(m, p) =K(m, Lp(µ)), for any µ with Lp(µ) infinite-dimensional (we refer to [51]).

2 Bernstein-Markov inequalities for polynomials on Banach spaces

2.1 Bernstein-Markov inequalities for polynomials: classical results

Let Pn(R) be the set of all algebraic polynomials of degree at most n with real coefficients. According to a well-known result of
Bernstein [10], if p ∈ Pn(R) and ‖p‖[−1,1] :=max−1≤t≤1 |p(t)| ≤ 1 then

|p′(t)| ≤
n

p
1− t2

, ∀t ∈ (−1,1) . (5)

It was proved by A. A. Markov that if p ∈ Pn(R) and ‖p‖[−1,1] ≤ 1, then

‖p′‖[−1,1] ≤ n2 . (6)

A. A. Markov’s original paper [41] dates back to 1889 and it is not readily accessible. For a modern exposition on this and other
related topics we refer to [48]. Note that the upper bounds in (5) and (6) are sharp since they are attained for the nth Chebyshev
polynomial Tn(t) (for certain values of t in the case of (5)), where Tn(t) is the polynomial agreeing cos(n arccos t) in the range
−1< t < 1. Inequality (5) yields a better estimate for |p′(t)| when t is not near ±1.

In the previous two inequalities we have estimates on the magnitude of the derivative of a polynomial, as compared to the
polynomial itself. A related result is the following inequality known as Schur’s inequality [16, p. 233]:

For every p ∈ Pn−1(R),
‖p‖[−1,1] ≤ n‖p(t)

p

1− t2‖[−1,1] . (7)

Observe that Markov’s inequality follows immediately from inequalities (5) and (7).
V. A. Markov (brother of A. A. Markov) considered the problem of determining exact bounds for the kth derivative of an

algebraic polynomial. For 1≤ k ≤ n, if p ∈ Pn(R) and ‖p‖[−1,1] ≤ 1, V. A. Markov [42] has shown that

‖p(k)‖[−1,1] ≤ T (k)n (1) =
n2(n2 − 12) · · · (n2 − (k− 1)2)

1 · 3 · · · (2k− 1)
. (8)

S. N. Bernstein presented a shorter variational proof of (8) in 1938 (see [11]). In 1938 Schaeffer and Duffin [25] have given a
rather simple proof of V. A. Markov’s inequality. The key in their proof is the following generalization of Bernstein’s inequality.

Dolomites Research Notes on Approximation ISSN 2035-6803



Chatzakou · Sarantopoulos 18

Theorem A (A. C. Schaeffer & R. J. Duffin [25]). If p ∈ Pn(R) with ‖p‖[−1,1]≤1 and 1≤ k ≤ n, then

|p(k)(t)|2 ≤
�

T (k)n (t)
�2
+
�

S(k)n (t)
�2

, ∀t ∈ (−1, 1) , (9)

where Sn(t) is the is the polynomial agreeing sin(n arccos t) in the range −1< t < 1.

In fact, if we define
Mk(t) :=

�

T (k)n (t)
�2
+
�

S(k)n (t)
�2

, ∀ t ∈ (−1, 1) , (10)

a close look at the proofs of Lemma 3 and Markoff’s Theorem in [25] reveals that the following result holds true.

Theorem B (A. C. Schaeffer & R. J. Duffin [25]). If p ∈ Pn−k(R), 1≤ k ≤ n, is such that |p(t)|2 ≤Mk(t) ∀ t ∈ (−1,1), then

‖p‖[−1,1] ≤ T (k)n (1) =
n2(n2 − 12) · · · (n2 − (k− 1)2)

1 · 3 · · · (2k− 1)
.

Notice that V. A. Markov’s inequality (8) and Theorem B together imply Theorem A. Observe also that inequality (7) (Schur’s
inequality) is a special case of Theorem B for k = 1.

In studying extremal problems usually we normalize the set of polynomials, that is if p ∈ Pn(R) we take |p(t)| ≤ 1 for
−1≤ t ≤ 1. In other words we require that the graph of p is contained in the square [−1,1]× [−1,1].

In the last twenty years extensions of the classical Bernstein and Markov-type inequalities to the multivariate case have been
widely investigated. In [31] Harris considers the growth of the Fréchet derivatives of a polynomial on a normed space when the
polynomial has restricted growth on the space. His main concern is with real normed spaces. Using the technique of potential
theory with external fields, improved estimates on Markov constants of homogeneous polynomials over real normed spaces have
been given in [49]. For the Markov inequality for multivariate polynomials we also refer to [38] and [47]. In 2012 Révész [50]
has given a survey on conjectures and results on the multivariate Bernstein inequality on convex bodies. For more polynomial
inequalities in Banach spaces we refer to [8].

Finally, it is of importance how the pluripotential theory approach of Baran [8] and the inscribed ellipse approach of
Sarantopoulos [52] relate. This is far from obvious and it was in fact unknown for long. However, in 2010 it was fully clarified in
[18]. In fact, Burns, Levenberg, Ma’u and Révész have shown in [18] that the “inscribed ellipse method" of Sarantopoulos in
[52] to prove Bernstein-Markov inequalities and the “pluripotential" proof of Bernstein-Markov inequalities due to Baran [8] are
equivalent.

