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Outline of the talk

» Motivation

> A short history of Lissajous curves
> Lissajous trajectories and MPI

> Interpolation on Lissajous-Chebyshev nodes Lc®
» Some description of Lissajous curves
» Characterization of the node points of Lissajous curves
> Interpolation and Quadrature on LC®
> Numerical condition of the polynomial interpolation
» Convergence and fast algorithms
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A short history of Lissajous curves
» 1800 Thomas Young

» 1815 Nathaniel Bowditch g ez
> 1827 A.C. Wheatstone —
» 1857 Jules A. Lissajous ’

P
Lissajous-Curve 7r nes,m=3, 4 -0, & -0

Wilhelm Braun, Die Singularititen der Lissajous’schen
Stimmgabelkurven, Dissertation, Erlangen 1875

» 1875 Wilhelm Braun

> 1902 Edward A. Hook (Multiple
points of Lissajous curves in

Thomas Young, Outllnes of Experiments and Inquiries Respecting ; : )
Sound and Light. Philosophical Transaction of the Royal Society, two and three dimensions

London 1800, 106-150, Plate VI, Fig. 44-46
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We will consider d-dimensional Lissajous curves
£o R~ R

in the parametrized form

£m)(t) = (Ul cos <lcm[m] i Klﬁ) -, Ug COS <lcm[m] - Rdﬁ)) 7

mi mq

where
» m=(my,...,mq) € N are ‘frequency dividers’,
» uc {—1,1}9 are ‘reflection parameters’,
» lem[ml] is the least common multiple of my, ..., my,
» k= (Ki,...,Kq) € RY specifies additional phase shifts.

The definition guarantees that in any case the minimal period of Zn w 1S 2T
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Two examples

8,6 . . 6,5
75473§7(1)1)(t) = (sin 3t,sin 4t) gEo,o;,(m)(t) = (cos 5t, cos 6t)
PSS ——0 :

0.5 0.5

-0.5 -0.5

)
el

1 Ny 1

—1 -0.5 0 1 —1 —0.5 0 0.5 1
Non-degenerate Lissajous curve used Degenerate Lissajous curve

in Magnetic Particle Imaging [5]. generating the Padua points [1, 2].
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MPI and Lissajous trajectories

A typical FFP-3D MPI scanner applies
magnetic fields of the form

receive coils focus-field coils —X Al Sin 27Tt/n1
H((Xayaz)’t): G -y |+ A25il’]27Tt/n2
2z Assin 2wt /n3

In this way a field free point (FFP) is
generated moving along a Lissajous
. trajectory inside a rectangular field of
combined selection- and VieW (FOV) [7]

drive-field coils focus-field coils

From: T. Knopp and T.M. Buzug, Magnetic Particle Imaging, In tWO dlmenSIonS the correspondlng
Springer, 2012 [7] trajectory looks as on the left hand side
of the previous slide.
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Questions considered in this tutorial:

» Which functions (polynomials) in subsets of RY can be reconstructed
if data values are available on a Lissajous trajectory?

» What are ‘good’ points on the trajectory from which a suitable
reconstruction of the original function is possible?

» What is a suitable interpolation procedure for data on the curve?

» How many data points on the trajectory are necessary to obtain a
good resolution? How large are the approximation errors?
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In this tutorial, we are focusing on polynomial interpolation. Why?

» Algebraic polynomials restricted to the Lissajous-curves correspond
to trigonometric polynomials on the curve. In FFP-MPI the Fourier
coefficients of the magnetization signal are measured. Therefore,
spaces of algebraic polynomials are interesting for modeling in MPI.

» Polynomial interpolation on the node points of Lissajous-curves can
be implemented easily and efficiently.
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Previous work in the literature

Most important influences for our work:

» Interpolation on Padua points: these are the node points generated
by a particular family of Lissajous curves [1].

» Interpolation and quadrature on Morrow-Patterson-Xu points [8].

L. Bos, M. CALIARI, S. DE MARCHI, M. VIANELLO, Y. XU

Bivariate Lagrange interpolation at the Padua points:
the generating curve approach.

Journal of Approximation Theory 143, (2006), 15 — 25.

Y. Xu
Lagrange interpolation on Chebyshev points of two variables.
Journal of Approximation Theory 87, (1996), 220 — 238.
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General assumption throughout this work:

The vector n = (nq,. .., nq) consists of
pairwise relatively prime natural numbers nq, ..., nq.

Then, the Lissajous curves with m = n have the simpler form

- n ng

where

d
plo] = [ [ .
i=1
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Definition: The Lissajous curve ﬁ(ﬁﬂ)g is called degenerate if there

exist t' € R and ¢’ € {—1,1}9 such that

£8,(t—t') = £, ().

Proposition - Characterization of degenerate Lissajous curves

The Lissajous curve ﬁ(ﬁﬂ)g is degenerate if and only if

ki—kj €Z foralli,je{1,...,d}.

For degenerate curves, we can therefore restrict our attention to the
Lissajous curves ﬁ[()ﬂ}(t). This is done in the following.
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We sample ggi(t) along the 2p[n] equidistant points
p[n]

and obtain the node point set

j:0,...,2p[ﬂ]—1,

Lc = { G ] j=0,...,2p[n] — 1}.

