Faculty

of Informatics

Subdivision Schemes for Geometric Modelling

Kai Hormann

University of Lugano

Faculty

of Informatics

What it is all about

"Subdivision defines a smooth curve or surface as the limit of a sequence of successive refinements."

Denis Zorin & Peter Schröder SIGGRAPH 98 course notes

Faculty of Informatics

Subdivision curves

- initial control polygon
 rough, user-sketched shape
- iterative refinement
 - adding new points
 - simple local rules
- smooth limit curve
 - finitely many steps in practice
 - up to pixel accuracy

Faculty of Informatics

Applications

- subdivision curves in computer-aided design
 - modify initial control points
 - alternative to splines

simple and efficient curve representation

Faculty of Informatics

Subdivision surfaces

iterative, regular refinement

- simple local rules
- efficient

della

Faculty of Informatics

Applications

subdivision surfaces in computer graphics

simple and efficient surface representation

Subdivision Schemes for Geometric Modelling – DRWA 2011 – Alba di Canazei

vast playground

Faculty

of Informatics

l Iniversità

della

Svizzera italiana

- abundance of rules and schemes
- standard goals
 - convergence
 - smoothness
- standard limitations
 - artefacts at extraordinary vertices
- new trend
 - nonlinear, geometric methods

Faculty

of Informatics

Subdivision curves and surfaces

- important properties
 - convergence
 - existence of limit curve/surface
 - smoothness of the limit curve/surface
 - affine invariance
 - simple local rules
 - efficient evaluation
 - compact support of basis function
 - polynomial reproduction
 - approximation order

- Sep 5 Subdivision as a linear process
 basic concepts, notation, subdivision matrix
- Sep 6 The Laurent polynomial formalism
 algebraic approach, polynomial reproduction
- Sep 7 Smoothness analysis
 - Hölder regularity of limit by spectral radius method
- Sep 8 Subdivision surfaces

overview of most important schemes & properties

Faculty

of Informatics

initial control polygon

- sequence of *control points* $\{p_i^0\}$ (2D/3D) at *level* 0
- open ($i \in \{i_{min}, ..., i_{max}\}$) or closed ($i \in \mathbb{Z}$)

refinement rules

- how to get from level j to level j+1
- simplest case (*interpolatory* subdivision)

$$p_{2i}^{j+1} = p_i^j, \qquad p_{2i+1}^{j+1} = \sum_k \beta_k p_{i-k}^j$$

reproduce old points and insert new points

Universitive
Svizzera
italianaA simple interpolatory schemeExample β_0
 \downarrow β_{-1}
 \downarrow $p_{2i}^{j+1} = p_i^j$ $p_{2i+1}^{j+1} = \frac{1}{2}p_i^j + \frac{1}{2}p_{i+1}^j$

new points at old edge midpoints

- shape of control polygon does not change
- points become denser with increasing level j
- control polygon is also the *limit curve*
- refinement rules depend on 2 old points at most, hence this is called a 2-point scheme

A non-interpolatory scheme

Faculty

of Informatics

Università

della

Svizzera italiana

- $p_{2i}^{j+1} = \frac{1}{8} p_{i-1}^j + \frac{6}{8} p_i^j + \frac{1}{8} p_{i+1}^j, \quad p_{2i+1}^{j+1} = \frac{1}{2} p_i^j + \frac{1}{2} p_{i+1}^j$
 - approximating scheme (old points are modified)
 - 3-point scheme
 - gives uniform cubic B-splines in the limit
- convenient notation for refinement rules
 - even stencil [1,6,1]/8 odd stencil [1,1]/2
 - index offsets clear by symmetry

Faculty of Informatics

write refinement rules, one below the other,

\blacksquare gives the *subdivision matrix* S

with stencils as rows (alternating and shifted)

Faculty

of Informatics

Subdivision in the limit

refinement from level j to level j+1 $p^{j+1} = Sp^{j}$

refinement from level 0 to level j

$$p^j = Sp^{j-1} = S^2p^{j-2} = \dots = S^jp^0$$

refinement in the limit

$$p^{\infty} = \lim_{j \to \infty} p^j = \lim_{j \to \infty} S^j p^0 = S^{\infty} p^0$$

• but S is an infinite matrix, so what is S^{∞} ?