2.2 Bernstein-Markov inequalities for polynomials on real Hilbert spaces

Let P be a polynomial of degree at most n with real coefficients on `m
2 , the m-dimensional Euclidean space (Rm, 〈·, ·〉). If ‖P‖ ≤ 1

and ‖x‖2 < 1, the first sharp Bernstein and Markov-type inequalities were obtained in 1928 by Kellogg [36]:

‖∇P(x)‖2 ≤min
§

n
Æ

1− ‖x‖2
2

, n2
ª

(11)

In other words, if Dy P(x) = DP(x)y = 〈∇P(x), y〉 is the directional derivative of P at x , in the direction of the unit vector y,
then the maximum of the absolute value of Dy P(x) in any direction y is just the maximum of the magnitude of the gradient of

the polynomial and is dominated by the smaller of the two numbers n/
Æ

1− ‖x‖2
2 and n2. In fact, Kellogg has derived (11) by

showing (see Theorem V in [36]) that the tangential derivatives of P on the unit sphere SRm cannot exceed n in absolute value.
If K is a smooth compact algebraic curve in R2 and P is a polynomial of degree ≤ n in two variables, Bos et al. [17] have

shown that
‖DT P‖K ≤ Mn‖P‖K ,

where DT P denotes tangential derivative of P along K , ‖P‖K := sup |P|(K) and M > 0 is a constant depending only on K . If K is
the unit circle, the previous inequality with M = 1 is just Kellogg’s result. For a discussion on this last inequality and for some
other related results see [7] and [29].

Harris [30] has extended Kellogg’s argument and in the case of a real Hilbert space (H, 〈·, ·〉), if P ∈ Pn(H) and ‖P‖ ≤ 1, he
has obtained the following generalization of (11):

|DP(x)y| ≤min

¨

n

�

1− ‖x‖2 + 〈x , y〉2

1− ‖x‖2
(1− P(x)2)

�1/2

, n2

«

,

for all ‖x‖< 1 and y ∈ SH .
The generalization of Markov’s inequality for any derivative of a polynomial on a real Hilbert space was given in [44]. The

proof relies on the following extension of Theorem A for polynomials on a real Hilbert space and the generalization of Theorem B
for polynomials on any real Banach space. Recall that Mk(t) is given by (10).

Theorem 2.1. [44, Theorem 4] If (H, 〈·, ·〉) is a real Hilbert space, P ∈ Pn(H) with ‖P‖ ≤ 1 and 1≤ k ≤ n, then

‖Dk P(x)‖2 = ‖bDk P(x)‖2 ≤Mk(‖x‖) ,

for every x ∈ H, ‖x‖< 1.
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Theorem 2.2. [44, Lemma 1] If X is a real Banach space and P ∈ Pn−k(X ), n ≥ k, is such that |P(x)|2 ≤Mk(‖x‖), ∀‖x‖ < 1,
then |P(x)| ≤ T (k)n (1), ∀‖x‖ ≤ 1.

Now, the generalization of Markov’s inequality (8) on a real Hilbert space follows immediately from the previous two theorems.

Theorem 2.3. (V. A. Markov’s theorem)[44, Theorem 5] If (H, 〈·, ·〉) is a real Hilbert space, P ∈ Pn(H) with ‖P‖ ≤ 1 and 1≤ k ≤ n,
then

‖Dk P(x)‖= ‖bDk P(x)‖ ≤ T (k)n (1) =
n2(n2 − 12) · · · (n2 − (k− 1)2)

1 · 3 · · · (2k− 1)
,

for every x ∈ BH .

2.3 Bernstein-Markov inequalities for polynomials on real Banach spaces

Let K ⊂ Rm be a convex body, i.e. a convex compact set with non-empty interior. If u is a unit vector in Rm then there are precisely
two support hyperplanes to K having u for a normal vector. The distance w(u) between these parallel support hyperplanes is the
width of K in the direction of u. The minimal width of K is

w(K) := min
‖u‖2=1

w(u) .

For general background on convexity, we refer to [26]. If P ∈ Pn(Rm) with ‖P‖K :=maxx∈K |P(x)|, Wilhelmsen [59] has shown
that

‖∇P‖K =max
x∈K
‖∇P(x)‖2 ≤

4n2

w(K)
‖P‖K . (12)

Since w(B`m
2
) = 2, the constant in (12) is two times the constant in (11).

Consider now the case where K ⊂ Rm is a centrally symmetric convex body with center at the origin, in other words K is
invariant under x 7→ −x . We call K a ball. A ball K is the unit ball of a unique Banach norm ‖ · ‖K defined by

‖x‖K = inf{t > 0 : x/t ∈ K}, x ∈ Rm .

If P ∈ Pn(Rm), x ∈ Int K and y ∈ SRm , the next sharp Bernstein and Markov-type inequalities follow from the work of
Sarantopoulos[52]:

|DP(x)y| ≤
2n

w(K)
Æ

1− ‖x‖2
K

‖P‖K , (13)

‖∇P‖K ≤
2n2

w(K)
‖P‖K . (14)

In fact, if X is a real Banach space and P ∈ Pn(X ), ‖P‖ ≤ 1, for the first Fréchet derivative of P it has been proved in [52] that

‖DP(x)‖ ≤min

�

n

p

1− P(x)2
p

1− ‖x‖2
, n2

�

, for every ‖x‖< 1 . (15)

Using methods of several complex variables, inequalities (13) and (14) were proved independently by Baran [6]. For
non-symmetric convex bodies, Kroó and Révész [37] have derived a Bernstein-type inequality and they have shown (12) with
constant (4n2 − 2n)/w(K). They have also achieved a further improvement on the Markov constant in case K is a triangle in R2.
But, as it has been shown in [12], in the non-symmetric case the Markov constant in (12) has to be larger than 2.

Finally, a proof of Markov’s inequality for any derivative of a polynomial on a real Banach space was given by Skalyga [53]
in 2005 and additional discussion is given in [54]. In 2010 Harris [33] has given another proof which depends on a Lagrange
interpolation formula for the Chebyshev nodes and a Christoffel-Darboux identity for the corresponding bivariate Lagrange
polynomials [32].

Theorem 2.4. (V. A. Markov’s theorem)[53, 54, 32] If X is a real Banach space, P ∈ Pn(X ) with ‖P‖ ≤ 1 and 1≤ k ≤ n, then

‖bDk P(x)‖ ≤ T (k)n (1) ,

for all x ∈ X , ‖x‖ ≤ 1.

