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Abstract

Recently [1] gave a simple, geometric and explicit construction of bivariate interpolation
at points in a square (the so-called Padua points), and showed that the associated norms
of the interpolation operator, i.e., the Lebesgue constants, have minimal order of growth of
O((log(n))2).

One may observe that these points have the structure of the union of two (tensor prod-
uct) grids, one square and the other rectangular. In this article we give a conjectured
formula (in the even degree case) for the Vandermonde determinant of any set of points
with exactly this structure. Surprisingly, it factors into the product of two univariate func-
tions. We offer a partial proof that depends on a certain technical lemma (Lemma 1 below)
which seems to be true but up till now a correct proof has been elusive.

1 Introduction

Suppose that K ⊂ Rd is a compact set with non-empty interior. Let Π(Rd) denote the space of
real polynomials in d variables, and Π(K) be the restrictions of these polynomials to K. Suppose
that we are given some finite dimensional subspace V ⊂ Π(K), of dimension N := dim(V ).
Then given N points A := {Ai}Ni=1 ⊂ K, the polynomial interpolation problem associated to
V and A is to find for each f ∈ C(K) (the space of continuous functions on K) a polynomial
p ∈ V such that

p(Aj) = f(Aj), j = 1, · · · , N. (1)

If
B := {p1, p2, · · · , pN}

is a basis for V so that we may write p ∈ V as

p =

N∑
j=1

ajpj ,

then the interpolation problem (1) may be expressed in matrix form as

[pj(Ai)]1≤i,j≤N ~a = ~f (2)

where ~a is the vector of coefficients ~ai = ai, and ~f denotes the vector of function values
~fj = f(Aj).

The linear system (2) has a (unique) solution for arbitrary f precisely when the associated
determinant, the so-called Vandermonde determinant, is non-zero. Clearly then, this determi-
nant is important for polynomial interpolation.

We will denote the Vandermonde matrix by

V DM(A;B) := [pj(Ai)]1≤i,j≤N

and its determinant by
vdm(A;B) := det(V DM(A;B)).
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Of course, in one variable, with V = Πn(R), the space of univariate polynomials of degree
at most n, and B = {1, x, x2, · · · , xn}, (and N = n+ 1) there is the classical formula

vdm(A;B) = ±
∏
i<j

(Aj −Ai).

In several variables much less is known. There are some special configurations of points for
which the Vandermonde determinant may be computed explicity (see e.g. [2]) but the only
example in arbitrary dimension is the tensor-product case. We briefly describe this for d = 2.
Here N = (n+ 1)2, the set of points is given by a grid

A = {(xi, yj) | 0 ≤ i, j ≤ n}

and the basis is the tensor-product basis

B = {xαyβ | 0 ≤ α, β ≤ n}.

It is not difficult to see that then, after re-ordering, the bivariate Vandermonde matrix [xαi y
β
j ]

is the tensor product of the univariate Vandermonde matrices [xαi ] and [yβj ]. Hence, by means
of a well-known result on the determinant of tensor product matrices (cf. i.e. [5]),

vdm(A;B) = ±det
(

[xαi ]⊗ [yβj ]
)

= ± (det([xαi ]))n+1
(

det([yβj ])
)n+1

= ±

∏
i<j

(xj − xi)

n+1∏
i<j

(yj − yi)

n+1

,

using a basic fact about the determinants of the tensor product of matrices (see e.g. [5]).
However, the most common (and most important) choice of V is V = Πn(Rd), the space

of polynomials of degree at most n, (for which N =

(
n+ d

d

)
) in which case we consider the

total degree interpolation problem. This has been the subject of much study, but remains
incompletely understood. Only recently, [1] gave an explicit example of points, the so-called
Padua points, in the square K = [−1, 1]2 for which the associated Lebesgue function is of
optimal growth. To the best of our knowledge, this is the first explicit such example for any
such K ⊂ Rd with d > 1, and is hence an important example that deserves further exploration.

