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A Comparison of Popular Point Configurations on S2

D. P. Hardin a · T. Michaels ab · E.B. Saff a

Abstract

There are many ways to generate a set of nodes on the sphere for use in a variety of problems in numerical
analysis. We present a survey of quickly generated point sets on S2, examine their equidistribution
properties, separation, covering, and mesh ratio constants and present a new point set, equal area
icosahedral points, with low mesh ratio. We analyze numerically the leading order asymptotics for the
Riesz and logarithmic potential energy for these configurations with total points N < 50, 000 and present
some new conjectures.

1 Introduction

1.1 Overview

Distributing points on S2 :=
�

x ∈ R3 : |x |= 1
	

is a classical problem arising in many settings in numerical analysis and ap-
proximation theory, in particular the study of radial basis functions, quadrature and polynomial interpolation, Quasi-Monte
Carlo methods for graphics applications, finite element methods for PDE’s, cosmic microwave background radiation modeling,
crystallography and viral morphology, to name a few. The goal of this paper is to survey some widely used algorithms for the
generation of spherical node sets. We will restrict our descriptions to “popular" point sets, most of which can be generated
“reasonably fast." Namely, we study

• Fibonacci and generalized spiral nodes

• projections of low discrepancy nodes from the unit square

• zonal equal area nodes and HEALPix nodes

• polygonal nodes such as icosahedral, cubed sphere, and octahedral nodes

• minimal energy nodes

• maximal determinant nodes

• random nodes and

• “mesh icosahedral equal area nodes."

The last is a new point set devised to have many desirable properties. For each of the above configurations, we provide illustrations,
and analyze several of their properties. We focus our attention primarily on

• equidistribution

• separation

• covering

• quasi-uniformity and

• Riesz potential energy.

For each property we provide numerical calculations, tables, and comparisons, and in some cases we prove theoretical bounds on
the mesh ratio. Section 3 is devoted to asymptotic comparisons of various potential energies. We do not consider quadrature of
the point sets; however, such a comparison for several of the configurations we describe here can be found in [19]. We now
formally introduce the properties we will be studying and, in Section 2, describe the point sets themselves. We leave the technical
proofs to Section 4, and at the end of the document, we provide resources for Matlab source codes to generate the point sets.
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1.2 Definitions and Properties

For low error numerical integration with respect to uniform surface area measure ([1] and [35]) as well as in digitizing S2 for
computer graphics purposes ([39] and [40]), it is important for any spherical configuration to have an approximately uniform
distribution. A sequence {ωN}

∞
N=1 of spherical point sets with ωN having cardinality N is called equidistributed if the sequence of

normalized counting measures,

νN (A) :=
1
N
|A∩ωN |, A Borel set,

associated with the ωN ’s converges in the weak-star sense to σ, the normalized surface area measure on S2, as N →∞. That is,
for all continuous functions f on S2,

lim
N→∞

∫

S2
f dνN =

∫

S2
f dσ.

An equivalent definition is that the L∞-spherical cap discrepancy

DC (ωN ) := sup
V⊂S2

�

�

�

�

|V ∩ωN |
N

−σ(V )
�

�

�

�

→ 0, N →∞,

where the supremum is taken over all spherical caps V ⊂ S2.
For the study of local statistics, separation and covering properties play an important role. The separation of a configuration

ωN ⊂ S2 is

δ(ωN ) := min
x ,y∈ωN

x 6=y

|x − y|,

and a sequence of spherical N -point configurations is said to be well-separated if for some c > 0 and all N ≥ 2,

δ(ωN )≥ cN−1/2.

The covering radius of ωN with respect to S2 is defined to be

η(ωN ) :=max
y∈S2

min
x∈ωN

|x − y|,

and a sequence of spherical N -point configurations is a good-covering if for some C > 0 and all N ≥ 2,

η(ωN )≤ CN−1/2.

A sequence of configurations {ωN}
∞
N=2 is said to be quasi-uniform if the sequence

§

γ(ωN ) :=
η(ωN )
δ(ωN )

ª

N≥2

is bounded as N →∞. The quantity γ(ωN ) is called the mesh ratio of ωN . Note that some authors define the mesh ratio as
2γ(ωN ). A sequence of N -point configurations is quasi-uniform if it is well-separated and a good-covering. We remark that
equidistribution does not imply quasi-uniformity or vice versa. In applications involving radial basis functions, “1-bit" sensing, and
finite element methods ([27], [41], [50], and [58]), there is interest in precise bounds on DC (ωN ), δ(ωN ),η(ωN ), and γ(ωN ). A
trivial lower bound is γ(ωN )≥ 1/2 for any configuration. Asymptotically, as proved in [9],

γ(ωN )≥
1

2 cosπ/5
+ o(1) =

p
5− 1
2

+ o(1), N →∞,

for any sequence of configurations {ωN}
∞
N=2 ⊂ S

2.
We also evaluate the potential energy of our point sets. The problem of minimizing point energies on the sphere dates to at

least the beginning of the 20th century when Thomson put forth a model of the ground state configurations of electrons in [62].
Given a lower-semicontinuous, symmetric kernel K : S2 × S2→ (−∞,∞], and a spherical configuration ωN ⊂ S2, the K-energy
of ωN is defined to be

EK(ωN ) :=
∑

x ,y∈ωN
x 6=y

K(x , y). (1)

The infimum of EK(ωN ) over all N -point configurations on S2 is attained and is denoted by EK(N). We will restrict our attention
to the class of Riesz kernels defined by

Ks(x , y) =
1

|x − y|s
, s > 0

Klog(x , y) = log
1

|x − y|
,

Ks(x , y) = −|x − y|−s, s < 0.
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Figure 1: Voronoi decomposition of approximately minimal energy nodes for N = 1000 and s = 2. Cells with black points are hexagonal, but not
necessarily regular. Cells with red points are pentagonal and cells with cyan points are heptagonal (see online for color).

For brevity, the energy and minimal energy quantities for the Riesz s-kernel and log kernel will be denoted by Es(ωN ), Elog(ωN ),
Es(N), and Elog(N) respectively. Determining an exact minimal configuration for a fixed N and s is a highly nonlinear optimization
problem. In practice, gradient descent and Newton methods are used to arrive at approximate global minima [20]; however,
there is substantial interest in generating nearly optimal points more quickly [53].

The Voronoi cell of a point x ∈ωN ⊂ S2 is the spherical polygon

Vx (ωN ) :=
�

y ∈ S2 : |y − x | ≤ |y − z|,∀ z ∈ωN \ {x}
	

.

The Voronoi decomposition of a configuration is

V (ωN ) := {Vx (ωN )}x∈ωN
.

It has been observed that the Voronoi cell decomposition of nearly optimal energy configurations appears to consist primarily of
nearly regular spherical hexagons mixed with “scars" of spherical heptagons and pentagons as shown in Figure 1. It has been
conjectured that for s > 2, the dominant term in the asymptotic expansion of Es(N) is related to the Epstein-Zeta function for the
hexagonal lattice (see Section 3).

We conclude this section by introducing some secondary properties of spherical configurations that we will use: A partition
PN := {Wi}

N
i=1 of S2 into N cells whose pairwise intersections have σ-measure 0 is equal area if σ(Wi) = 1/N for all 1≤ i ≤ N . A

sequence of partitions {PN}
∞
N=2 of S2 such that each PN has N cells is diameter bounded if there are constants c, C > 0 such that

for all N ∈ N and for every cell W N
i ∈ PN ,

cN−1/2 ≤ diam W N
i ≤ CN−1/2, (2)

where diam(A) := supx ,y∈A |x − y|. We will call a sequence of partitions of S2 asymptotically equal area if

lim
N→∞

N max
1≤i≤N

σ(W N
i ) = lim

N→∞
N min

1≤i≤N
σ(W N

i ) = 1, (3)

and a sequence of spherical configurations {ωN}
∞
N=1 will be said to be asymptotically equal area if its sequence of Voronoi

decompositions is asymptotically equal area.

2 Point Sets on S2

Generalized Spiral Points

A spherical spiral on S2 is a path in spherical coordinates of the form

r = 1, θ = Lφ, 0≤ φ ≤ π,

where φ denotes the polar angle and θ the azimuth. Modifying a construction by Rakhmanov, Saff, and Zhou [47], Bauer [2]
defines a sequence of N points lying on a generating spherical spiral, SN :

L =
p

Nπ, hk = 1−
2k− 1

N
, φk = cos−1(hk), θk = Lφk, k = 1, ..., N . (4)

The slope L is chosen such that for large N , the distance between adjacent points on the same level of the curve is similar to the
distance between adjacent levels which differ by 2π in θ . Indeed, the geodesic spacing between turns of the spiral is given by
2π/L =

p

4π/N . Meanwhile, the total arc length is

T =

∫

SN

q

dφ2 + dθ 2 sin2φ =

∫ π

0

q

1+ L2 sin2φ dφ = 2
p

1+ L2E
�

L/
p

1+ L2
�

,

where E(·) is the complete elliptic integral of the second kind. For large N , T ≈ 2L, and the spiral is divided into nearly equal
length segments of approximately 2L/N =

p

4π/N . We refer to these points as the generalized spiral points.

Dolomites Research Notes on Approximation ISSN 2035-6803



Hardin · Michaels · Saff 19

Figure 2: Plot of N = 700 generalized spiral points and their Voronoi decomposition.

Theorem 2.1. The sequence {ωN}
∞
N=1 of generalized spiral point configurations is equidistributed on S2, quasi-uniform, and has the

following asymptotic separation property:

lim
N→∞

p
Nδ(ωN ) =

q

8− 4
p

3 cos(
p

2π(1−
p

3))≈ 3.131948.... (5)

As shown in the proof of Theorem 2.1, the Voronoi cells of ωn are asymptotically equal area, but do not approach regular
hexagons. Indeed, a typical decomposition is shown in Figure 2. A comparison of the mesh ratios for several values of N is shown
in Table 1. Numerically, the mesh ratio appears to converge to 0.8099....