Kroó [39] has derived certain Bernstein-Markov inequalities for multivariate polynomials on convex and star-like domains
in finite dimensional real Lp(µ) spaces, 1 ≤ p <∞. In [27, Theorem 6] Eskenazis and Ivanisvili have obtained dimension
independent Bernstein-Markov inequality in Gauss space. That is, for each 1≤ p <∞ there is a constant Cp > 0 such that for
any k ≥ 1 and all polynomials P on Rk

‖∇P‖Lp(dγk) ≤ Cp(deg P)α‖P‖Lp(dγk) ,

where dγk(x) =
e−‖x‖

2
2/2p

(2π)k
d x is the standard Gaussian measure on Rk, α= 1

2 +
1
π arctan

� |p−2|
2
p

p−1

�

and

‖∇P‖Lp(dγk) :=

�

∫

Rk

� k
∑

j=1

(∂ j P)
2(x)

�p/2

dγk(x)

�1/p

.

We also refer to [28] for polynomial inequalities on the Hamming cube.
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3 Bernstein-Markov inequalities for homogeneous polynomials on Lp(µ) spaces

3.1 Bernstein and Markov-type estimates for homogeneous polynomials on Lp(µ) spaces

In the case of a continuous homogeneous polynomial P ∈ P(mX ; Y ), where X and Y are real Banach spaces, the constant cm,k in V.
A. Markov’s inequality

‖bDk P‖ ≤ cm,k‖P‖ ,

can be improved and is considerably better than T (k)m (1).
For continuous homogeneous polynomials on real Banach spaces we have the following Bernstein and Markov-type inequalities.

Theorem 3.1. [52, Theorem 3] If X is a real Banach space and bL : X → R is a continuous m-homogeneous polynomial, then we
have the following Bernstein-type inequalities

(a) ‖bDk
bL(x)‖ ≤

�

m
k

�

k!
�p

1− ‖x‖2
�k
‖bL‖ (16)

and

(b) ‖Dk
bL(x)‖ ≤

�

m
k

�

kk

�p

1− ‖x‖2
�k
‖bL‖ , (17)

for any ‖x‖< 1 and k ≤ m.

Corollary 3.2. [52, Corollary] If X is a real Banach space and bL : X → R is a continuous m-homogeneous polynomial, then we have
the following Markov-type inequalities

(a) ‖bDk
bL(x)‖ ≤

�

m
k

�

k!mm/2

(m− k)(m−k)/2kk/2
‖bL‖ (18)

and

(b) ‖Dk
bL(x)‖ ≤

�

m
k

�

mm/2kk/2

(m− k)(m−k)/2
‖bL‖ , (19)

for any ‖x‖ ≤ 1 and k ≤ m.

Now we prove Bernstein and Markov-type inequalities for homogeneous polynomials on any complex Lp(µ) space, 1≤ p ≤∞.
For the proof we need the generalized Clarkson inequality

�

‖x1 + x2‖λ
′

p + ‖x1 − x2‖λ
′

p

�1/λ′

≤ 21/λ′
�

‖x1‖λp + ‖x2‖λp
�1/λ

, (20)

where x1, x2 ∈ Lp(µ) and 1≤ λ≤min{p, p′}. Here, as usual, λ′ = λ/(λ− 1) and p′ = p/(p− 1) are the conjugate exponents of
λ and p respectively. Inequality (20) is a special case for m= 2 of the following Lp-inequality

�

∫ 1

0







m
∑

i=1

ri(t)x i







λ′

p d t
�1/λ′

≤
�

m
∑

i=1

‖x i‖λp
�1/λ

, (21)

for x i ∈ Lp(µ), 1 ≤ i ≤ m and 1 ≤ λ ≤min{p, p′}. We refer to [60] for this and other similar Lp inequalities. Setting λ = p or
λ= p′, inequality (20) gives the classical Clarkson inequalities:

�

‖x1 + x2‖p′

p + ‖x1 − x2‖p′

p

�1/p′

≤ 21/p′
�

‖x1‖p
p + ‖x2‖p

p

�1/p
, 1≤ p ≤ 2 ,

�

‖x1 + x2‖p
p + ‖x1 − x2‖p

p

�1/p
≤ 21/p

�

‖x1‖p′

p + ‖x2‖p′

p

�1/p′

, 2≤ p ≤∞ .

Theorem 3.3. Let bL : Lp(µ)→ C be a continuous m-homogeneous polynomial, m≥ 2, on the complex Lp(µ) space. If m′ and p′ are
the conjugate exponents of m and p respectively, for k ≤ m and every x ∈ Lp(µ), ‖x‖p < 1, we have the following Bernstein-type
inequalities

‖bDk
bL(x)‖ ≤































k!
(1−‖x‖p

p)k/p
‖bL‖ 1≤ p ≤ m′ ,

k!

(1−‖x‖m′p )k/m
′ ‖bL‖ m′ ≤ p ≤ m ,

k!

(1−‖x‖p′
p )k/p

′ ‖bL‖ m≤ p ≤∞ .

(22)

Proof. 1st case: Let 1 ≤ p ≤ m′⇔ m ≤ p′ ≤∞ or m ≤ p ≤∞⇔ 1 ≤ p′ ≤ m′. If λ = min{p, p′}, then λ = p, for 1 ≤ p ≤ m′

and λ= p′, for m≤ p ≤∞. For every x , y ∈ Lp(µ), ‖x‖p < 1, ‖y‖p = 1 and every z ∈ C put

q(z) := bL
�

x + (1− ‖x‖λp)
1/λ yz

�

+ (−1)kbL
�

x − (1− ‖x‖λp)
1/λ yz

�

.
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Then q is a polynomial of degree ≤ m on C with

|q(z)| ≤ ‖bL‖
¦

‖x + (1− ‖x‖λp)
1/λ yz)‖m

p + ‖x − (1− ‖x‖
λ
p)

1/λ yz)‖m
p

©

.