Now, the Padua points (of degree n) are perhaps most easily described as

{(cos((n+ 1)tk), cos(ntk) | k = 0 · · ·n(n+ 1)}

where tk := kπ/(n(n + 1)), (see [1] for more details). In Figure 1, below, we display these
points for degree n = 4.
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Figure 1 – the Padua points of degree 4

Notice that the N =

(
4 + 2

2

)
= 15 points may be partitioned into grids, the first 3×3 (denoted

by ′⊗′) and the other 2× 3 (denoted by ’O’). This is easily seen to always be the case. In fact,

the even degree n Padua points may be always partitioned into a
n+ 2

2
× n+ 2

2
grid and

a
n

2
× n+ 2

2
grid, and the the odd degree n Padua points may always be partitioned into a

n+ 1

2
× n+ 1

2
grid and a

n+ 1

2
× n+ 3

2
grid. We refer to general sets of this form, i.e., that

may be partitioned into two grids of these sizes, as Padua-like points. For example, for n even,
consider

An = Aon ∪ Aen (3)

where
Aon := {(x2i+1, y2j+1) | 0 ≤ i ≤ n/2, 0 ≤ j ≤ n/2}

and
Aen := {(x2i, y2j) | 1 ≤ i ≤ n/2, 1 ≤ j ≤ (n+ 2)/2} .

The n odd case is similar.
In this paper we discuss a conjectured formula for the Vandermonde determinant for Padua-

like points (3). Surprisingly, it factors into the product of a factor depending only on the xk
and a factor depending only on the yk, just as does a tensor product Vandermonde, despite not
being a tensor product set of points. For reasons of simplicity we present only the even degree
case. The odd degree case is similar.
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2 A Product Formula for the Vandermonde Determinant

Since we will be manipulating these Vandermonde matrices/determinants we first display
their structure somewhat more carefully. For points A = {A1, A2, · · · , AN} and basis B =
{p1, p2, · · · , pN}, then the Vandermonde matrix

V DM(A;B) =

p1 p2 · · · pN

A1 p1(A1) p2(A1) · · · pN (A1)
A2 p1(A2) p2(A2) · · · pN (A2)
·
·
·
AN p1(AN ) p2(AN ) · · · pN (AN )

.

Each row of the matrix is indexed by a point in A and consists of the polynomials in the
basis evaluated at that point. Each column in the matrix is indexed by a polynomial in B and
consists of that polynomial evaluated at all the points.

Now, our goal is to provide a product formula for vdm(An;Bn) where An is the set of
Padua-like points (3) (n recalls the polynomial degree) and Bn is the standard monomial basis
for Πn(R2),

Bn :=
{
xαyβ | α+ β ≤ n

}
. (4)

We will also make use of the Tensor Product basis

Tn :=
{
xαyβ | max(α, β) ≤ n

}
. (5)

Part of our strategy for computing the Vandermonde determinant is to use a a basis for
Πn(R2) that is somewhat more convenient than Bn. We remark that, in general, if

B = {p1, p2, · · · , pN}

and
B′ = {q1, q2, · · · , qN}

are two bases for V with transition matrix M, i.e., such that

qj =

N∑
k=1

Mjkpk,

then it is easy to see that
vdm(A;B′) = det(M)vdm(A;B). (6)

In particular, if the transition matrix M is triangular with 1’s on the diagonal, then we have

vdm(A;B′) = vdm(A;B).
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We are going to make use of a particular basis B′n, constructed as follows. Let

a(x) :=

n/2∏
i=0

(x− x2i+1)

and

b(y) :=

n/2∏
j=0

(y − y2j+1).

Then set
B′n := a(x)Bn

2
−1 ∪ b(y)Bn

2
−1 ∪ Tn

2
.

It is easy to see that B′n is indeed a basis of Πn(R2) and that the transition matrix between the
standard basis Bn and B′n (after a possible re-ordering) is triangular with 1’s on the diagonal.
Hence

vdm(An;Bn) = ±vdm(An;B′n).