Table 1: Mesh Ratios for Generalized Spiral Nodes

N γ(ωN ) N γ(ωN ) N γ(ωN )
10 0.897131 400 0.816007 20000 0.809510
20 0.827821 500 0.810128 30000 0.809629
30 0.814383 1000 0.805465 40000 0.809689
40 0.826281 2000 0.806411 50000 0.809725
50 0.834799 3000 0.807510 100000 0.809797

100 0.803901 4000 0.808077 200000 0.809832
200 0.806020 5000 0.808435 300000 0.809844
300 0.809226 10000 0.809151 500000 0.809854

Fibonacci Nodes

Another set of spiral points is modeled after nodes appearing in nature such as the seed distribution on the head of a sunflower
or a pine cone, a phenomenon known as spiral phyllotaxis [25]. Coxeter [22] demonstrated these arrangements are fundamentally
related to the Fibonacci sequence, {Fk} = {1,1,2,3,5,8,13, ...} and the golden ratio ϕ = (1+

p
5)/2. There are two similar

definitions of the spherical point set in the literature. Both are defined as lattices on the square [0, 1)2 and then mapped to the
sphere by the Lambert cylindrical equal area projection, denoted by Λ. In Cartesian coordinates, Λ is defined by

Λ(x , y) := (
Æ

1− (2y − 1)2 cos 2πx ,
Æ

1− (2y − 1)2 sin2πx , 2y − 1)

and, in spherical coordinates, by

Λ(x , y) := (cos−1(2y − 1), 2πx) = (φ,θ ).

Define a rational lattice on [0,1)2, with total points Fk by

eωFk
:=
�§

iFk−1

Fk

ª

,
i

Fk

�

, 0≤ i ≤ Fk, (6)

where {x} = x − bxc denotes the fractional part of x . On the other hand, an irrational lattice can be formed similarly for all
values of total points N by replacing Fk−1/Fk in (6) by limk→∞ Fk−1/Fk = ϕ−1:

eωN :=
�

�

iϕ−1
	

,
i
N

�

, 0≤ i ≤ N .

Swinbank and Purser [59] define a spherical point set for all odd integers 2N + 1 symmetrically across the equator derived
from the irrational lattice with points shifted a half step away from the poles:

Dolomites Research Notes on Approximation ISSN 2035-6803



Hardin · Michaels · Saff 20

Figure 3: Fibonacci nodes for N = 1001 as defined by Swinbank and Purser and corresponding Voronoi decomposition. The visible spirals at
each level are generated by a sequence of points whose index increases arithmetically by a Fibonacci number.
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b3
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yi+5
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Figure 4: Irrational lattice points on the square with labeled basis vectors from [59] around a node yi . The configuration is approximately
a rotation of the rectangular lattice by the angle tan−1(ϕ). Each line of points along a basis vector is mapped to a spiral under the Lambert
projection, Λ. The basis vector bk such that Λ(bk) has the shortest length forms the visible dominant spirals emanating from Λ(yi). These shortest
length vectors are determined by the total number of points and zone number z.

θi = 2πiϕ−1, sinφi =
2i

2N + 1
, −N ≤ i ≤ N , −π/2≤ φi ≤ π/2.

Denoteω2N+1 as the configuration generated above. Whereas for large N , the generalized spiral points tend towards flattening out
and partitioning the sphere into distinct regions of latitude, the Fibonacci points maintain visible clockwise and counterclockwise
spirals as N grows. Labeling the points of ω2N+1 by increasing latitude, the dominant spirals emanating from x i ∈ ω2N+1 are
formed by the sequence

�

x i+ jFk

	

for some Fibonacci number Fk and j = · · · ,−2,−1, 0,1, 2, · · · .
The Fibonacci points derived from the rational lattice are studied by Aistleitner et al [1] and Bilyk et al [7] for discrepancy

estimates. In [1], the spherical cap discrepancy of the points {Fk} is bounded by

DC (Λ( eωFk
))≤

�

44
p

(2/Fk) if k is odd,
44
p

(8/Fk) if k is even.

Numerical experiments in [1] suggest that in fact,

DC (Λ( eωFk
)) = O

�

(log Fk)c

F3/4
k

�

, k→∞ for some 1/2≤ c ≤ 1.

which is optimal up to a log power [3]. Both sequences of Fibonacci configurations are equidistributed. However, since the
Swinbank and Purser nodes are defined for more values of total points, we will take these to be the Fibonacci sets moving forward.
In [59], these points are also numerically shown to be asymptotically equal area.
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Figure 5: Triangulation of N = 3001 nodes viewed at a slightly different angle. The enlarged box demonstrates where zone number z changes
with changing φ. The sudden shift occurs at z = k± 1/2. Along this latitude, ck,i and ck±1,i have equal lengths. For k− 1/2< z < k+ 1/2, the
triangulation consists of basis vectors ck,i and ck+1,i as proven in [59].

Analyzing ω2N+1 as a shifted irrational lattice mapped by the Lambert projection helps to visualize the underlying spiral
structure. Define a system of basis vectors

bk = Λ
−1(x i+Fk

)−Λ−1(x i), k = 1, 2,3...,

which are independent of base point x i . This is illustrated in Figure 4. Emanating from each point x i , the line of points
{x i +mbk}m=··· ,−1,0,1,··· is mapped to a spiral on S2 under the Lambert projection. Like the Fibonacci sequence, the basis vectors
satisfy

bk+1 = bk + bk−1.

On the sphere, the basis vectors in terms of the local Cartesian coordinate system at a point (φi ,θi) ∈ω2N+1 have the form

ck,i =
�

(−1)k2π cosφiϕ
−k,

2Fk

(2N + 1) cosφi

�

. (7)

For a fixed latitude φ and total number of points 2N + 1, the zone number z is defined by

ϕ2z = (2N + 1)π
p

5 cos2φ.

Letting d =
Æ

4π/(
p

5(2N + 1)) and using the fact that for large k, Fk ≈ ϕk/
p

5 equation (7) can be rewritten

ck,i ≈ d((−1)kϕz−k,ϕk−z). (8)

For latitudes where k− 1/2≤ z ≤ k+ 1/2, ck,i has the minimum length of the basis vectors around x i and forms the dominant
spiral at those latitudes. As shown in [59], |ck,i | is also the smallest distance between points near these latitudes. Thus, the
Delaunay triangulation [46] of ω2N+1 is composed of ck,i ,ck−1,i , and ck+1,i when k− 1/2≤ z ≤ k+ 1/2. This is shown in Figure 5
and allows us to prove quasi-uniformity.

Proposition 2.2. The sequence of Fibonacci configurations is quasi-uniform.

Numerically, the minimal separation appears to occur at the pole with value |x1 − x4|= |x2N+1 − x2N−2| and the largest hole
appears to occur in the triangles covering the poles, 4x2, x3, x5 and 4x2N , x2N−1, x2N−3. In a straightforward computation, it can
be shown that

lim
N→∞

p
2N + 1|x1 − x4|=

q

16−
p

112 cos(6πϕ−1) = 3.09207...

and the circumradius r of the polar triangles satisfies

lim
N→∞

p
2N + 1 r = 2.72812....

As shown in Table 2, the mesh ratios for Fibonacci nodes appear to converge quickly to this ratio ≈ 0.882298.

Low Discrepancy Nodes

Another approach for distributing points on the sphere is to minimize a suitable notion of discrepancy, such as spherical cap,
Lp, or generalized discrepancy (cf. [16] and [23]). A low spherical cap discrepancy sequence {ωN}

∞
N=2 satisfies [3]

a
N 3/4

≤ DC (ωN )≤ A

p

log N
N 3/4

, N ≥ 2, (9)
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Figure 6: Hammersley nodes for N = 1000 and corresponding Voronoi decomposition.

Table 2: Mesh Ratios for Fibonacci Nodes

N γ(ωN ) N γ(ωN ) N γ(ωN )
11 0.859197 401 0.881897 20001 0.882289
21 0.872632 501 0.881978 30001 0.882292
31 0.876251 1001 0.882139 40001 0.882293
41 0.877909 2001 0.882218 50001 0.882294
51 0.878857 3001 0.882244 100001 0.882296

101 0.880646 4001 0.882258 200001 0.882297
201 0.881489 5001 0.882266 300001 0.882297
301 0.881762 10001 0.882282 500001 0.882297

for some a, A> 0. Low discrepancy point sets are used in Quasi-Monte Carlo methods for numerical integration and also in
graphics applications in [65]. One method for generating spherical nodes is to first distribute points on the square [0,1)2 with
low planar discrepancy [45], i.e. for some A> 0

D(ωN ) := sup
R

�

�

�

�

R∩ωN

N
−σ(R)

�

�

�

�

≤ A
log N

N
, ωN ⊂ [0, 1)2, (10)

where the supremum R is taken over all rectangles with sides parallel to the axes. These sequences are then mapped to the
sphere via the Lambert projection. While the log N/N term in (10) is optimal on the plane [51], it is an open problem whether
the images of these sequences have optimal order spherical cap discrepancy. There are several such node distributions in the
literature (cf. [1] and [23]), but as their properties are similar, we only consider the following one.

Hammersley Nodes

For an integer p ≥ 2, the p-adic van der Corput sequence is defined by

x (p)k =
a0

p
+ · · ·+

ar

pr+1
, where k = a0 + · · ·+ ar pr , ai ∈ {0,1} .

The Hammerlsy node set on the square ([23], [45], and [65]) is given by xk := x (2)k and yk := 2k−1
2N . The N point spherical

Hammersley node set is given by {Λ(2πxk, 1− 2yk)}Nk=1. The configuration for N = 1000 is given in Figure 6. The discrepancy of
the planar Hammersley nodes is known from Niederreiter [45] to satisfy (10) . The sequence of Hammersley configurations is
equidistributed; however it is not well-separated or quasi-uniform. This makes the nodes poor candidates for energy, as shown in
Section 3. Their Voronoi decompositions also exhibit no discernible geometric patterns.

Equal Area Partitions

Another class of point sets are those derived from equal area partitions of the sphere.