Applying Hölder’s inequality first and then Clarkson’s inequality (20), for |z| ≤ 1 we have

‖x + (1− ‖x‖λp)
1/λ yz)‖m

p + ‖x − (1− ‖x‖
λ
p)

1/λ yz)‖m
p

≤ 21−m/λ′
¦

‖x + (1− ‖x‖λp)
1/λ yz)‖λ

′

p + ‖x − (1− ‖x‖
λ
p)

1/λ yz)‖λ
′

p

©m/λ′

≤ 21−m/λ′ · 2m/λ′
¦

‖x‖λp + ‖(1− ‖x‖
λ
p)

1/λ yz)‖λp
©m/λ

≤ 2
¦

‖x‖λp + (1− ‖x‖
λ
p)
©m/λ

= 2 .

Hence, |q(z)| ≤ 2‖bL‖, for every |z| ≤ 1 and by the Cauchy estimates |q(k)(0)| ≤ k! · 2‖bL‖. Since q(k)(0) = 2(1− ‖x‖λp)
k/λ
bDk
bL(x)y ,

we have

‖bDk
bL(x)‖ ≤

k!
(1− ‖x‖λp)k/λ

‖bL‖

and this proves the first and the third estimate in (22).
2nd case: Let m′ ≤ p ≤ m⇔ m′ ≤ p′ ≤ m. For every x , y ∈ Lp(µ), ‖x‖p < 1, ‖y‖p = 1 and every z ∈ C put

q(z) := bL
�

x + (1− ‖x‖m′

p )
1/m′ yz

�

+ (−1)kbL
�

x − (1− ‖x‖m′

p )
1/m′ yz

�

.

Then q is a polynomial of degree ≤ m on C with

|q(z)| ≤ ‖bL‖
¦

‖x + (1− ‖x‖m′

p )
1/m′ yz)‖m

p + ‖x − (1− ‖x‖
m′

p )
1/m′ yz)‖m

p

©

.

For every |z| ≤ 1, Clarkson’s inequality (20) for λ= m′ ≤min{p, p′} implies

‖x + (1− ‖x‖m′

p )
1/m′ yz)‖m

p + ‖x − (1− ‖x‖
m′

p )
1/m′ yz)‖m

p

≤ 2
¦

‖x‖m′

p + ‖(1− ‖x‖
m′

p )
1/m′ yz)‖m′

p

©m/m′

≤ 2
¦

‖x‖m′

p + (1− ‖x‖
m′

p )
©m/m′

= 2 .

Hence, |q(z)| ≤ 2‖bL‖, for every |z| ≤ 1 and by the Cauchy estimates |q(k)(0)| ≤ k! ·2‖bL‖. Since q(k)(0) = 2(1−‖x‖m′
p )

k/m′
bDk
bL(x)y ,

we have

‖bDk
bL(x)‖ ≤

k!
(1− ‖x‖m′

p )k/m
′ ‖bL‖

which is the second estimate in (22).

Remark 1. Harris [30, Theorem 10] has proved a Bernstein-type inequality for a holomorphic function h satisfying certain
conditions on a complex Lp(µ) space, 1≤ p ≤∞. In particular, if h is a homogeneous polynomial bL of degree m= 2k on some
Lp(µ) space, he gives an upper bound for the norm ‖bDk

bL(x)‖, for all x ∈ Lp(µ), ‖x‖p ≤ 1/2.

Proposition 3.4. Let bL : Lp(µ)→ C be a continuous m-homogeneous polynomial, m≥ 2, on the complex Lp(µ) space. If m′ and p′

are the conjugate exponents of m and p respectively, for k ≤ m we have the following Markov-type inequality

‖bDk
bL‖ ≤ Ck,m‖bL‖ , (23)

where

Ck,m =































k!mm/p

(m−k)(m−k)/p kk/p 1≤ p ≤ m′ ,

k!mm/m′

(m−k)(m−k)/m′ kk/m′ m′ ≤ p ≤ m ,

k!mm/p′

(m−k)(m−k)/p′ kk/p′ m≤ p ≤∞ .

(24)

In the case 1≤ p ≤ m′ the estimate is best possible.

Proof. Consider the case 1≤ p ≤ m′ or m≤ p ≤∞. If λ=min{p, p′} and x ∈ Lp(µ), ‖x‖p < 1, from the previous theorem

‖bDk
bL(x)‖ ≤

k!
(1− ‖x‖λp)k/λ

‖bL‖

and so for ‖x‖p ≤ 1 and 0< r < 1 we have

rm−k‖bDk
bL(x)‖= ‖bDk

bL(r x)‖ ≤
k!

(1− rλ)k/λ
‖bL‖ .
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Therefore,

‖bDk
bL(x)‖ ≤

k!
rm−k(1− rλ)k/λ

‖bL‖ , for ‖x‖p ≤ 1 and 0< r < 1 .

Observe that

min
0<r<1

1
rm−k(1− rλ)k/λ

=
mm/λ

(m− k)(m−k)/λkk/λ

and the minimum is attained for r =
�

m−k
m

�1/λ
. Hence,

‖bDk
bL‖= sup

‖x‖p≤1
‖bDk

bL(x)‖ ≤
k!mm/λ

(m− k)(m−k)/λkk/λ
‖bL‖ .

Similar is the proof of the middle estimate in (24). Sharpness in the case 1≤ p ≤ m′ will follow from the next Example 3.1.

Observe that in the case 1≤ p ≤ m′ the first inequality in (24) also follows from a special case of [51, Theorem 1].

Example 3.1. Consider the symmetric m-linear form L on the space of p-summable sequences `p given by

L(x1, . . . , xm) =
1

m!