Before proceeding, we first make a simplifying notation. Since the space

span
(
a(x)Bn

2
−1 ∪ b(y)Bn

2
−1

)
is complementary to span(Tn/2) (with respect to Πn(R2)), we define

T cn
2

:= a(x)Bn
2
−1 ∪ b(y)Bn

2
−1

so that
B′n = Tn

2
∪ T cn

2
.

Notice then that for each point (x2i+1, y2j+1) ∈ Aon and polynomial p ∈ T cn/2, we have p(x2i+1, y2j+1) =
0. Hence the Vandermonde matrix has the block form

V DM(An;B′n) =

Tn/2 T cn/2

Aon A 0

Aen B C

.

Hence

vdm(An;B′n) = ±det(A)× det(C)

= ± vdm(Aon; Tn/2)× vdm(Aen; T cn/2). (7)

But recall that
Aon := {(x2i+1, y2j+1) | 0 ≤ i ≤ n/2, 0 ≤ j ≤ n/2}
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is a (n/2 + 1)× (n/2 + 1) grid, so that vdm(Aon; Tn/2) is a tensor-product Vandermonde deter-
minant, and we have

vdm(Aon; Tn/2) = ±

 ∏
0≤i<j≤n/2

(x2j+1 − x2i+1)

n/2+1 ∏
0≤i<j≤n/2

(y2j+1 − y2i+1)

n/2+1

. (8)

We therefore proceed to the problem of computing vdm(Aen; T cn/2).
We begin by forming the n/2 subsets of univariate (in y) polynomials

Qk := {yj | 0 ≤ j ≤ k − 1} ∪ {yjb(y) | 0 ≤ j ≤ n/2− k}, k = 1, · · · , n/2. (9)

Explicitly

Q1 = {1, b(y), yb(y), y2b(y), · · · , yn/2−2b(y), yn/2−1b(y)}
Q2 = {1, y, b(y), yb(y), y2b(y) · · · , yn/2−3b(y), yn/2−2b(y)}
Q3 = {1, y, y2, b(y), yb(y), y2b(y) · · · , yn/2−4b(y), yn/2−3b(y)}

·
·

Qn/2−1 = {1, y, y2, · · · , yn/2−2, b(y), yb(y)}

Qn/2 = {1, y, y2, · · · , yn/2−1, b(y)}.

Each of these n/2 sets Qk has cardinality n/2 + 1, for a total of (n/2)(n/2 + 1) (repeated)
entries.

Now,
T cn

2
= a(x)Bn

2
−1 ∪ b(y)Bn

2
−1

also consists of

2

(
n/2

2

)
= (n/2)(n/2 + 1)

polynomials. We “partition” the members of T cn/2 among theQk as follows: for k = 1, 2, · · · , n/2
set

Q̃k := {xk−j−1yja(x) | 0 ≤ j ≤ k − 1} ∪ {xk−1yjb(y) | 0 ≤ j ≤ n/2− k}. (10)

Explicitly,

Q̃1 = {a(x), b(y), yb(y), y2b(y), · · · , yn/2−2b(y), yn/2−1b(y)}
Q̃2 = {xa(x), ya(x), xb(y), xyb(y), xy2b(y) · · · , xyn/2−3b(y), xyn/2−2b(y)}
Q̃3 = {x2a(x), xya(x), y2a(x), x2b(y), x2yb(y), x2y2b(y) · · · , x2yn/2−4b(y), x2yn/2−3b(y)}

·
·

Q̃n/2−1 = {xn/2−2a(x), xn/2−3ya(x), xn/2−4y2a(x), · · · , yn/2−2a(x), xn/2−2b(y), xn/2−2yb(y)}

Q̃n/2 = {xn/2−1a(x), xn/2−2ya(x), xn/2−3y2a(x), · · · , yn/2−1a(x), xn/2−1b(y)}
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and it is easily verified that indeed,

Q̃1 ∪ Q̃2 ∪ · · · ∪ Q̃n/2 = T cn/2.

Further, we re-order the points of Aen according to the “columns” of the grid by setting

X2i := {(x, y) ∈ Aen |x = x2i}
= {(x2i, y2j) | j = 1 · · ·n/2 + 1}, i = 1, 2, · · · , n/2.