Zonal Equal Area Nodes:

Rakhmanov et al [47] construct a diameter bounded, equal area partition of S2 into rectilinear cells of the form

R([τφ ,νφ]× [τθ ,νθ ]) :=
�

(φ,θ ) ∈ S2 : τφ ≤ φ ≤ νφ ,τθ ≤ θ ≤ νθ
	

.
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Figure 7: Zonal equal area partition of the sphere into 100 cells. The algorithm does not determine a unique partition as the collars can rotate
past each other. Image created with the help of Paul Leopardi’s equal area partitioning toolbox available at eqsp.sourceforge.net.

The cells are grouped by regions of equal latitude called collars that have the form R([τφ ,νφ]× [0, 2π]). The cells are defined

such that νφ −τφ and νθ −τθ approximate
p

4π/N as N grows. This ensures the correct order of the diameter bound. The cells
are defined in the following way.

1. Determine the latitudes of the polar caps. The first two cells are taken to be the polar caps of radius φc = cos−1(1− 2/N).

2. Determine the ideal collar angle and ideal number of collars. The ideal angle between two collars is

δI :=
Æ

4π/N .

The ideal number of collars between the polar caps, all of which have angle δI , is

nI :=
π− 2φc

δI
.

3. Determine the actual number of collars, n. If N = 2, then n := 0. Otherwise,

n :=max {1, round(nI )} .

4. Create a list of the ideal number of cells in each collar. The “fitting" collar angle is

δF :=
nI

n
δI =

π− 2φc

n
.

Label the collars
�

C j

	n+2

j=1
southward with the North polar cap as C1 and the South polar cap as Cn+2. The area A j of collar C j can

be written as the difference of polar cap areas:

A j = 2π(cos(φc + ( j − 2)δF )− cos(φc + ( j − 1)δF )).

Thus the ideal number of cells y j,I in each collar C j , j ∈ {2, . . . , n+ 1}, is given by

y j,I =
4πA j

N
.

5. Create a list of the actual number of cells in each collar. We apply a cumulative rounding procedure. Letting y j be the
number of cells in C j , define the sequences y and a by a1 := 0, y1 := 1, and for j ∈ {2, . . . , n+ 1}:

y j := round(y j,I + a j−1), a j :=
j
∑

k=1

yk − yk,I .

6. Create a list of latitudes φ j of each collar and partition each collar into cells. We define φ j as follows: φ0 = 0, φn+2 = π and
for j ∈ {1, . . . , n+ 1},

φ j = cos−1(1−
2
N

j
∑

k=1

yk).

Thus the North polar cap of radius φ j has normalized area
∑ j

k=1 yk/N , and C j := R([φ j−1,φ j]× [0,2π]).

7. Partition each collar into cells. C j has y j equal cells

n

R([φ j−1,φ j]× [θ j + k
y j

2π
,θ j + (k+ 1)

y j

2π
])
oy j−1

k=0
,
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Figure 8: Zonal equal area points for N = 700 and corresponding Voronoi decomposition. The configurations have a similar structure to the
generalized spiral points in Figure 2.

where θ j ∈ [0, 2π) can be chosen to be any starting angle. Note that because θ j are chosen independently, the equal area partition
determined by the algorithm is not unique. Indeed, the collars can rotate past each other without affecting the diameter bound or
equal area property of the partition. Because the choice of the θ j ’s does not strongly affect the other properties with which we are
concerned, we will take them to be random.

The point set ωN is defined to be the centers of the cells of the rectilinear partition. As proved by Zhou [67], the cells are
diameter bounded from above by 7/

p
N ; however, numerical experiments from Leopardi in [36] suggest the bound to be 6.5/

p
N .

For large N , the zonal equal area configurations look very similar to the generalized spiral configurations. Namely they exhibit
iso-latitudinal rings with separation between adjacent points equal to separation between rings and a random longitudinal shift
between points in adjacent rings. As shown in Section 3, the energy computations for both point sets are nearly identical.

Proposition 2.3. The sequence of zonal equal area configurations is equidistributed and quasi-uniform.

The above construction was modified by Bondarenko et al [8] to create a partition with geodesic boundaries for the creation
of well-separated spherical designs. More details can be found in [8]. Table 3 gives a comparison of the mesh ratios of the zonal
points.

Table 3: Mesh Ratios for Zonal Equal Area Nodes

N γ(ωN ) N γ(ωN ) N γ(ωN )
10 0.711934 400 0.769527 20000 0.758100
20 0.790937 500 0.766808 30000 0.758069
30 0.788546 1000 0.765356 40000 0.756793
40 0.843385 2000 0.764631 50000 0.756785
50 0.790252 3000 0.758645 100000 0.756770

100 0.761296 4000 0.756510 200000 0.756762
200 0.764846 5000 0.764217 300000 0.758015
300 0.763188 10000 0.758192 500000 0.756757

HEALPix Nodes

Developed by NASA for fast data analysis of the cosmic microwave background (CMB), the Hierarchical Equal Area iso-Latitude
Pixelization (HEALPix) was designed to have three properties essential for computational efficiency in discretizing functions on
S2 and processing large amounts of data [30]:

1. The sphere is hierarchically tessellated into curvilinear quadrilaterals.

2. The pixelization is an equal area partition of S2.

3. The point sets are distributed along fixed lines of latitude.

To create the partition of S2, the authors in [30] first divide the sphere into 12 equal area, four sided pixels defined by the
following boundaries:

| cosφ|>
2
3

, θ = m
π

2
, m= 0, 1,2, 3

cosφ =
−2− 4m

3
+

8θ
3π

,
mπ
2
≤ θ ≤

(m+ 1)π
2

, m= 0,1, 2,3
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Figure 9: Base tessellation of the sphere into 12 equal area pixels. A finer mesh is created by dividing each base pixel into a k× k grid of equal
area subpixels of the same shape. The HEALPix points are taken to be the centers of the pixels.

Figure 10: HEALPix nodes and Voronoi decomposition for N = 1200, k = 10.

cosφ =
2− 4m

3
−

8θ
3π

,
−(m+ 1)π

2
≤ θ ≤

−mπ
2

, m= 0, 1,2, 3.

The base tessellation is shown in Figure 9. For a given k ∈ N, each pixel is partitioned into a k× k grid of sub-pixels of the same
shape and equal area. The HEALPix point sets are taken to be the centers of these pixels.

On the polar regions | cosφ|> 2/3, the points are distributed along k iso-latitudinal rings, indexed by i, each with 4i equally
spaced points, indexed by j:

| cosφi |= 1−
i2

3k2
, θ j =

π

2i

�

j −
1
2

�

.

On the equatorial region, there are 2k−1 iso-latitudinal rings, each with 4k points. The rings are indexed by k ≤ |i| ≤ 2k and the
points by 1≤ j ≤ 4k:

| cosφi |=
4
3
−

2i
3k

,

θ j =
π

2k

�

j −
s
2

�

, s = (i − k+ 1) mod 2.

The index s describes the phase shift between rings. This gives a configuration of size N = 12k2. The point sets are hierarchical
along the subsequence k = 3m. Holhoş and Roşca [32] have shown that the HEALPix points can be obtained as the image of
points on a certain convex polyherdon under an area preserving mapping to the sphere.

Proposition 2.4. The sequence of HEALPix configurations is equidistributed and quasi-uniform.

Numerically, the mesh ratio appears to be bounded by 1, as shown in Table 4.
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Figure 11: Radial icosahedral odes N = 642. The Voronoi decomposition is composed of regular hexagons of varying size and 12 pentagons at
the vertices of the icosahedron.

Table 4: Mesh Ratios for HEALPix nodes

k N γ(ωN ) k N γ(ωN ) k N γ(ωN )
1 12 0.864783 9 972 0.965950 45 24300 0.992956
2 48 0.862243 10 1200 0.969599 50 30000 0.993648
3 108 0.909698 15 2700 0.979371 60 43200 0.994701
4 192 0.929080 20 4800 0.984328 70 58800 0.995456
5 300 0.940016 25 7500 0.987365 80 76800 0.996020
6 432 0.951047 30 10800 0.989509 90 97200 0.996455
7 588 0.957584 35 14700 0.990959 100 120000 0.996807
8 768 0.961782 40 19200 0.992082 150 270000 0.997867

Polyhedral Nodes and Area Preserving Maps

Another class of point sets are those derived from subdividing regular polyhedra and applying radial projection: Π(x) = x/‖x‖
or an equal area projection. These node sets are used in finite element methods to give low error solutions to boundary value
problems. See, for instance, [28] and [43].

Radial Icosahedral Nodes

This point set, as described in [60] and [66] is formed by overlaying a regular triangular lattice onto each face of a regular
icosahedron of circumradius 1 and edge length a = csc(2π/5). Given k ∈ N, for each vertex v, divide two adjacent edges
emanating from v into basis vectors of length a/k. For the face F determined by these edges and vertex, the icosahedral point
set ÞωNk

on F is taken to be the set of lattice points generated by these basis vectors restricted to F . The spherical points are
ωNk

:= Π(ÞωNk
). These node sets are defined for total points N = 10k2 + 2 and hierarchical along the subsequence k j = k02 j for

any k0 ∈ N.
The sequence of icosahedral configurations

�

ÞωNk

	∞
k=1

is equidistributed. However, because radial projection is not area
preserving, the sequence of spherical configurations is not equidistributed. Density is higher towards the vertices of the icosahedron
and lower towards the center of the faces where the areal distortion of Π is greatest. The Voronoi decomposition of ωNk

is
composed of twelve regular pentagons with all other cells regular hexagons of varying size as illustrated in Figure 11.

Proposition 2.5. The sequence of radial icosahedral configurations is quasi-uniform.

Numerically, the mesh ratio appears to be bounded by 0.86, as shown in Table 5.