∑

σ∈Sm

x1σ(1) · · · xmσ(m) ,

where x i = (x in)∞n=1, i = 1, . . . , m, and Sm is the set of permutations of the first m natural numbers. Then, bL(u) = u1 · · ·um,
u= (ui), is the m-homogeneous polynomial associated to L. If (ei) is the standard unit vector basis of `p, for the unit vectors

x =
1

(m− k)1/p
(e1 + · · ·+ em−k) and y =

1
k1/p
(em−k+1 + · · ·+ em)

in `p we can easily verify (see [51, Example 1]) that

|L(xm−k yk)|=
(m− k)!k!

(m− k)(m−k)/pkk/p
·

mm/p

m!
‖bL‖ .

Observe that

|bL(u)|= {|u1|p · · · |um|p}1/p ≤
§ |u1|p + · · ·+ |um|p

m

ªm/p

by the arithmetic-geometric mean inequality and so ‖bL‖ ≤ 1/mm/p. In fact ‖bL‖= 1/mm/p since for the unit vector v = (vi) in `p,
with vi = m−1/p for 1≤ i ≤ m and vi = 0 for i > m, |bL(v)|= 1/mm/p. Therefore, identity (2) implies

|bDk
bL(x)y|= k!

�

m
k

�

|L(xm−k yk)|=
k!mm/p

(m− k)(m−k)/pkk/p
‖bL‖ .

Now we give Markov-type estimates in the case of real Lp(µ) spaces. For this we need some results related to complexification
of real Banach spaces, polynomials and multilinear maps, see [43].

A complex vector space eX is a complexification of a real vector space X if the following two conditions hold:

(i) there is a one-to-one real-linear map j : X → eX and

(ii) complex-span
�

j(X )
�

= eX .

If X is a real vector space, we can make X × X into a complex vector space by defining

(x , y) + (u, v) := (x + u, y + v) ∀x , y, u, v ∈ X ,

(α+ iβ)(x , y) := (αx − β y,β x +αy) ∀x , y ∈ X , ∀α,β ∈ R.

The map j : X → X × X ; x 7→ (x , 0) clearly satisfies conditions (i) and (ii) above, and so this complex vector space is a
complexification of X . It is convenient to denote it by

eX = X ⊕ iX .

If X is a real-valued Lp(µ)-space, the complexification procedure yields the corresponding complex-valued space. Since X = Lp(µ)
is actually a Banach lattice, the norm on eX can be specified by

‖(x , y)‖= ‖(|x |2 + |y|2)1/2‖ , ∀x , y ∈ X .

Bochnak and Siciak (see [15, Theorem 3]) observed that when X is a real Banach space, each L ∈ L(mX ;R) has a unique complex
extension eL ∈ L(m eX ;C), defined by the formula

eL(x0
1 + i x1

1 , . . . , x0
m + i x1

m) =
∑

i
∑m

j=1 ε j L(xε1
1 , . . . , xεm

m ),

where x0
k , x1

k are vectors in X , and the summation is extended over the 2m independent choices of εk = 0,1 (1 ≤ k ≤ m). The
norm of eL depends on the norm used on eX , but continuity is always assured.
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In the context of polynomials (see also [55, p.313]), any P ∈ P(mX ;R) has a unique complex extension eP ∈ P(m eX ;C), given
by the formula

eP(x + i y) =
[ m

2 ]
∑

k=0

(−1)k
�

m
2k

�

L(xm−2k y2k) + i
[ m−1

2 ]
∑

k=0

(−1)k
�

m
2k+ 1

�

L(xm−(2k+1) y2k+1)

for x , y in X , where P := bL for some L ∈ Ls(mX ;R). Here also eP = beL.
If eX is the complexification of a real Banach space X , each L ∈ Ls(mX ;R) has a unique complex extension eL ∈ Ls(m eX ;C) with

‖L‖ ≤ ‖eL‖ and ‖P‖ ≤ ‖eP‖, where P = bL. We also have [43, Proposition 18]

‖eP‖ ≤ 2m−1‖P‖ and ‖eL‖ ≤ 2m−1‖L‖ . (25)

Proposition 3.5. Let bL : Lp(µ)→ R be a continuous m-homogeneous polynomial, m≥ 2, on the real Lp(µ) space. Then, for k ≤ m
we have the following Markov-type inequality

‖bDk
bL‖ ≤ 2m−1Ck,m‖bL‖ , (26)

where Ck,m are the estimates in (24).

Proof. Let P = bL ∈ P(m Lp(µ);R). If eP ∈ P(m Lp(µ);C) is the unique extension of P on the complex Lp(µ)-space, it follows from
(23) that

‖bDk
eP‖ ≤ Ck,m‖eP‖ .

If we use the first inequality in (25), we have

‖bDk
bL‖= ‖bDk P‖ ≤ ‖bDk

eP‖ ≤ 2m−1Ck,m‖bL‖ .

The estimate in (26) is far from optimal.

3.2 An application: Polarization constants of Lp(µ) spaces

Let L ∈ Ls(m Lp(µ)). Consider first the case 1≤ p ≤ m′. Using formula (3), from inequality (23) and the estimate in (24) with
k = 1 of Proposition 3.4 we have

|L(xm−1 y)|=
1
m
|DbL(x)y| ≤

mm/p−1

(m− 1)(m−1)/p
‖bL‖ .

Now an induction on m implies that

‖L‖ ≤
mm/p

m!
‖bL‖ , for every L ∈ Ls(m Lp(µ)), 1≤ p ≤ m′

and so C(m, p)≤ mm/p/m!. If m≤ p ≤∞, using the estimate in (24) a similar argument shows that C(m, p)≤ mm/p′/m!. Finally,
we consider the case L ∈ Ls(m Lp(µ)), m′ ≤ p ≤ m. Using the estimate in (24), an induction on m gives

‖L‖ ≤
mm/m′

m!
‖bL‖=

m(m−1)

m!
‖bL‖ .