Note that each set X2i has cardinality

|X2i| =
n

2
+ 1 = |Q̃k|.

With this partitioning we now form the Vandermonde matrix V DM(Aen, T en/2)

V DM(Aen; T cn/2) = ±

Q̃1 Q̃2 · · · Q̃n/2

X2

X4

·

·

Xn/2

which may be regarded as an (n/2)× (n/2) block matrix of (n/2 + 1)× (n/2 + 1) size blocks
consisting of the Vandermonde matrices V DM(X2i; Q̃j).

Now, write
Qj = {f1,j(y), f2,j(y), · · · , fn/2+1,j(y)}

and
Q̃j = {f̃1,j(x, y), f̃2,j(x, y), · · · , f̃n/2+1,j(x, y)}

where the fk,j(y) are given by (9) and the associated f̃k,j(x, y), by (10). We may, in fact, write

f̃k,j(x, y) = gk,j(x)fk,j(y) (11)

where this relationship defines the gk,j(x).

Then the k-th column in the matrix V DM(X2i, Q̃j) corresponding to f̃k,j(x, y) is
f̃k,j(x2i, y2)

f̃k,j(x2i, y4)
·
·

f̃k,j(x2i, yn+2)

 =


fk,j(y2)gk,j(x2i)
fk,j(y4)gk,j(x2i)

·
·

fk,j(yn+2)gk,j(x2i)

 =


fk,j(y2)
fk,j(y4)
·
·

fk,j(yn+2)

 gk,j(x2i).
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In other words, the Vandermonde matrix

V DM(X2i; Q̃j) = V DM({y2, y4, · · · , yn+2};Qj)diag(g1,j(x2i), g2,j(x2i), · · · , gn/2+1,j(x2i))),

i.e., V DM(X2i; Q̃j) is the product of the univariate Vandermonde matrix

V DM({y2, y4, · · · , yn+2};Qj),

depending only on the y-coordinates of the points, and a diagonal matrix. Hence, we have the
following block structure:

V DM(Aen; T cn/2) =


M1D11 M2D12 · · Mn/2D1,n/2

M1D21 M2D22 · · Mn/2D2,n/2

· · ·
· · ·

M1Dn/2,1 M2Dn/2,2 · · Mn/2Dn/2,n/2

 (12)

where
Mj := V DM({y2, y4, y6, · · · , yn+2};Qj) ∈ R(n/2+1)×(n/2+1) (13)

and Dij is the diagonal matrix

Dij := diag(g1,j(x2i), g2,j(x2i), · · · , gn/2+1,j(x2i)) ∈ R(n/2+1)×(n/2+1) (14)

and the gk,j are defined (depending on Q̃j) as in (11).
Notice that the jth column has a constant (block) factor Mj . However, these are left-factors

and hence it is not true in general that det(Mj) is a factor of this block matrix. Remarkably,
this seems to be true for our special matrix.

Lemma 1 We have

vdm(Aen; T cn/2) = ±

n/2∏
j=1

det(Mj)


∣∣∣∣∣∣∣∣∣∣

D11 D12 · · D1,n/2

D21 D22 · · D2,n/2

· · ·
· · ·

Dn/2,1 Dn/2,2 · · Dn/2,n/2

∣∣∣∣∣∣∣∣∣∣
=

n/2∏
j=1

vdm({y2, y4, · · · , yn+2};Qj)


∣∣∣∣∣∣∣∣∣∣

D11 D12 · · D1,n/2

D21 D22 · · D2,n/2

· · ·
· · ·

Dn/2,1 Dn/2,2 · · Dn/2,n/2

∣∣∣∣∣∣∣∣∣∣
.

Proof. This is precisely the gap in our overall proof. If a proof of this lemma can be provided
then the formula we give below will be proven. We tested the formula numerically with the
Matlab code detVDMPDPts.m in Appendix A.