Cubed Sphere Nodes

A similar method as above can be applied to the cube [43]. A square k× k grid is placed on each face of the cube and radially
projected to the sphere. A typical point set is shown in Figure 12. The configurations are defined for N = 6k2 − 12k+ 8 and are
hierarchical along the subsequence k = k02m. By an argument similar to that in Proposition 2.5, the limiting distribution is not
uniform, but the sequence of configurations is quasi-uniform. Numerically, the mesh ratio seems to quickly converge to 1, as
shown in Table 6.

Dolomites Research Notes on Approximation ISSN 2035-6803



Hardin · Michaels · Saff 27

Figure 12: Plot of N = 1016 Cubed Sphere Points and Voronoi Decomposition. The Voronoi cells tend towards regular hexagons near the vertices
of the cube. Towards the middle of each face they resemble a square lattice.

Table 5: Mesh Ratios for Radial Icosahedral Nodes

k N γ(ωN ) k N γ(ωN )
1 12 0.620429 20 4002 0.830750
2 42 0.667597 30 9002 0.838066
3 92 0.684698 40 16002 0.842358
4 162 0.745348 50 25002 0.844697
5 252 0.765157 60 36002 0.846156
6 362 0.769854 70 49002 0.847376
7 492 0.789179 100 100002 0.849390

10 1002 0.808024 150 225002 0.850941
15 2252 0.821504 200 400002 0.851745

Table 6: Mesh Ratios for Cubed Sphere Points

k N γ(ωN ) k N γ(ωN ) k N γ(ωN )
2 8 0.827329 10 488 0.996846 50 14408 0.999893
3 26 0.794265 15 1178 0.994025 60 20888 0.999926
4 56 0.972885 20 2168 0.999289 70 28568 0.999946
5 98 0.933655 25 3458 0.997954 80 37448 0.999959
6 152 0.989913 30 5048 0.999695 90 47528 0.999968
7 218 0.968757 35 6938 0.998979 100 58808 0.999974
8 296 0.994805 40 9128 0.999831 150 133208 0.999988
9 386 0.982046 45 11618 0.999390 200 237608 0.999994

Octahedral Points

Unlike in the previous examples, the octahedral points, described by Holhoş and Roşca [33], are derived from an area
preserving map U from the regular octahedron K of edge length L =

p
2π/ 4p3 and surface area 4π to S2. Let Ux ,Uy , and Uz

denote the x ,y , and z components of U respectively. For (X , Y, Z) ∈K,

Uz =
2Z
L2
(
p

2L − |Z |),

Ux = sgn(X )
Æ

1−U2
z cos

π|Y |
2(|X |+ |Y |)

,

Uy = sgn(Y )
Æ

1−U2
z sin

π|Y |
2(|X |+ |Y |)

.

To produce a spherical point set, the authors form a partition Pk of k2 triangles on each face of the octahedron in the same
manner as the radial icosahedral points and obtain an equal area spherical partition Pk = U(Pk). The point sets ωNk

are taken to
be the vertices of the triangles of Pk. For a given k, there are 8k2 triangles and N = 4k2 + 2 points.
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Figure 13: Equal area octahedral points for k = 15 and N = 902. The Voronoi decomposition of the octahedral points is composed of hexagons
and 8 squares at the vertices of the octahedron. The hexagons approach regularity towards the center of the faces and deform along the edges.

Table 7: Mesh Ratios for Octahedral Nodes

k N γ(ωN ) k N γ(ωN ) k N γ(ωN )
1 6 0.675511 9 326 0.873510 60 14402 0.905758
2 18 0.872884 10 402 0.875606 70 19602 0.908047
3 38 0.854610 15 902 0.882510 80 25602 0.909875
4 66 0.856329 20 1602 0.886310 90 32402 0.911382
5 102 0.860536 25 2502 0.888702 100 40002 0.912644
6 146 0.864599 30 3602 0.892884 200 160002 0.919218
7 198 0.868095 40 6402 0.898762 300 360002 0.921947
8 258 0.871036 50 10002 0.902784 400 640002 0.923503

The octahedral configurations have similar properties to the HEALPix node sets. They are iso-latitudinal and hierarchical
along the subsequence k = k02m. The sequence of configurations is equidistributed, and in addition, the authors in [33] compute
a diameter bound for any triangular region T of Pk to be

diam T ≤
2
p

4+π2

p
8k2

≈
7.448
p

8k2
.

Following their proof of this bound, we can calculate a lower bound on the separation and an upper bound on the mesh norm.

Theorem 2.6. The sequence of equal area octahedral configurations is quasi-uniform with

γ(ω4k2+2)≤
1
4

√

√ 4+π2

2− (k+ 1)2/k2
→
p

4+π2

4
≈ 0.931048..., k→∞. (11)

This bound seems to be near optimal. As shown in Table 7, the mesh ratio grows to at least 0.9235.

Mesh Icosahedral Equal Area Points

Improvements to the radially projected icosahedral points have been put forth by Song et al [56] and Tegmark [61]. Here,
we introduce two other improvements to these points to create new configurations. First, we generalize the icosahedral lattice
structure to create configurations of more possible numbers of total points. Due to a method of Caspar and Klug [21] derived
during their investigation of the construction of viruses, we define a triangular lattice on a regular icosahedron with total points

N = 10(m2 +mn+ n2) + 2, (m, n) ∈ N×N \ (0, 0).

Consider the planar triangular lattice generated by e1 = (1, 0) and e2 = (1/2,
p

3/2). For a given (m, n), let em,n = me1 + ne2
and it’s rotation by π/3 be basis vectors for an unfolded icosahedron superimposed on the lattice. This is illustrated in Figure 14.
Folding the icosahedron results in a triangular lattice ÝωN on each face. Due to rotational symmetry of the lattice, the resulting
configuration is independent of how the icosahedron is unfolded. The subsequence (m, 0) produces the lattice for the radial
icosahedral nodes.

Secondly, we derive an area preserving map Φ from the regular icosahedron I of edge length L =
p

4π/ 4p75, circumradius
r = L sin2π/5, and surface area 4π using the technique presented by Snyder [54] for the truncated icosahedron. We define Φ
piecewise by dividing each face F ⊂ I into the six triangles Ri partitioned by the altitudes of F :
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m
n

Figure 14: Planar icosahedral mesh for (m, n) = (5,4).

1. Parametrize each point p ∈Ri by h and w as labeled in Figure 16. If Ā is the side of Ri of length L/2
p

3, then w is the
distance from p to Ā and h is the distance of pĀ := pro j(p, Ā) to O, the center of F .

2. Let B̄ be the side of Ri of length L/
p

3 and pB̄ be the intersection of the line pĀp with B̄. For the triangle S =4pĀpB̄O,
find ψ as in Figure 16 and spherical right triangle Φ(S) such that Area(S) = σ(Φ(S)) =ψ−π/6. Thus,

ψ=
h2
p

3
2
+
π

6
.

3. Φ(p) will lie on the great circle Φ(pĀpB̄). Letting T =4pĀ, p,O, find λ as in Figure 16 such that Area(T ) = σ(Φ(T )). By
the spherical law of cosines,

σ(Φ(T )) = λ+ cos−1
�

2sinλ cosψ
p

3

�

−
π

2
.

Thus

tanλ=
sin( hw

2 )

cos( hw
2 )−

2cosψp
3

.

4. Transform (ψ,λ) into spherical coordinates.

The map Φ is extended to I by rotations and reflections. This defines the unique azimuthal equal area projection from I onto S2
[55]. The spherical configurations are ωN := Φ(ÝωN ). A typical point set is shown in Figure 15. The Voronoi cells are almost
regular hexagons with 12 pentagonal cells at the vertices of I, and the Voronoi decomposition forms a spherical Goldberg
Polyhedron [29]. To implement the points in Matlab, we derive explicit formulas on a triangular face. More details are provided
in the companion paper [42].

Unlike the radial icosahedral points, the sequence of equal area configurations is equidistributed. Regarding quasi-uniformity,
the following is proved in [42].

Proposition 2.7. The sequence of equal area icosahedral configurations are quasi-uniform with

γ(ωN )≤ 0.798....

As shown in Table 8, the mesh ratios appears to stay below 0.736. These are the lowest mesh ratios of all point sets discussed.

Coulomb Points and Log Energy Points (Elliptic Fekete Points)

For s = 1, Riesz s-energy minimization is the classic Thomson problem for the Coulomb potential [62]. The sequence of
minimal Coulomb energy configurations is known to be equidistributed, well-separated, and quasi-uniform [24]. However, no
explicit bound is known for the mesh ratio. The Voronoi decomposition of these cells, as shown in Figure 17, primarily consists of
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Figure 15: Equal area mesh icosahedral nodes for (m, n) = (7,2) and total points N = 672. The Voronoi decomposition forms a spherical
Goldberg polyhedron.

h

w
•p

T

•

• •

• ••
•

Φ

Φ(p)

Φ(T )

O Φ(O)

λ

pĀ
Φ(pĀ)pB̄

ψ

Φ(pB̄)

Figure 16: Illustration of area preserving map Φ defined piecewise on each triangle bounded by two altitudes of a face with relevant variables
labeled.

Table 8: Mesh Ratios for Equal Area Icosahedral Nodes

(m, n) N γ(ωN ) (m, n) N γ(ωN ) (m, n) N γ(ωN )
(1,0) 12 0.620429 (7,1) 572 0.688031 (37,27) 30972 0.730733
(1,1) 32 0.617964 (7,5) 1092 0.707058 (40,33) 40092 0.732326
(2,0) 42 0.667598 (12,4) 2082 0.706688 (42,40) 50442 0.732529
(2,1) 72 0.657081 (16,3) 3132 0.704123 (65,50) 99752 0.733719
(3,0) 92 0.659610 (16,7) 4172 0.717067 (90,75) 204752 0.735013
(3,1) 132 0.668227 (19,6) 5112 0.712681 (100,100) 300002 0.735397
(4,1) 212 0.680153 (19,18) 10272 0.726243 (131,100) 402612 0.735592
(5,2) 392 0.687368 (31,21) 20532 0.728761 (145,115) 509252 0.735965
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Figure 17: Coulomb points (top) and log points (bottom) and their Voronoi decomposition for N = 1024. The structure is very similar for both.

close to regular hexagons with heptagons and pentagons forming scars along the sphere. For relatively small N , the scars grow
out from the 12 vertices of the icosahedron like dislocations in a crystal due to displacement deformities. For N > 5,000, the
scars become less fixed, spreading across the sphere. For an in-depth discussion of the scarring behavior, see Bowick et al [11]
and [12].