Notice that for the induction argument in the case m′ ≤ p ≤ 2 we need to consider m′ ≤ p ≤ (m−1)′ and (m−1)′ ≤ p ≤ 2, while
in the case 2≤ p ≤ m we need to consider 2≤ p ≤ m− 1 and m− 1≤ p ≤ m, m≥ 3. We have proved the following result.

Proposition 3.6. For the mth polarization constant C(m, p), m≥ 2, we have the estimates

C(m, p)≤











mm/p

m! 1≤ p ≤ m′ ,
mm/m′

m! m′ ≤ p ≤ m ,
mm/p′

m! m≤ p ≤∞ .

(27)

Using the polarization formula (4) and inequality (21) we can show that the estimates in (27) hold for complex as well as for
real Lp(µ) spaces.

Proposition 3.7. For the mth polarization constant K(m, p), m≥ 2, we have the estimates

K(m, p)≤











mm/p

m! 1≤ p ≤ m′ ,
mm/m′

m! m′ ≤ p ≤ m ,
mm/p′

m! m≤ p ≤∞ .

(28)

In the case 1≤ p ≤ m′ the estimate is best possible.
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Proof. Let x i ∈ Lp(µ), 1≤ i ≤ m, be unit vectors. From the polarization formula (4) we have

|L(x1, . . . , xm)| ≤
‖bL‖
m!

∫ 1

0







m
∑

i=1

ri(t)x i







m

p d t .

Since 1≤ p ≤ m′⇔ m≤ p′ ≤∞, using Hölder’s inequality first and then inequality (21), the previous inequality gives the first
estimate in (28) (we also refer to the proof of Theorem 2 in [51]). The proof of the third estimate in (28) is similar. In particular,
for p = m we have

K(m, m)≤K(m, m′) =
mm/m′

m!
=

mm−1

m!
.

Finally, consider the case m′ ≤ p ≤ m. Since K(m, p), as a function of p, is decreasing on the interval [1,2] and increasing for
p ≥ 2 (see [20]), for every p ∈ [m′, m] we have K(m, p)≤ mm/m′/m!.

To see that the estimate mm/p/m! is best possible in the case 1 ≤ p ≤ m′, we consider L ∈ Ls(m`p;K) defined in Example
3.1. We have ‖L‖ ≥ L(e1, . . . , em) = 1/m! and ‖bL‖ = 1/mm/p. Since by (28) K(m, p) ≤ mm/p/m!, we conclude that ‖L‖ =
L(e1, . . . , em) = 1/m! and

‖L‖=
mm/p

m!
‖bL‖ .

Thus, K(m, p) = mm/p/m!.

(i) Special case m= 2.
From (28) and for 1≤ p ≤∞ we have the estimate

K(2, p)≤ 2|p−2|/p .

For 1≤ p ≤ 2 we have K(2, p) = 2(2−p)/p. In fact, in the case 1≤ p ≤ m′ it follows from Proposition 3.7 that K(m, p) = mm/p/m!,
for every m≥ 2. Therefore, for m = 2 and for 1≤ p ≤ 2 we have K(2, p) = 22/p/2! = 2(2−p)/p. To prove equality, as in Example 3.1
we consider the 2-homogeneous polynomial bL(x) = x1 x2 with L(x , y) = 1

2 (x1 y2 + x2 y1), x = (x i), y = (yi), the corresponding
symmetric bilinear form on the real or complex `p space, 1≤ p ≤ 2. Since ‖L‖ ≥ |L(e1, e2) = 1/2 and for x = (2−1/p, 2−1/p, 0, . . .)
with ‖x‖p = 1, ‖bL‖= |bL(x)|= 2−2/p, we have ‖L‖ ≥ 2(2−p)/p‖bL‖. But K(2, p)≤ 2(2−p)/p and so ‖L‖= 2(2−p)/p‖bL‖.

For 2≤ p ≤∞ we have R(2, p) = 2(p−2)/p and in particular R(2,∞) = 2. To see this consider the 2-homogeneous polynomial
bL(x) = x2

1 − x2
2 with L(x , y) = x1 y1 − x2 y2, x = (x i), y = (yi), the corresponding symmetric bilinear form on the real `p

space. Obviously ‖bL‖ = |bL(e1)| = 1. On the other hand, for x = (2−1/p, 2−1/p, 0, . . .) and y = (2−1/p,−2−1/p, 0, . . .) we have
‖x‖p = ‖y‖p = 1 and L(x , y) = 21−2/p. Hence, ‖L‖= 2(p−2)/p‖bL‖.

(ii) Case p ≥ m≥ 3.

In this case the constant mm/p′

m! in (28) can be improved. It has been shown in [20] that for p ≥ m≥ 3,

K(m, p)≤
(2m)m/2

m!

�

Γ
�

1
2 (p+ 1)

�

p
π

�m/p

, (29)

where Γ is the gamma function. For example, in the special case p = m= 4 inequality (29) gives

K(4,4)≤
82

4!
·
Γ (5/2)
p
π
= 2 .

Since p′ = 4/3 is the conjugate exponent of p = 4, from (28) we have the estimate K(4,4)≤ 43

4! =
8
3 which is bigger than 2.

For the complex `∞ Harris [30, (16)], see also [24, Proposition 1.43], has shown that

C(m,∞) = C(m,`∞)≤
mm/2(m+ 1)(m+1)/2

2mm!

and this upper estimate is smaller than mm/m!. Tonge has also proved the same result by using a method very similar to the
method which was used to prove that the complex Grothendieck constant G(2) is bounded above by 3

4

p
3, see [56].