0.5
S 0
—0.5
—1
-1 —0.5 0 0.5 1
5,3 (5,3) 5,3,2 (5,3,2)
(a) LG and €00 (1) (b) LC®*2) and £0.00),(1.1,1)
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Multiple points of degenerate Lissajous curves

For t € [0,27), let A®(t) be the set of all s € [0,27) with

£7)(s) = £1(t).

Theorem

a) We have

#AO() =1 if te{t?, tf,ﬂL,),]},
#AD() =2 if te[0,2r)\{t?]je{0,...,2p[n] - 1} },
#AD(t)>2 if te{t”|je{l,...,2p[n] - 1} \ {p[n]} }.

i.e. all self-intersection points of the curve ﬁ(()ﬂ% are contained in ﬁ(ﬂ).
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For M C {1,...,d}, consider the #M-faces
Fh={xc[-L1|ieM=xec(-1,1)}.
b) Let M C {1,...,d} and j € {0,...,2p[n] — 1}. We have
Gy ey = #AD(E) =2

Further,

1
#LCW = —pln+ 1], #(LCW N EY) = o i 1L
ieM

Example: If M = {1,...,d}, then F, = (—1,1)¢ and
1
#LCW 0 Fd, = a1 H?Il(ni — 1) is the number of self-intersection

points of ﬁ((fi in the interior of the hypercube.
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A second characterization of the points LC®

To parametrize the point sets Q(ﬂ), we can use the index sets

1@ — jgﬂ) U!(lﬂ) with the sets I v € {0,1}, given by
lgﬂ)z{iENg |Vj: 0<i<nandij=t mod2}.

3f e O-mmmmmeee- Q-mmmmeee 0
2 @ [ ] [
1 (@) O @
0 @---------- - o
0 1 2 3 4 5 i

The index set 1(5’3).
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A second characterization of the points LC®

Lc® — {z}ﬂ) ‘161@}.

3 r Q- O Q

2 ‘ [ ] [

1 | @] O O

0 @~ @ ‘,,,,,1
0 1 2 3 4 5
P. Dencker, W. Erb 5.9.2017

Chebyshev-Gauss-Lobatto points:

z

(n)

= (z.("1)7...
z; -

Zgnd>) A0

2 - = cos (im/n).

0.5

-0.5

-0.5 0
x|

0.5 1
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Lagrange interpolation in 1D

Given n+ 1 node points xg < --- < x, and values fy,--- ,f, € R.

Find a univariate polynomial Ps of degree at most n such that
Pe(x)=1f,, i=0,...,n.

This interpolation problem has the unique solution

Pr(x) = 3 fiLi(x).
i=0

where

RIS y (R ) B R BV CE e B G

l 0<m<n Xi — Xm (Xi - Xo) (Xi - Xi—1) (Xi - Xi+1) (Xi - Xn)
m#i

The polynomials L; are called fundamental solutions of Lagrange interpolation.
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In multivariate polynomial interpolation, we have additional difficulties:
> Spaces of multivariate polynomials can be defined in several ways.

» For given node sets, interpolation is not necessarily unique.

Orthogonal basis polynomials simplify the considerations.

= Use multivariate Chebyshev polynomials
Tl(l) = T’Yl(Xl) T T’Yd(Xd)7 X< [_17 1]d’1 € Nga

as basis elements. They form an orthogonal basis of the space of the
d-variate polynomials with respect to the inner product

d

8= [ gt e v = T

1
md 2’

o1 V1= X
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The spectral index set r

Consider the polynomial spaces
nim — Span{ Ty ‘1 € [(ﬂ)}

based on the spectral index sets

Vi: Yi < n,

r“’:{ eENg | ..
B TET0 | vigj o w/m+y/m<1

}u{(o, ..,0,n4)}.

#E(ﬂ) _ #g(ﬂ)_
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(b) Index set I(5:3:2)

3)

s

(a) Index set 16

..&W
I ——

(d) Spectral index set [(5:3:2)

(c) Spectral index set (%3
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For i € 1, we define the weights
o = 2#M/(2p[n]) if 2" € LC® N EY,
and the measure w™ on the power set of 1 by w®({i}) = mf;ﬂ).

Further, we define the Lagrange polynomials

LD (x) = i (KO (x, ) = Toy (%) T (20)) , x € [-1,1)%

with the reproducing kernel

1
KO(x,x)= > WQ(&)Q(&’), x,x € [-1,1]".
er@ =
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Interpolation on LC!"

Denote by £(1”) the set of the functions h: 1 — C.

Theorem (D., E. [3

For h € £(1™), the polynomial
P = h(i)L®
iel®
is the unique element in the polynomial space M® that satisfies
P (™) = h(i) forall iel®.

Further,
span{ P{” | h € £(®)} = N

)

and the polynomials ng i e 1 form a basis of N(®@).
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Idea of the proof

Show that the functions
d
(n)( i) =Ty fﬁﬂ)) = [[ cos(riiim/m), ~er®,

form an orthogonal basis of E(l(ﬂ)) with respect to the discrete inner product

(f,8)m = Z f(i) g(i) mgﬂ).