The matrix V DM(Aen; T cn/2) is computed as A in the code for random x and y nodes in the

interval [−1, 1]. At the very end, det(A) = vdm(Aen; T cn/2) is computed directly and then the
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value of the proposed formula in the lemma is given. Finally, the ratio of the two is given. For
example, one run with n = 10, (and random points) gave det(A) = −1.10320324074189e− 098
and the proposed formula as −1.10320324074182e− 098. �

Assuming, for the moment, that Lemma 1 is true, we proceed to compute the rest of the
formula for the overall Vandermonde determinant. Since the Dij are diagonal, and hence
commute one with another, it is an easy matter to compute det[Dij ].

Lemma 2 We have ∣∣∣∣∣∣∣∣∣∣
D11 D12 · · D1,n/2

D21 D22 · · D2,n/2

· · ·
· · ·

Dn/2,1 Dn/2,2 · · Dn/2,n/2

∣∣∣∣∣∣∣∣∣∣
= ±

n/2+1∏
k=1

det(Ck)

where Ck ∈ R(n/2)×(n/2) is defined by

(Ck)ij := (Dij)kk, k = 1, 2, · · ·n/2 + 1.

Proof. In fact, by interchanging rows and columns we may reduce
D11 D12 · · D1,n/2

D21 D22 · · D2,n/2

· · ·
· · ·

Dn/2,1 Dn/2,2 · · Dn/2,n/2

 to


C1 0 · · 0
0 C2 · · 0
· · ·
· · ·
0 0 · · Cn/2+1


and the result follows. �

We now proceed to calculate the determinants of the Ck. But from the definition of the gk,
(11), it is easy to see that

(Ck)ij =

{
xj−k2i a(x2i) : j ≥ k

xj−12i : j < k

for 1 ≤ k ≤ n/2 + 1 and 1 ≤ i, j ≤ n/2.
The cases k = 1 and k = n/2 + 1 are slightly special. In particular, for k = 1, j < k does

not occur and we have
(C1)ij = xj−12i a(x2i), 1 ≤ i, j ≤ n/2.
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Hence,

det(C1) =

n/2∏
i=1

a(x2i)

det[xj−12i ]

=

n/2∏
i=1

a(x2i)

 vdm({x2, x4, x6, · · · , xn}; {1, x, x2, · · · , xn/2−1})

=

n/2∏
i=1

a(x2i)

 ∏
1≤i<j≤n/2

(x2j − x2i). (15)

Similarly, for k = n/2 + 1, the case j ≥ k does not occur, so that

(Cn/2+1)ij = xj−12i , 1 ≤ i, j ≤ n/2.

Hence,

det(Cn/2+1) = det[xj−12i ]

= vdm({x2, x4, x6, · · · , xn}; {1, x, · · · , xn/2−1})
=

∏
1≤i<j≤n/2

(x2j − x2i). (16)

In the intermediate cases, 2 ≤ k ≤ n/2, we easily determine that

det(C2) = vdm({x2, x4, x6, · · · , xn}; {1, a(x), xa(x), x2a(x), · · · , xn/2−2a(x)}),
det(C3) = vdm({x2, x4, x6, · · · , xn}; {1, x, a(x), xa(x), x2a(x), · · · , xn/2−3a(x)}),
det(C4) = vdm({x2, x4, x6, · · · , xn}; {1, x, x2, a(x), xa(x), x2a(x), · · · , xn/2−4a(x)}) etc..

If we define, in analogy with the Qk defined in (9) (with n/2 replaced by n/2− 1),

Pk := {xj | 0 ≤ j ≤ k − 1} ∪ {xja(x) | 0 ≤ j ≤ n/2− 1− k}, k = 1, 2, · · · , n/2− 1, (17)

then we may write,

det(Ck) = vdm({x2, x4, x6, · · · , xn};Pk−1), k = 2, 3, · · · , n/2. (18)

Combining (15), (16) and (18) we have shown that

Lemma 3 We have∣∣∣∣∣∣∣∣∣∣
D11 D12 · · D1,n/2

D21 D22 · · D2,n/2

· · ·
· · ·

Dn/2,1 Dn/2,2 · · Dn/2,n/2

∣∣∣∣∣∣∣∣∣∣
=

n/2∏
i=1

a(x2i)

 ∏
1≤i<j≤n/2

(x2j − x2i)

2

×
n/2∏
k=2

vdm({x2, x4, x6, · · · , xn};Pk−1).
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Lemmas 1 and 3 combine to give us

Proposition 1 We have

vdm(Aen, T cn/2) =

n/2∏
j=1

vdm({y2, y4, · · · , yn+2};Qj)


×

n/2∏
i=1

a(x2i)

 ∏
1≤i<j≤n/2

(x2j − x2i)

2

×
n/2∏
k=2

vdm({x2, x4, x6, · · · , xn};Pk−1).