Subdivision in the limit

Iocal analysis with invariant neighbourhood

• which initial control points determine p_0^j ?

Faculty of Informatics

Subdivision in the limit

local analysis for p_0^j in the limit (as $j \rightarrow \infty$)

$$\begin{pmatrix} p_{-1}^{j} \\ p_{0}^{j} \\ p_{1}^{j} \end{pmatrix} = \underbrace{\begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{8} & \frac{6}{8} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{2} \end{pmatrix}}_{=S} \cdot \begin{pmatrix} p_{-1}^{j-1} \\ p_{0}^{j-1} \\ p_{1}^{j-1} \end{pmatrix}$$

compute eigendecomposition of S

$$S = Q \cdot \Lambda \cdot Q^{-1}, \quad Q = \begin{pmatrix} 1 & -1 & -2 \\ 1 & 0 & 1 \\ 1 & 1 & -2 \end{pmatrix}, \quad \Lambda = \begin{pmatrix} 1 & & \\ & 1/2 & \\ & & 1/4 \end{pmatrix}$$

• and so $S^j = (Q \cdot \wedge \cdot Q^{-1})^j = Q \cdot \wedge^j \cdot Q^{-1}$

Faculty

of Informatics

Subdivision in the limit

now letting $j \rightarrow \infty$

$$S^{\infty} = \lim_{j \to \infty} S^{j} = \lim_{j \to \infty} Q \cdot \Lambda^{j} \cdot Q^{-1} = Q(\lim_{j \to \infty} \Lambda^{j})Q^{-1}$$

observations

Faculty

of Informatics

l Iniversità

della

Svizzera italiana

- convergence requires that 1 is an eigenvalue of S and that all other eigenvalues are smaller
- first row of Q^{-1} gives the *limit stencil* [1,4,1]/6
- applying it to three consecutive control points gives the limit position of the central one
- works on any level
- can be used to "snap" the points to the limit curve
- can be used to estimate distance to the limit curve

The 4-point scheme

Example

Faculty

of Informatics

$$p_{2i}^{j+1} = p_i^j$$

$$p_{2i+1}^{j+1} = \frac{1}{16}(-p_{i-1}^j + 9p_i^j + 9p_{i+1}^j - p_{i+2}^j)$$

- classical interpolatory 4-point scheme [Dubuc 1986]
- based on local cubic interpolation
- even stencil [1] odd stencil [-1,9,9,-1]/16
- invariant neighbourhood size: 5
- eigenvalues of S: 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{8}$
- limit stencil [1] (true for all interpolatory schemes)

The general 3-point scheme

Faculty

of Informatics

- constraints: symmetry and summation to 1
 - even stencil [w, 1-2w, w] odd stencil [1, 1]/2
- invariant neighbourhood size: 3
- eigenvalues of S: 1, $\frac{1}{2}$, $\frac{1}{2}$ 2w
- certainly not convergent for $w \notin (-\frac{1}{4}, \frac{3}{4})$
- Imit stencil [2w,1,2w]/(1+4w)

Summary

- initial control points $\{p_i^0\}$ and refined data $\{p_i^j\}$ refinement rules
 - even stencil [..., α_2 , α_1 , α_0 , α_{-1} , α_{-2} , ...]
 - odd stencil [..., β_2 , β_1 , β_0 , β_{-1} , β_{-2} , ...]

• rules
$$p_{2i}^{j+1} = \sum_{k} \alpha_k p_{i-k}^j, \qquad p_{2i+1}^{j+1} = \sum_{k} \beta_k p_{i-k}^j$$

S =

- subdivision matrix
 - stencils as rows (alternating, shifted)

Summary

- Iocal limit analysis
 - determine size n of invariant neighbourhood
 - consider local $n \times n$ subdivision matrix S
 - necessary condition for convergence
 - 1 is the unique largest eigenvalue of ${\boldsymbol S}$
 - if coefficients of even/odd stencil sum to 1, then
 - 1 is an eigenvalue of S with eigenvector (1, ..., 1)
 - subdivision scheme is affine invariant
 - limit stencil given by normalized *left eigenvector* of S with eigenvalue 1 (usual (right) eigenvector of S^T)