Examples:
(i) d = 1: GauB-Chebyshev-Lobatto interpolation

(i) d=2and n=(n,n+1) or n=(n+1,n):
Bivariate polynomial interpolation on Padua points, see [1, 2]

P. Dencker, W. Erb 5.9.2017 Lissajous curves 23/32



A quadrature rule on i(ﬂ)

As a side result of our interpolation theorem we get a quadrature formula.

Theorem

Let P be a d-variate polynomial.
Assume that for all
d PR a_ 49
v € Ng \ {0} satisfying - €Np,i=1,...,d, and } — € 2N

i=1 1

we have
(P, T1> =0.

Then
1

[ Pew@ax= Y o)
[—1,1¢ - &

d
l- e!(ﬂ)
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Efficient computation of the interpolating polynomial
We consider the expansion

PP(x)= > o (h) Ty(x).

’YEE(E)
We introduce -

(o) prs i o (n)
1w h(i), fiel™, d
g@(y = oo hd),ifiel 1® = %o, n),
0, ific J(ﬂ) \!(ﬂ)7 i=1
and, recursively, fori=1,...,d,
g(($1)7‘--7’yi)(l.i+17..., Zg% )iz - - ia) cos(ifi / ).

l|—

Then, we have

_(h x%ﬂ)>w<n e
)||

||X'7 ”w(") ||X7

w®

Using FFT this can be done in O(p[n]log p[n]) steps.
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Numerical condition of the interpolation

The absolute condition of the interpolation problem with respect to the
uniform norm is given by the Lebesgue constant

A = max 3L (x).

x€[—1,1)d
xel-La S
3 ! op=1
2L Z
: a0
ot ip—
s g ‘AAgﬁ‘AADO 000 | lap =7
Z 5| BR800 |
be g 5 o
8 22°0°
i 5)0 t: Oo
s —;“: 10 ¢ ‘goo N
- :a
. g
" 500 1
S 0 0 40 6
degree n
Lebesgue function for n = (5,7) AR for n = (n+ p, n), see [5]
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Theorem (D., E., Kolomoitsev, Lomako [4

The Lebesgue constant A is bounded by

d

d
Cra [ n(mi+1) <A@ < Crp J]In(m+1)
i=1 i=1

with constants Cp 1, Cp > > 0 independent of n.

Let PWF be the unique polynomial in M) satifying

(PWF)(z) = f(z), iel®.

For f € C([-1,1]¢) we have

d
|f = POFf| < (CA,g [tn(m+1)+ 1) EW(f),
i=1

where E((f) denotes the best approximation of f in M(®.
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Idea of the proof

For the spectral index set T® define its symmetrization [ * by
r@ —{yez? | (ml,....hah e }.

and define the Fourier-Lebesgue constant L ([(ﬂ)*) as

1 .
L(rm=\ _ / IR
(7 ) (27‘()d [—7,m)d o ¢ =
yer=”

where

d
(v,t) = Z’Yiti~
i=1
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Using a Marcinkievicz-Zygmund inequality, it is possible to prove

Theorem

For all n € N4, we have

A®) <L( >+H|n (m+1), L([(ﬂ)’*) <A@,

Theorem

For all n € N4, we have

IL ([(ﬂ)) =L <£(ﬂ)*) = ﬁ In(m; + 1).
i=1

The proof of this Theorem is the technically more sophisticated part.
Here, a suitable decomposition of the polyhedral spectra is necessary.
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Dini-Lipschitz criterion for convergence

Theorem (D., E., Kolomoitsev, Lomako [4
Let s € N§ and

Z;s C([-1,1]%), je{1,...,d}

Then, we have

d d w(g;f;o...,o,%ﬂ,o,.. 0)
If — POF o < (Hln(ni +1) ) > P
i=1 j=1
where
w(f; 8) = sup [f(x") = f(x)]
x,x'€[-1,1]

Vie{l,...,d}: [x{—x| <6

denotes the modulus of continuity of f on [—1,1]9.
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Convergence of interpolation on LCc®

Approximation of f € C([0, 1]?) with polynomial P®f, n = (3,5).

e
Ll
bt
I’l’llf'"

i
e
ALY
AT
I
b

e

Error: ||f — PO, = 2.1319.
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Convergence of interpolation on LCc®

Approximation of f € C([0, 1]?) with polynomial P®f, n = (13,15).

i i
i ! A
Uk A T
il Al
A s
e

"
et
s

Error: ||f — P, = 0.1005.
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Convergence of interpolation on LCc®

Approximation of f € C([0, 1]?) with polynomial P f, n = (23,25).

i
Y
Ui
i AN
i RN
o i’ T
TN ol
i o
Rl

S,
e,

Error: ||f — P, = 0.0019.
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Convergence of interpolation on LCc®

Approximation of f € C([0,1]?) with polynomial P®f n

/ i :‘.“:

i

/I,'l":’l,"‘g“. i
u

e

i

i

o
i

T
R

"
et
s

Error: ||f — P®Wf|| ., = 1.0035-107°.
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