Remark 2. Harris [30, Theorem 6] showed that if 1≤ p ≤∞ and m is a power of 2, then

C(m, p)≤ (mm/m!)|p−2|/p . (30)

He has also conjectured that (30) holds for all positive integers m and that the constant given is best possible. But, as we have
stated in Proposition 3.7, in the case 1 ≤ p ≤ m′, m ≥ 3, the best constant is C(m, p) = mm/p/m! and this is strictly less than
(mm/m!)(2−p)/p. Observe that for m= 2

C(2, p) =
22/p

2!
= 2(2−p)/p , 1≤ p ≤ 2 ,

and this is the constant given in (30).
On the other hand, for m′ ≤ p ≤ 2, where m = 2n, n≥ 2, the constant given in (30) has been improved in [51, Theorem 3′]. But,
in case p is close to 2, and for m a power of 2, Harris’ bound is better than that of Proposition 3.6.
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4 Bernstein’s inequality for homogeneous polynomials on Hilbert spaces
A famous result, investigated by Banach [5] and many other authors, for example [15, 21, 30, 34, 36, 45], asserts that if H is
a Hilbert space, then K(n, H) = 1. In other words, ‖L‖ = ‖bL‖ for every L ∈ Ls(nH). Recall that L is a continuous symmetric
n-linear form on a Hilbert space H and bL is the associated continuous n-homogeneous polynomial. Since the Fréchet derivative
of bL at x ∈ H is given by DbL(x)(y) = nL(xn−1 y), y ∈ H, where L(xn−1 y) := L(x , . . . , x

︸ ︷︷ ︸

n−1

, y), to prove ‖L‖= ‖bL‖ by an inductive

argument, it suffices to show that |L(xn−1 y)| ≤ ‖bL‖ for any unit vectors x and y in H. In other words, ‖L‖ = ‖bL‖ for any
bL ∈ P (nH) if and only if

‖DbL‖ ≤ n‖bL‖ , ∀bL ∈ P (nH) . (31)

Banach proved this result for continuous symmetric n-linear forms and continuous n-homogeneous polynomials on finite
dimensional real Hilbert spaces. The proof works equally well for real and complex Hilbert spaces, and the condition of finite
dimensionality is only needed to ensure that the n-linear form attains its norm. The result that ‖L‖= ‖bL‖ is true for all Hilbert
spaces, and, as pointed out by Banach, can be obtained through a simple limit argument based on the finite dimensional case.

Clearly, if bL attains its norm at x0 ∈ BH , the closed unit ball of the Hilbert space H, then L also attains its norm at
(x0, . . . , x0) ∈ Bn

H . When H is finite dimensional, L will always attain its norm, since the closed unit ball of H is compact.
However, when H is infinite dimensional, L need not attain its norm: if H = `2, the space of square summable sequences, and
L(x , y) =

∑∞
n=1

n
n+1 xn yn, it is easy to see that ‖L‖= 1, but that |L(x , y)|< 1 for all unit vectors x = (xn) and y = (yn) in H.

It is true, but not obvious, that if L attains its norm at (x1, . . . , xn) ∈ Bn
H , then bL also attains its norm at some x0 ∈ BH . When

L does attain its norm, an explicit construction has been given in [45, section 2] to provide a unit vector x0 with ‖bL‖= |bL(x0)|.
Theorem 4.1. [45, Theorem 2.1] If L is a norm attaining continuous symmetric n-linear form, n≥ 2, on a Hilbert space, then the
associated continuous symmetric n-homogeneous polynomial bL also attains its norm. Moreover, ‖L‖= ‖bL‖.

For real Hilbert spaces it is an interesting fact, see [30, Theorem 4], that the Bernstein-type inequality (31) is equivalent to
Szegö’s inequality for real trigonometric polynomials (see [21]). That is, if T (t) =

∑n
k=−n ckeikt , c−k = ck, is a real trigonometric

polynomial of degree n which satisfies |T (t)| ≤ 1 for all real t, then

n2T (t)2 + T ′(t)2 ≤ n2 , ∀ t ∈ R . (32)

But Szegö’s inequality (32) is a special case of a more general inequality for entire functions of exponential type. Recall that an
entire function f : C→ C is of exponential type (EFET) if for some A> 0 the inequality

M f (r) :=max
|z|=r
| f (z)|< eAr

holds for sufficiently large values of r. The greatest lower bound for those values of A for which the latter asymptotic inequality is
fulfilled is called the type σ = σ f of the function f . It follows from the definition of the type that

σ f = limsup
r→∞

log M f (r)

r
.

For example, if T (t) =
∑n

k=−n ckeikt is a trigonometric polynomial of degree ≤ n, then T (z) =
∑n

k=−n ckeikz is an EFET of type ≤ n.
A classical theorem due to Bernstein [11] states that if f is an EFET of type ≤ σ, then f satisfies the inequality

sup
t∈R
| f ′(t)| ≤ σ sup

t∈R
| f (t)| .

The following theorem, see [2] or inequality (11.4.5) in [14], contains Bernstein’s inequality as a special case.

Theorem 4.2. Let f : C→ C be an entire function of exponential type ≤ σ and let supt∈R | f (t)|<∞. Then for all ω ∈ R

sup
t∈R
| f ′(t) cosω+σ f (t) sinω| ≤ σ sup

t∈R
| f (t)| . (33)

Equality holds in (33) if and only if f (z) = aeiσz + be−iσz , where a, b ∈ C.

In particular, if T is a real trigonometric polynomial of degree n with |T (t)| ≤ 1 for all real t, inequality (33) implies Szegö’s
inequality (32).

We prove now that the Bernstein-type inequality (31) on real or complex Hilbert spaces can be easily derived from inequality
(33)(cf. [4, Theorem 2.2]).