The log energy points are minimizers of the Riesz logarithmic potential. The sequence of log energy configurations is known
to be equidistributed and well-separated, but covering and quasi-uniformity is an open problem. As shown in Table 9 below,
numerically the log energy points appear to be quasi-uniform. The best known lower bound on separation is due to Dragnev [26]:

δ(ωlog
N )≥

2
p

N
, N ≥ 2.

Their geometric structure is very similar to the Coulomb points as shown in Figure 17. The energies of log and Coulomb points
have the same asymptotic behavior in the dominant and second order term for many Riesz potentials. See Section 3 and
Conjecture 3.15.

Generating these points is a highly nonlinear optimization problem. Unlike the configurations we have described up to now,
they are not so quickly obtained. Table 9 displays the mesh ratios of near minimal Coulomb and log energy configurations. We
remark that the sequence appears to have outliers at several values of N , such as N = 20, 300, and 4096. Points for N < 500 and
N = k2, k ≤ 150, were provided by Rob Womersley.

Table 9: Mesh Ratios for Coulomb and Log Energy Points

N γ(ωlog
N ) γ(ωCoul

N ) N γ(ωlog
N ) γ(ωCoul

N )
10 0.687401 0.689279 500 0.757354 0.755834
20 0.731613 0.733265 1024 0.752122 0.755770
30 0.695481 0.692966 2025 0.761261 0.766218
40 0.669531 0.670842 3025 0.765075 0.761661
50 0.661301 0.656591 4096 0.770240 0.765712

100 0.695371 0.694604 5041 0.753573 0.758457
200 0.662102 0.658561 10000 0.762672 0.761964
300 0.740635 0.730182 15129 0.762385 0.763398
400 0.650106 0.647351 22500 0.773483 0.767096
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Figure 18: Maximal determinant nodes for N = 961. The Voronoi decomposition is primarily composed of regular hexagons with scarring
features similar to the minimal energy points.

Figure 19: Random points for N = 700 and their Voronoi decomposition.

Maximal Determinant Nodes (Fekete Nodes)

Other node sets used in polynomial interpolation and numerical integration on the sphere are the maximal determinant
nodes. Let φ1, ...,φ(n+1)2 be a basis for the space Pn(S2) of spherical polynomials of degree ≤ n. The maximal determinant node
set is the configuration ωN :=ω(n+1)2 ⊂ S2 which maximizes

det(φi(x j))
(n+1)2

i, j=1

These points are independent of the choice of basis. The interpolatory cubature rule associated with the configuration ωN ,

Qn( f ) :=
N
∑

j=1

w j f (x j),

is conjectured in [52] to have all weights positive which is of interest in numerical integration. For more information about these
points and their applications, see [48], [49], and [52]. A typical node set is shown in Figure 18.

Like the minimal energy nodes, computing the maximal determinant nodes is a nonlinear optimization problem. The
maximum is approximated by conjugate gradient and Newton-like methods on S2 [52]. Nodes for 1≤ n≤ 165 are available from
http://web.maths.unsw.edu.au/~rsw/Sphere/Extremal/New/index.html.

Berman et al [5] proved the sequence of maximal determinant configurations is equidistributed, while in [52], Sloan and
Womersley proved it is quasi-uniform with

lim sup
N→∞

γ(ωN )<
4 j0
π
≈ 3.06195,

where j0 is the smallest positive zero of the Bessel function of the first kind, J0. As shown in Table 10, the mesh ratio bound
appears to be much lower though it is unclear whether or not limN→∞ γ(ωN ) exists.

Random Points

The final configurations we consider are random configurations ωrand
N consisting of N independent samples chosen with

respect to surface area measure. Not surprisingly, these configurations do not have optimal order separation or covering and the
sequence is not quasi-uniform. As proved in [18] and [50] respectively,
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Table 10: Mesh Ratios for Maximal Determinant Nodes

N γ(ωN ) N γ(ωN )
9 0.718884 625 0.805608

16 0.685587 1024 0.840506
25 0.768510 2025 0.858874
36 0.806140 3025 0.847347
49 0.777490 4096 0.859887

100 0.708579 4900 0.877990
225 0.860728 10201 0.859625
324 0.799227 15129 0.865695
400 0.809172 22500 0.881492

lim
N→∞
E(δ(ωrand

N ))N =
p

2π, lim
N→∞
E(η(ωrand

N ))
�

N
log N

�1/2

= 2.

Note that while the order of the separation of random points is off by factor of N 1/2, the covering is only off by a factor of
(logN)1/2. Figure 19 shows a realization of i.i.d. uniformly chosen random points on S2.

Summary of Properties

The following tables compare some of the properties of the point sets described above. Table 11 compares which sequences are
proven to be equidistributed and well-separated, for which values of N the configurations are defined, and whether a subsequence
is hierarchical. Table 12 compares which sequences are quasi-uniform and the numerically determined bounds for separation and
mesh ratio constants.

Table 11: Summary of Point Set Properties

Name Defined for Hier. Equidist. Separated
Gen Spiral N ≥ 2 No Yes Yes
Fibonacci Odd N No Yes Yes

Hammersley N ≥ 2 No Yes No
Zonal Eq. Area N ≥ 2 No Yes Yes

HEALPix 12k2, Subseq. Yes Yes
Octahedral 4k2 + 2 Subseq. Yes Yes
Radial Icos. 10k2 + 2, Subseq. No Yes

Cubed Sphere 6k2 − 12k+ 8 Subseq. No Yes
Equal Area Icos. 10(m2 +mn+ n2) + 2 Subseq. Yes Yes

Coulomb N ≥ 2 No Yes Yes
Log Energy N ≥ 2 No Yes Yes
Max Det. (1+ k)2 No Yes Yes
Random N ≥ 2 No Yes No

3 Asymptotic Energy Considerations
We now turn our attention to the potential energy of the above configurations, in particular, Elog(ωN ) and Es(ωN ) for s = -1,1,2,
and 3. We are interested in the asymptotic behavior of the energies for above configurations as N →∞ and how well the leading
terms in the expansion of their energies match the known or conjectured leading terms and coefficients in the minimal energy
expansion. We begin with the following well known necessary condition for asymptotically optimal point sets [10].

Theorem 3.1. Let {ωN}
∞
N=2 be a sequence of configurations that is asymptotically optimal with respect to logarithmic energy or Riesz

s-energy for some s > −2, s 6= 0, i.e.,

lim
N→∞

Es(ωN )
Es(N)

= 1 or lim
N→∞

Elog(ωN )

Elog(N)
= 1.

Then {ωN}
∞
N=2 is equidistributed.

We define the energy of a probability measure µ on S2 with respect to the logarithmic or Riesz s-potential as

Is[µ] :=

∫ ∫

1
|x− y|s

dµ(x)dµ(y), s 6= 0
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Table 12: Comparison of Separation and Mesh Ratio Constants

Name Quasi- Numeric lower bound Numeric upper bound
Uniform on lim infδ(ωN )

p
N on lim supγ(ωN )

p
N

Gen Spiral Yes 3.1319 0.8099
Fibonacci Yes 3.0921 0.8823

Hammersley No N/A N/A
Zonal Eq. Area Yes 3.3222 0.7568

HEALPix Yes 2.8345 1.0000
Radial Icos. Yes 2.8363 0.8517

Cubed Sphere Yes 2.7027 1.0000
Octahedral Yes 2.8284 0.9235

Equal Area Icos. Yes 3.1604 0.7360
Coulomb Yes 3.3794 0.7671

Log Energy Conj. 3.3733 0.7735
Max Det. Yes 3.1957 0.8900
Random No N/A N/A

Ilog[µ] :=

∫ ∫

log
1

|x− y|
dµ(x)dµ(y).

The normalized surface area measure σ is the unique minimizer of Ilog[µ] and Is[µ] for −2< s < 2, s 6= 0, and

Ilog[σ] =
1
2
− log 2,

Is[σ] =
21−s

2− s
, −2< s < 2.

However, for s ≥ 2, Is[µ] =∞ for all µ supported on S2 (see for example [10]).
For random points, the expected value of the s-energy is easily computed:

E[Es(ω
rand
N )] = Is[σ](N(N − 1)), −2< s < 2. (12)

For s ≥ 2, E[Es(ωrand
N )] =∞.

The Epstein-Zeta function for a lattice Λ in R2 is given by

ζΛ(s) :=
∑

0 6=x∈Λ

|x|−s, Re s > 2.

Let Λ2 be the regular triangular lattice in R2 generated by basis vectors (1, 0) and (1/2,
p

3/2). It is known from number theory
that ζΛ2

(s) admits the factorization

ζΛ2
(s) = 6ζ(s/2)L−3(s/2), Re s > 2, (13)

where

L−3(s) := 1−
1
2s
+

1
4s
−

1
5s
+

1
7s
− · · · , Re s > 1,

is a Dirichlet L-series. The right-hand side of (13) can be used to extend ζΛ2
(s) to s with Re s < 2.

3.1 Logarithmic Potential

The following asymptotic expansion is proven by Betermin and Sandier in [6]:

Theorem 3.2. There exists a constant C 6= 0, independent of N, such that

Elog(N) = Ilog[σ]N
2 −

N log N
2

+ CN + o(N), N →∞,

−0.22553754≤ C ≤ bC := 2 log2+
1
2

log
2
3
+ 3 log

p
π

Γ (1/3)
= −0.05560530...

The following extension of Theorem 3.2 is conjectured by Brauchart et al in [17]:
Conjecture 3.3.

Elog(N) = Ilog[σ]N
2 −

N log N
2

+ bCN + D log N +O(1), N →∞.