Finally, (7), (8) and Proposition 1 give us our desired formula

Theorem 2 We have

vdm(An;Bn) = ±

 ∏
0≤i<j≤n/2

(y2j+1 − y2i+1)

n/2+1

×

n/2∏
j=1

vdm({y2, y4, · · · , yn+2};Qj)


×

 ∏
0≤i<j≤n/2

(x2j+1 − x2i+1)

n/2+1

×

n/2∏
i=1

a(x2i)

 ∏
1≤i<j≤n/2

(x2j − x2i)

2

×
n/2∏
k=2

vdm({x2, x4, x6, · · · , xn};Pk−1).

We remark that the determinants that appear in the above formula do in general have further
factorizations, but they do not seem to be particularly simple or enlightening.
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A Matlab code

function detVDMPDPts

n=4; % the degree; must be even.

x=2*sort(rand(1,n+1))-1; %the x coordinates of the grid

y=2*sort(rand(1,n+2))-1; %the y coordiantes of the grid

m=(n/2)*(n/2+1); % the size of the matrix

A=zeros(m,m);

B=zeros(n/2+1,n/2+1); % put block in here

for k=1:(n/2) % form the matrix by Q_k blocks

for i=1:(n/2)

u=x(2*i);

for s=1:(n/2+1)

v=y(2*s);

t=0;

for j=0:(k-1)

t=t+1;

B(s,t)=v^j*u^(k-j-1)*a(u,x);

end

for j=0:(n/2-k)

t=t+1;

B(s,t)=u^(k-1)*v^j*b(v,y);

end

end

B;

A(((i-1)*(n/2+1)+1):(i*(n/2+1)),((k-1)*(n/2+1)+1):(k*(n/2+1)))=B;

end

end

%-------------------------------------------

% now compute the proposed formula for det(A)

%-------------------------------------------

det1=1;

% first the n/2 blocks (in the y’s) determined by the Q_k

C=zeros(m,m); %put blocks on the diagonal of C

for k=1:(n/2)

for s=1:(n/2+1)

v=y(2*s);

t=0;

for j=0:(k-1)

t=t+1;

B(s,t)=v^j;

end

for j=0:(n/2-k)

t=t+1;
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B(s,t)=v^j*b(v,y);

end

end

C(((k-1)*(n/2+1)+1):(k*(n/2+1)),((k-1)*(n/2+1)+1):(k*(n/2+1)))=B;

det1=det1*det(B);

end

%---------------------------------------

% now form the matrix of diagonal blocks

%---------------------------------------

D=A; for k=1:(n/2)

for i=1:(n/2)

A1=A(((i-1)*(n/2+1)+1):(i*(n/2+1)),((k-1)*(n/2+1)+1):(k*(n/2+1)));

M=C(((k-1)*(n/2+1)+1):(k*(n/2+1)),((k-1)*(n/2+1)+1):(k*(n/2+1)));

D(((i-1)*(n/2+1)+1):(i*(n/2+1)),((k-1)*(n/2+1)+1):(k*(n/2+1)))=inv(M)*A1;

end

end

det(A) % this is the determinant on the left side of Lemma 1

det1*det(D) % this is the determinant on the right side of Lemma 1

det(A)/(det1*det(D)) % this ratio should be pm 1

function y=a(t,x) m=length(x); z=t-x(1:2:m); y=prod(z); return

function v=b(t,y) m=length(y); z=y(1:2:m); v=prod(t-z); return

end
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