Theorem 4.3. Let (H, 〈·, ·〉) be a real or complex Hilbert space. If P : H →K is a continuous polynomial of degree n and x is a unit
vector in H, then

{n2|P(x)|2 − |DP(x)x |2 + ‖DP(x)‖2}1/2 ≤ n‖P‖ . (34)

In particular, if P = bL is a continuous n-homogeneous polynomial, then

‖DbL‖ ≤ n‖bL‖ .

In other words, ‖L‖= ‖bL‖ for any L ∈ Ls (nH).
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Proof. Let x , y be orthogonal unit vectors in H and let c ∈K satisfy |c| = 1. Then T (t) := P (x cos t + c y sin t) is a trigonometric
polynomial of degree ≤ n. But ‖x cos t + c y sin t‖ = 1 and therefore |T(t)| ≤ ‖P‖, for any t ∈ R. Since T ′(t) = DP(x cos t +
c y sin t)(−x sin t + c y cos t), Bernstein’s inequality (33), for t = 0, implies

|cDP(x)y cosω+ nP(x) sinω| ≤ n‖P‖ , ∀ω ∈ R .

By appropriate choice of c, |c|= 1 and ω ∈ R we get

{|DP(x)y|2 + n2|P(x)|2}1/2 ≤ n‖P‖ . (35)

Now, let x be a fixed unit vector in H. Then, given a unit vector u in H it is possible to find a unit vector y ∈ H orthogonal to x
so that u= αx + β y , where |α|2 + |β |2 = 1. Since

|DP(x)u)|2 = |αDP(x)x + βDP(x)y|2 ≤ |DP(x)x |2 + |DP(x)y|2 ,

using (35) we have
{|DP(x)u|2 − |DP(x)x |2 + n2|P(x)|2}1/2 ≤ n‖P‖ , ∀u ∈ SH .

But ‖DP(x)‖= sup‖u‖=1 |DP(x)u| and the proof of (34) follows.
If P = bL is a continuous n-homogeneous polynomial, then as a particular case of (3) DbL(x)x = nbL(x) and (34) is equivalent

to ‖DbL(x)‖ ≤ n‖bL‖, for every x ∈ SH .

In 1990 Lomonosov [40] conjectured that Bernstein’s inequality (31) for continuous 2-homogeneous polynomials characterizes
real Hilbert spaces. Benítez and Sarantopoulos [9] proved this conjecture in 1993. In other words, it was shown that if X is a real
Banach space, then ‖DbL‖ ≤ 2‖bL‖ (or ‖L‖= ‖bL‖) for any bL ∈ P

�

2X
�

if and only if X is a real Hilbert space.
However, Bernstein’s inequality (31) for continuous homogeneous polynomials doesn’t characterize complex Hilbert spaces.

As it has been proved in [30], Bernstein’s inequality for continuous homogeneous polynomials holds on the complex `2
∞, the

2-dimensional complex C(K) space. This result cannot be extended to all C(K) spaces. For instance, in [57] an example of a
2-homogeneous polynomial was given on the complex `3

∞ for which Bernstein’s inequality fails. Recall that a C(K) space is the
Banach space of continuous functions on the compact Hausdorff space K , under the usual uniform norm. It is known that for any
σ-finite measure µ the space L∞(µ) is isometric to a C(K) space, see [3, Proposition 4.3.8(ii) and Theorem 4.3.7(Kelley [35])].
The simplest examples of C(K) spaces are `∞ and L∞[0,1].

Now we give another example of a complex Banach space for which Bernstein’s inequality for continuous homogeneous
polynomials does hold. For this we need the following result of Harris.

Proposition 4.4. [30, Corollary 3] Let (H, 〈·, ·〉) be complex Hilbert space and let P : H → C be a continuous polynomial of degree
n. Then,

|nP(x)− DP(x)x |+ ‖DP(x)‖ ≤ n‖P‖ , ∀x ∈ BH . (36)

Observe that S(x) := nP(x)− DP(x)x is the sum of the first n− 1 partial sums of the polynomial P.

Proposition 4.5. If H is a complex Hilbert space, consider the complex Banach space H ×C, with the supremum norm, which is a
non-Hilbert space. Then,

‖DbL‖ ≤ n‖bL‖ , ∀bL ∈ P (nH ×C) .

In other words, ‖L‖= ‖bL‖ for any L ∈ Ls (nH ×C).

Proof. Suppose dim(H)<∞. Any continuous n-homogeneous polynomial bL on H ×C can be written in the form

bL(< x , z >) = znP
� x

z

�

, ∀x ∈ H, z ∈ C ,

where P is a polynomial of degree n on H. By the maximum modulus principle

‖bL‖= sup
‖<x ,z>‖=1

�

�

�znP
� x

z

�
�

�

�= sup
‖x‖≤1

|P(x)|= ‖P‖ .

To prove
|DbL(< x , z >)< y, w> | ≤ n‖bL‖ , ∀< x , z >, < y, w>∈ BH×C ,

by the maximum modulus principle is enough to show that

|DbL(< x , 1>)< y, 1> | ≤ n‖bL‖ , ∀x , y ∈ BH .

For this we need the following identity, which can be easily checked

DbL(< x , 1>)< y, 1>= DP(x)y + nP(x)− DP(x)x .

Then, from inequality (36) it follows that

|DbL(< x , 1>)< y, 1> | ≤ n‖P‖= n‖bL‖ , ∀x , y ∈ BH .

Based on the finite dimensional case, a simple argument gives the proof in the case H is an arbitrary complex Hilbert space.

Observe that in the special case H = C, the space H ×C with the supremum norm is just the complex space `2
∞.

Problem. Characterize the complex Banach spaces X for which Bernstein’s inequality holds for any continuous homogeneous
polynomial on X . That is, the complex Banach spaces X which share the property

‖DbL‖ ≤ n‖bL‖⇔ ‖L‖= ‖bL‖ , ∀bL ∈ P (nX ) .
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