Beltran [4] provides a partial converse to Theorem 3.1:
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Figure 20: First order asymptotics for log potential. The solid black line is the known first order coefficient in the minimal energy expansion as
given in Theorem 3.2.

Theorem 3.4. If {ωN}
∞
N=2 is a sequence of well-separated configurations whose spherical cap discrepancy satisfies

lim
N→∞

DC (ωN ) log N = 0,

then {ωN}
∞
N=2 are asymptotically optimal with respect to logarithmic energy.

As a corollary, Coulomb points and Fibonacci spiral points are asymptotically log optimal. We make the following natural
conjecture:
Conjecture 3.5. The condition on the spherical cap discrepancy in Theorem 3.4 can be relaxed to

lim
N→∞

D(ωN ) = 0.

Thus a sequence of configurations {ωN}
∞
N=2 is equidistributed and well-separated iff it is asymptotically optimal with respect to

logarithmic energy.
Figures 20, 21, and 22 display three comparisons of the logarithmic energies of the point sets with cardinality up to 50,000.

Some configurations are sampled along subsequences to avoid overcrowding the picture. Due to the computational cost of
generating approximate log energy and Coulomb points, these points are only available for N < 22, 500. The energies of random
configurations are plotted by expected value. We do not include the maximal determinant nodes because there is no known
algorithm to generate them in polynomial time.

Figure 20 shows Elog(ωN )/N 2 for the point sets. For the equidistributed and well-separated point sets as well as for the
Hammersley nodes, this ratio converges to 1/2− log2 supporting Conjecture 3.5. Though the radial icosahedral and cubed
sphere points are not equidistributed and thus not asymptotically optimal, their log energy appears to be of leading order N 2.

Figure 21 displays [Elog(ωn)−Ilog[σ]N 2]/N log N for each configuration. The curves for classes of point sets begin separating.
The energies of the octahedral, HEALPix, Fibonacci, generalized spiral, zonal equal area, and Coulomb points all appear to
converge to the correct second order term. The energy of the Hammersley nodes appears to have N log N second term, though
incorrect coefficient. While the equal area icosahedral nodes perform better than the radial icosahedral nodes, their asymptotic
energy appears to have a second term different to N log N . Numerical second order behavior of log energy points is also studied
in [44].

Figure 22 compares the energy of the configurations to the conjectured minimal log energy third order term, i.e. [Elog(ωn)−
Ilog[σ]N 2+1/2N log N]/N . Conjecture 3.3 is supported by the behavior of the Coulomb and log points. The octahedral, HEALPix,
Fibonacci, zonal equal area, and generalized spiral configurations appear to have the third term of their energy of order N but
the wrong coefficient. Of the algorithmically generated point sets, the generalized spiral and zonal equal area points perform the
best with respect to the logarithmic energy.
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Figure 21: Second order asymptotics for log potential (with the legend of Figure 20). The solid black line corresponds to the known coefficient
from Theorem 3.2.

Figure 22: Third order asymptotics for log energy (with the legend of Figure 20). The dashed line is the conjectured third order constant from
[17].
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3.2 Riesz Potential, -2 < s< 2, s 6= 0

In this range, the best known bounds on Es(N) are due to Wagner (cf. [63] and [64]).

Theorem 3.6. For −2< s < 2, s 6= 0, there exist cs, Cs > 0 such that for all N ∈ N,

csN
1+s/2 ≤ Es(N)− Is[σ]N

2 ≤ CsN
1+s/2.

Kuiljaars and Saff [34] conjecture that limN→∞[Es(N)− Is[σ]N 2]/N 1+s/2 exists.
Conjecture 3.7. For −2< s < 2, s 6= 0,

Es(N) = Is[σ]N
2 +
(
p

3/2)s/2ζΛ2
(s)

(4π)s/2
N 1+s/2 + o(N 1+s/2), N →∞.

Heuristically, the second order coefficient corresponds to the Voronoi decomposition of minimal energy points being composed
primarily of close to regular hexagons. A characterization of asymptotically optimal point sets is due to Leopardi [38].

Theorem 3.8. If a well-separated sequence of configurations {ωN}
∞
N=2 is equidistributed, then it is asymptotically optimal for

0< s < 2,

A similar result for s < 0 is also known (see for example [10]).

Theorem 3.9. A sequence of configurations {ωN}
∞
N=2 is asymptotically optimal for −2< s < 0 iff it is equidistributed.

Theorems 3.8 and 3.9 are the analogs of Conjecture 3.5 for −2< s < 2, s 6= 0.
In the particular case of s = −1, the problem of minimizing energy becomes that of maximizing sums of distances. A

characterization of minimal configurations for this case is due to Stolarsky [57] (see also [15]) and is generalized by Brauchart
and Dick in [14]. Let Vt(z) = {x | x · z≥ t} denote the spherical cap of height 1− t centered at z ∈ S2. The L2 discrepancy of a
configuration ωN is defined to be

DL2
(ωN ) :=

�

∫ 1

−1

∫

S2

� |ωN ∩ Vt(z)|
N

−σ(Vt(z))
�2

dσ(z)d t
�1/2

.

Theorem 3.10. Stolarsky Invariance Principle. For any ωN ⊂ S2,

1
N 2

∑

i 6= j

|xi − x j |+ 4DL2
(ωN )

2 = I−1[σ] = 4/3.

This gives the immediate corollary (see also [13]):

Corollary 3.11. For a configuration ωN , E−1(ωN ) = E−1(N) iff ωN minimizes L2 discrepancy.

Figure 23 graphs the Coulomb energy of the point sets to first order. From Theorem 3.8, limN→∞ E1(ωN )/N 2 = Is[σ] = 1 for
all the point sets except the radial icosahedral, cubed sphere, and Hammersley nodes. As in the logarithmic case, the energies
of the radial icosahedral and cubed sphere nodes appear to have N 2 leading order term but incorrect coefficient. The plot is
inconclusive on whether the behavior of the Hammersley nodes is asymptotically optimal. Figure 24 shows the second order N 3/2

term from Conjecture 3.7. The energies of the generalized spiral, Fibonacci spiral, zonal equal area, HEALPix, and octahedral
nodes all appear to converge to an N 3/2 term that is different from the conjectured value. None of these point sets have a regular
hexagonal lattice structure as N gets large. Again the energies of equal area icosahedral points have a different second order
term. The Hammersley nodes don’t have low enough energy to appear on the plot. The asymptotic energy of the log nodes seems
to have the same second order coefficient as the Coulomb nodes and both point sets support Conjecture 3.7. As in the logarithmic
energy case, the generalized spiral and zonal equal area points perform the best of the algorithmically generated points.

Figure 25 displays E−1(ωN )/N 2 for the point sets. Again the radial icosahedral and cubed sphere points have the correct order
though they are not asymptotically optimal. For s = −1 The second term in the minimal energy expansion is of known order

p
N

with conjectured coefficient ≈ 0.7985. As shown in Figure 26, the behavior of the second order of the asymptotic energy of the
point sets resembles that of their log and Coulomb energies. The minimal Coulomb and log energy points perform the best and
support Conjecture 3.7. The asymptotic energies of the octahedral, HEALPix, Fibonacci, zonal equal area, and generalized spiral
appear to converge to the right second order and incorrect coefficient, and the latter two configurations have the lowest energy.

3.3 Riesz Potential, s=2

Less is known about the case s = 2. The first order term was proved in [34].

Theorem 3.12.

lim
N→∞

E2(N)
N 2 log N

=
1
4

.
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Figure 23: First order asymptotics for s = 1. The solid black line is the known coefficient from Theorem 3.6.

Figure 24: Second order asymptotics for s = 1 (with the legend of Figure 23). The dashed line is the conjectured value from [34].
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Figure 25: First order asymptotics for s = −1. The solid line follows from the Stolarsky invariance principle.

Figure 26: Second order asymptotics for s = −1 (with the legend of Figure 25). The dashed line is from conjecture 3.7.
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Figure 27: First order asymptotics for s = 2. The break in the y-axis values is to enhance the separation between the configurations. The solid
line is the known coefficient from Theorem 3.12.

It is not known whether the N 2 log N term corresponds to any geometric property of the points. There is also no result
analogous to Theorems 3.4 and 3.8 giving a sufficient condition for a sequence of configurations to be asymptotically optimal.

Figure 27 shows E2(ωN )/N 2 log N . The Hammersley points do not appear to have asymptotically minimal energy. The
behavior of the octahedral, HEALPix, Fibonacci, generalized spiral, zonal equal area, and equal area icosahedral points is not
clear. Their energies remain well below the known coefficient but have larger energy than the Coulomb and log energy points.
Calculations beyond N = 50, 000 are needed. The generalized spiral, zonal equal area, and equal area icosahedral points perform
the best.

3.4 Riesz Potential, s> 2

In the hypersingular case s > 2 the continuous energy integral is infinite for any probability measure µ. Instead, the energy is
known to be dominated by the nearest neighbor interactions of points as shown in a much more general result by Hardin and
Saff [31].
Theorem 3.13. For s > 2, there are constants Cs such that

lim
N→∞

Es(N)
N 1+s/2

= Cs, 0< Cs <∞.

One can consider the analytic continuation of Is[σ], 0< s < 2,

Vs :=
21−s

2− s
, s ∈ C \ {2} .

The following is analogous to Conjecture 3.7 (see [10]).
Conjecture 3.14. For 2< s < 4

Es(N) =
(
p

3/2)s/2ζΛ2
(s)

(4π)s/2
N 1+s/2 + VsN

2 + o(N 2).

Figure 28 plots E3(ωN )/N 5/2. The energies of most configurations seem to be going to the correct order but incorrect
coefficient. The equal area icosahedral points outperform the spiral and zonal equal area points of the algorithmically generated
configurations. This is expected because their Voronoi decomposition is closest to the regular hexagonal lattice. The log energy
and Coulomb points again seem to be close to minimal and may converge to the conjectured C3 ≈ 0.199522. The Hammersley
points are not seen on the plot because their asymptotic energy does not appear to have first order N 5/2.

We conclude this section with the following observation: The apparent first and second order asymptotically minimal behavior
of the energy of the Coulomb and log points for the potentials we have considered is striking and we suggest a conjecture.
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Figure 28: First order asymptotics for s = 3. The dashed line is the conjectured coefficient.

Conjecture 3.15. The minimal logarithmic energy points and Coulomb points are asymptotically minimal to second term precision
for all −2< s < 4, s 6= 0. I.e., combined with Conjectures 3.7 and 3.14, letting ωN :=ωlog

N or ωCoul
N

lim
N→∞

Es(ωN )− Is[σ]N 2

Es(N)− Is[σ]N 2
= 1 or lim

N→∞

Es(ωN )−
(
p

3/2)s/2ζΛ2 (s)

(4π)s/2 N 1+s/2

Es(N)−
(
p

3/2)s/2ζΛ2 (s)

(4π)s/2 N 1+s/2
= 1.

Furthermore, the Coulomb points are minimal in the logarithmic energy to the third order term. That is

lim
N→∞

Elog(ωCoul
N )− (1/2− log 2)N 2 + 1/2N log N

Elog(N)− (1/2− log 2)N 2 + 1/2N log N
= 1.

4 Proofs
We begin with two auxiliary results.

Proposition 4.1. Let {PN}
∞
N=1 be a diameter bounded sequence of asymptotically equal area partitions of S2 such that each PN has N

cells. For each PN , let ωN be a configuration of points on S2 such that the interior of each cell of PN contains exactly one point of ωN .
Then {ωN}

∞
N=1 is equidistributed and provides a covering of S2 with η(ωN )≤ CN−1/2 for all N ∈ N, where C is as in equation (2).

Proof. The bound on the covering radius is trivial. Let A⊂ S2 be a spherical cap and let

Aδ :=
�

x ∈ S2 : dist(x , A)≤ δ
	

,

where dist(x , A) :=miny∈A |x − y| is the standard distance function. For x ∈ωN , denote by W N
x the cell of PN containing x . Let

ε,δ > 0 and choose N large enough such that
N min

x
σ(W N

x )≥ 1− ε

and x ∈ A∩ωN implies W N
x ⊂ Aδ. Then

|ωN ∩ A|
N

≤
|
�

x : W N
x ⊂ Aδ

	

|
N

≤
σ(Aδ)

N minx σ(W N
x )
≤
σ(Aδ)
1− ε

.

Since ε is arbitrary, we have

lim sup
N

|ωN ∩ A|
N

≤ σ(Aδ).
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Letting δ→ 0 gives

lim sup
N

|ωN ∩ A|
N

≤ σ(A). (14)

Applying inequality (14) to S2 \ A, we obtain

lim inf
N

|ωN ∩ A|
N

= 1− limsup
N

|ωN ∩ (S2 \ A)|
N

≥ 1−σ(S2 \ A) = σ(A),

and thus, we have

lim
N→∞

|ωN ∩ A|
N

= σ(A).

Proof of Theorem 2.1.
For a fixed N denote in spherical coordinates x i := (φi ,θi) ∈ωN . We first prove the separation bound. Let εN = 2

p

4π/N .
For large N , by the pigeonhole principle, at least one set of adjacent points xk, xk+1 ∈ωN is separated along SN by a distance less
than

p

4π/N . So we can restrict our attention to k ≤ N/2 and εN -balls B(xk,εN ). For large N, if k < 8π+ 1/2, then

cosφk = 1−
2k− 1

N
≥ 1−

16π
N
≈ cos(2

√

√4π
N
),

and xk is within the first two full longitudinal turns of SN starting from a pole. Otherwise, B(xk,εN ) contains disjoint levels of SN .
In this case, the minimal distance between levels in B(xk,εN ) is

p

4π/N . We compute the nearest neighbor distance between
points in the same level as follows. Let

fN (k) :=
p

N |xk − xk+1|, xk ∈ωN , k < N/2.

Using the distance formula for spherical coordinates

|x j − xk|2 = 2− 2(cosφ j cosφk + sinφ j sinφk cos(θ j − θk)) (15)

and expanding cos−1 x around x = 1 we have

lim
N→∞

fN (k) =
Ç

8k− 4
p

4k2 − 1 cos(
p

2π(
p

2k− 1−
p

2k+ 1)), (16)

and fN (k)< fN+1(k) for all k < N/2−1 and large N. Thus we have the correct order for the minimal separation between adjacent
points in ωN . Furthermore, (16) is increasing as a function of k and thus

lim
N→∞

min
k

fN (k) =
q

8− 4
p

3cos(
p

2π(1−
p

3)). (17)

Lastly, around the north pole, k1, k2 < 8π+ 1/2, we can again use (15) to show that

lim
N→∞

p
N |xk1

− xk2
|

exists and can be computed case by case for pairs (k1, k2). The southern hemisphere can be similarly computed. Comparing to
(17) gives the separation constant (5).

For covering, given y ∈ S2,

dist(SN )≤
s

π

N
.

From (16), the maximal distance from any point on SN to a point of ωN is O(1/
p

N) and thus the covering radius of ωN is also
O(1/

p
N).

We have two additional observations. First, the Voronoi decompositions of the spiral points are diameter bounded. Secondly,
the Voronoi cells are asymptotically equal area on Kh :=

�

(x , y, z) ∈ S2 : −h≤ z ≤ h
	

for any fixed 0< h< 1. By this we mean

lim
N→∞

N max
Vx (ωN )⊂Kh

σ(Vx (ωN )) = lim
N→∞

N min
Vx (ωN )⊂Kh

σ(Vx (ωN )) = 1.

Indeed, fixing h, for any ε > 0, we can take N large enough such that given x i = (φi ,θi) ∈ Kh ∩ωN , x i−1, and x i+1 are almost
iso-latitudinal with x i with separation

p

4π/N . I.e.,

|x i±1 − (φi ,θi ± cscφi

Æ

4π/N)|< ε.

There exists shifts 0 ≤ λi+,λi− ≤
p

4π/N such that the nearest points in the adjacent spiral levels are within ε of the points
(φi±

p

4π/N ,θi+cscφiλi±) and (φi±
p

4π/N ,θi+cscφi(λi±−
p

4π/N)). Thus as N →∞, the Voronoi cell Vi(ωN ) approaches
the form of V in Figure 29 and

σ(Vi(ωN )) = σ(V ) +O(ε2).
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Figure 29: Limiting form of Voronoi cell for each x i ∈ Kh ∩ωN with relevant quantities labeled. We can choose N large enough such that the
nearest neighbors of x i lie within ε of the points taken along iso-latitudinal lines separated by

p

4π/N

Furthermore, we can treat V as a planar polygon in Figure 29, and

σ(V ) =
1
N

independent of the shifts λi±. This we show by direct computation.
Letting a =

p

4π/N and centering x i at (0, 0), the points y1 = (λi+/2, a/2) and y2 = ((λi+ − a)/2, a/2) are the midpoints of
the lines connecting x i to its nearest neighbors in the adjacent level which are shifted by λi+. The corresponding lines

L1 : y = −
λi+

a
(x −

λi+

2
) +

a
2

L2 : y =
a−λi+

a
(x −

λi+ − a
2

) +
a
2

form the top boundary of V and have intersection point

w := (λi+ − a/2, (λi+a+ a2 −λ2
i+)/2a).

From this we calculate the area of the top half of V to be

σ(Vtop) =
1

4π

�

a
�−aλi+ +λ2

i+ + a2

2a

�

+
a
2

� aλi+ −λ2
i+

a

��

=
1

2N
.

The same calculation holds for the bottom half of V and thus (3) holds.
We now consider equidistribution. Because the height steps between points in ωN are uniform, for a spherical cap A centered

at a pole,

lim
N→∞

|ωN ∩ A|
N

= σ(A). (18)

If A does not contain one of the poles, then A⊂ Kh for some h and (18) holds by Proposition 4.1. Finally if A is a cap containing
but not centered at one of the poles, A can be partitioned into an open cap of height h centered at the pole and A∩ Kh. Because
(18) holds on each disjoint subset, it also holds on A.

Proof of Proposition 2.2.
When z = k, the basis vector ck,i has minimum length of

p
2d. At this latitude, ck+1,i and ck−1,i form the next most dominant

spirals and have length
p

3d. For z = k+ 1/2, ck,i and ck+1,i are equally dominant and have grid length 4p5d. For a fixed latitude
φ 6= ±π/2, z increases with N . Points around φ will form a locally rectangular grid. Thus the separation approaches

p
2d which

occurs when z = k and the largest hole in the triangulation around x i will be at most 4p5d/
p

2 which occurs when z = k± 1/2.

Thus off the poles, δ(ω2N+1)≥
p

8π
p

5/
p

N and η(ω2N+1)≤
p

2π/N .
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Indeed, these inequalities hold for large zone numbers z where Fk ≈ ϕk/
p

5 holds. However, on the polar points, x1 and xN ,
the zone number

z =
log((2N + 1)π

p
5(1− 4N 2/(2N + 1)2))
logϕ2

→
log(2π

p
5)

logϕ2
= 2.75..., N →∞

and writing ck,i in the form of equation (8) for small k overestimates the length of the vector. Using equation (7) and noticing
that k− 1/2≤ z ≤ k+ 1/2 implies

ϕ2k−1

(2N + 1)π
p

5
≤ cos2φ ≤

ϕ2k+1

(2N + 1)π
p

5
,

we have

|ck,i |2 ≥
4π2ϕ + 20πF2

kϕ
−2k+1

(2N + 1)π
p

5
= O

�

1
2N + 1

�

, k− 1/2≤ z ≤ k+ 1/2.

Since |ck,i | is the minimal separation distance for k − 1/2 ≤ z ≤ k+ 1/2, we have the correct order of separation on S2. By a
similar computation, we have the upper bound

|ck,i | ≤ O
�

1
p

2N + 1

�

, k− 3/2≤ z ≤ k+ 3/2.

Since the triangulation of ω2N+1 in each zone consists of ck,i , ck−1,i , and ck+1,i , the covering of ω2N+1 is of the correct order on all
of S2.

Proof of Proposition 2.3.
The diameter boundedness of the partition and Proposition 4.1 gives equidistribution and covering,

η(ωN )≤
3.5
p

N
.

In [37] and [67], it is established that there exists c1, c2 > 0 such that for all partitions PN , with φ j , n as defined above,

c1p
N
≤ φ j+1 −φ j ≤

c2p
N

, 0≤ j ≤ n. (19)

This gives the correct order of separation between collars. For neighbors x1, x2 ∈ωN within collar j, wlog suppose φ j < π/2.
Using the fact that the normalized area of each cell can be expressed as

(cosφ j − cosφ j+1)

2yi
=

1
N

,

we have

|x1 − x2| ≥
2π sinφ j

yi
=

4π sinφ j

N(cosφ j − cosφ j+1)
.

So it suffices to show there exists c3 > 0 such that

sinφ j

cosφ j − cosφ j+1
≥ c3

p
N ∀N , 0≤ j ≤ n. (20)

For a fixed h> 0 and φ j ≥ h, this follows from (19) and the fact that cos is Lipschitz. On the other hand, for sufficiently small φ j ,
there exists c4 > 0 such that

sinφ j

cosφ j − cosφ j+1
≥ c4

φ j

φ2
j −φ

2
j+1

.

Again applying (19) twice,

RHS (20)≥
c4

c1

φ j

φ j +φ j+1

p
N ≥

c4

c1

φ j

2φ j +
c2p
N

p
N ≥ c3

p
N .

In the last step we used the fact that for some c5 > 0 and all j

φ j ≥ cos−1(1−
2
N
)≥

c5p
N

.

Proof of Proposition 2.4.
The pixels are diameter bounded and thus by Proposition 4.1 the nodes are equidistributed.

Dolomites Research Notes on Approximation ISSN 2035-6803



Hardin · Michaels · Saff 45

To establish separation, we examine the five cases of nearest neighbor points: The points lie in 1) the polar region or 2)
the equatorial region, and the points lie in a) the same ring or b) adjacent rings, and 3) the points lie in adjacent rings at the
boundary of the polar region and the equatorial region.

Case 1a: If nearest neighbor points lie in the polar region along the same ring 1≤ i ≤ k that has radius

ri = sinφi =

√

√ 2i2

3k2
−

i4

9k4

and 4i equally spaced points, then the separation δ satisfies

δ = 2ri sin
π

4i
= 2

√

√ 2i2

3k2
−

i4

9k4
sin
π

4i
≥
p

2
i

√

√ 2i2

3k2
−

i4

9k4
= O

�

1
k

�

= O
�

1
p

N

�

.

In the middle inequality we use the fact that

sin x ≥
p

2/2
π/4

x 0≤ x ≤ π/4. (21)

Case 2a: Suppose the nearest neighbor points lie in the equatorial region along the same ring. Since each ring has 4k points,
the smallest separation occurs at the ring farthest from the equator and closest to z = 2/3. Using (21) again, we have

δ = 2ri sin
π

4k
≥

2
p

5
3

sin
π

4k
≥
p

10
3k
= O

�

1
p

N

�

.

Case 1b: We split up the rings in the polar region into the outer half, 1 ≤ i ≤ k/2 and the inner half, k/2 ≤ i ≤ k. On the
outer half, the separation between rings is

δ ≥ ri+1 − ri =
(i + 1)

p

6k2 − (i + 1)2 − i
p

6k2 − i2

3k2

≥
(k/2+ 1)

p

6k2 − (k/2+ 1)2 − (k/2)
p

6k2 − (k/2)2

3k2
= O

�

1
p

N

�

.

On the inner polar rings, the separation between rings is

δ ≥ | cosφi+1 − cosφi |=
2i + 1
3k2

≥
k+ 1
3k2

= O
�

1
p

N

�

.

Case 2b: In the equatorial region, the ring height z increases linearly with respect to the index i giving

δ ≥
2

3k
= O

�

1
p

N

�

.

Case 3 follows from Case 1b and 2b.
The covering of the points follows by similar geometric arguments.

Proof of Proposition 2.5.
It suffices to show Π is locally bi-Lipschitz on each face F of the icosahedron. If for some δ, L1, L2 > 0

L1|x − y| ≤ |Π(x)−Π(y)| ≤ L2|x − y|, x , y ∈ F , |x − y|< δ,

then

γ(ωN )≤
L2

L1
γ(ÞωNk

) =
L2

L1

p
3

.

Let c :=minx∈Icos |x |=
Æ

(1/3+ 2
p

5/15). For x , y ∈ F with angle θ , we have

|x − y| ≥ 2c sin
θ

2
.

Using the fact that sin−1 x ≤ π
2 x for x ≤ 1 and |x − y|< 2c,

|Π(x)−Π(y)| ≤ θ ≤ 2 sin−1
� |x − y|

2c

�

≤ πc|x − y|.

For the other inequality, wlog suppose c ≤ |x | ≤ |y| ≤ 1, and consider the line P ⊂ F connecting x and y. Denote z as the
projection of 0 onto P. Defining φ := cos−1(|z|/|x |), we have

|y| − |x |= |z| sec(θ +φ)− |z| secφ ≤ sec(θ +φ)− secφ.
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Since φ ≤ cos−1 c − θ and secant is convex on (0,π/2),

|y| − |x | ≤
1
c
− sec(cos−1 c − θ ) =: g(θ ).

Thus,

|x − y|2 = |x |2 + |y|2 − 2|x ||y| cosθ ≤ max
c≤|y|≤1

(|y|+ g)2 + |y|2 − 2|y|(|y|+ g) cosθ

= (1+ g)2 + 1− 2(1+ g) cosθ .

Since

f (θ ) :=
(1+ g)2 + 1− 2(1+ g) cosθ

2− 2cosθ
is continuous for θ ∈ (0,π/2+ cos−1 c) and limθ→0 f (θ ) exists, there exists L > 0 such that

|x − y| ≤ L|Π(x)−Π(y)|, θ ∈ (0,π/2+ cos−1 c).

Proof of Theorem 2.6. Restricting ourselves to the face of K with all positive coordinates, label the vertices of the partition
�

Ai, j

	

0≤i+ j≤k
by

Ai, j =
�

i L

k
p

2
,

j L

k
p

2
,

L
p

2

�

1−
i + j

k

��

.

Let Ai, j = U(Ai, j). Then

Ai, j =
�

i + j
k

√

√

2−
(i + j)2

k2
cos

π j
2(i + j)

,
i + j

k

√

√

2−
(i + j)2

k2
sin

π j
2(i + j)

, 1−
(i + j)2

k2

�

.

Then
δ(ωN ) =min

i, j
{‖Ai+1, j −Ai, j‖,‖Ai, j+1 −Ai, j‖,‖Ai+1, j −Ai, j+1‖}. (22)

Adapting [33], we have

‖Ai+1, j −Ai, j‖2 = 2
(i + j + 1)2

k2
+ 2
(i + j)2

k2
− 2
(i + j + 1)2(i + j)2

k4

−2
(i + j)(i + j + 1)

k2

√

√

2−
(i + j + 1)2

k2

√

√

2−
(i + j)2

k2
cos

π j
2(i + j)(i + j + 1)

.

Along the line i + j = c, the minimum is obtained when the cosine term is maximized, i.e. at j = 0. Thus

min
i, j
‖Ai+1, j −Ai, j‖2 = min

0≤i≤k
‖Ai+1,0 −Ai,0‖2

=
2
k2

min
0≤i≤k

�

(i + 1)2 + i2 +
(i + 1)2i2

k2
− i(i + 1)

√

√

2−
(i + 1)2

k2

√

√

2−
i2

k2

�

=
2
k2

.

By symmetry of the above expressions in i and j,

min
i, j
‖Ai, j+1 −Ai, j‖2 = min

0≤ j≤k
‖A0, j+1 −A0, j‖2 =

2
k2

.

Lastly,

‖Ai+1, j −Ai, j+1‖2 = 4
(i + j + 1)2

k2

�

2−
(i + j + 1)2

k2

�

sin2 π

4(i + j + 1)
which again depends on only i + j. Using (21) we have

min
i, j
‖Ai+1, j −Ai, j+1‖2 = min

0≤i≤k
‖Ai+1,0 −Ai,1‖2

= 4 min
0≤i≤k

(i + 1)2

k2

�

2−
(i + 1)2

k2

�

sin2 π

4(i + 1)

≥ 4 min
0≤i≤k

(i + 1)2

k2

�

2−
(i + 1)2

k2

�

1
2(i + 1)2

= 4 min
0≤i≤k

1
2k2

�

2−
(i + 1)2

k2

�

=
2
k2

�

2−
(k+ 1)2

k2

�

.
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Thus from (22)

δ(ω4k2+2)
2 ≥

2
k2

�

2−
(k+ 1)2

k2

�

.

Taking the square root and substituting N = 4k2 + 2 gives

lim inf
N→∞

δ(ωN )
p

N ≥
p

8.

Finally, the diameter bound in [33] gives an immediate upper bound for the covering radius from which (11) follows:

η(ω4k2+2,S2)≤

√

√4+π2

8k2
.

5 Matlab Code
Many thanks to Grady Wright for his help in implementing some of these point sets in Matlab. Code for the Fibonacci,
Hammersley, HEALPix, and cubed sphere nodes authored by Wright is available at https://github.com/gradywright/spherepts.
The approximate Coulomb, log energy, and maximum determinant points were provided from computations by Rob Womersley.
Code for the zonal equal area points is available in Paul Leopardi’s Recursive Zonal Equal Area Toolbox from eqsp.sourceforge.net.
Code for the generalized spiral, octahedral, radial icosahedral, and equal area icosahedral nodes was created by the authors and
is available upon request.
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[32] A. Holhoş and D. Roşca. Area preserving maps and volume preserving maps between a class of polyhedrons and a sphere.
ArXiv preprint: http://arxiv.org/abs/1504.01517.
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