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Barycentric rational interpolation at quasi-equidistant nodes

Kai Hormann a · Georges Klein b · Stefano De Marchi c

Abstract

A collection of recent papers reveals that linear barycentric rational interpolation with the weights
suggested by Floater and Hormann is a good choice for approximating smooth functions, especially
when the interpolation nodes are equidistant. In the latter setting, the Lebesgue constant of this rational
interpolation process is known to grow only logarithmically with the number of nodes. But since practical
applications not always allow to get precisely equidistant samples, we relax this condition in this paper
and study the Floater–Hormann family of rational interpolants at distributions of nodes which are
only almost equidistant. In particular, we show that the corresponding Lebesgue constants still grow
logarithmically, albeit with a larger constant than in the case of equidistant nodes.

1 Introduction
Given a set of n + 1 data values f0, f1, . . . , fn that are associated with the n + 1 real valued nodes x0 < x1 < · · ·< xn, the
classical univariate interpolation problem is to find a function g with g(x j) = f j for j = 0,1, . . . , n, where g is taken from a
finite-dimensional linear subspace of the Banach space C0[x0, xn] of continuous functions over [x0, xn] with the maximum norm.
A recently discovered generalization of polynomial interpolation is the family of rational interpolants

r(x) =

∑n−d
j=0 λ j(x)p j(x)
∑n−d

j=0 λ j(x)
, 0≤ d ≤ n,

where p j is the unique polynomial of degree at most d with p j(xk) = fk for k = j, . . . , j+ d, and

λ j(x) =
(−1) j

(x − x j) · · · (x − x j+d)
.

For d = n, the interpolant r is the unique interpolating polynomial, and in general the degrees of the numerator and denominator
of r are at most n and n− d, respectively. Moreover, r has no real poles, as proved by Berrut [1] for d = 0 and by Floater and
Hormann [6] for d ≥ 1. The latter work also shows how to derive the barycentric form of these rational interpolants,

r(x) =
n
∑

j=0

w j

x − x j
f j

� n
∑

j=0

w j

x − x j
, (1.1)

with weights

wk = (−1)k−d
∑

i∈Jk

i+d
∏

j=i, j 6=k

1

|xk − x j |
, (1.2)

where
Jk = {i ∈ {0,1, . . . , n− d} : k− d ≤ i ≤ k}, (1.3)

which is to be preferred for the numerical evaluation of r. We refer to [2] for more details on the implementation of linear
barycentric rational interpolants.

Floater and Hormann [6] further demonstrate the favourable approximation properties of these rational interpolants. If the
data values f j = f (x j) are sampled from some sufficiently smooth function f , then the approximation error ‖r − f ‖∞ over the
interpolation interval [x0, xn] is on the order of hd+1, where

h= max
0≤ j≤n−1

(x j+1 − x j)

is the maximal distance between neighbouring interpolation nodes. Alternatively, the approximation error can be bounded from
above by considering the Lebesgue constant

Λn = max
x0≤x≤xn

Λn(x), (1.4)
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which is the maximum value of the Lebesgue function

Λn(x) =
n
∑

j=0

|w j |
|x − x j |

�
�

�

�

�

n
∑

j=0

w j

x − x j

�

�

�

�

. (1.5)

Since the rational interpolants in (1.1) reproduce polynomials of degree at least d by construction, it is straightforward to show
that

‖r − f ‖∞ ≤ (1+Λn)‖p∗ − f ‖∞,

where p∗ is the best approximation of f among all polynomials of degree d. Bos et al. [3, 4] show that Λn grows only
logarithmically with n, at least for equidistant nodes and fixed d.

In this paper we show that Λn grows logarithmically for quasi-equidistant nodes, too (see Section 2, where we also improve a
bound from [3]). That is, we assume that there exists some global mesh ratio M ≥ 1, which does not depend on n, such that

h

h∗
≤ M , (1.6)

where
h∗ = min

0≤ j≤n−1
(x j+1 − x j)

is the minimal distance between neighbouring nodes. Such node distributions may arise from experiments, where the aim is to
sample a signal at a constant rate, which in turn is perturbed by imprecision in the measurement locations (see Section 3). The
behaviour of the derivatives of the rational interpolants for such nodes has been studied in [7].

2 Theoretical bounds
Let us begin by deriving bounds on the absolute value of the barycentric weights in (1.2). This result is then used to establish an
upper and a lower bound on the Lebesgue constant.

Lemma 2.1. If the interpolation nodes are quasi-equidistant, then the weights in (1.2) satisfy

Wk ≤ |wk| ≤ M dWk,

where

Wk =
1

hd d!

∑

i∈Jk

�

d

k− i

�

for k = 0, 1, . . . , n. Moreover,

Wk ≤
2d

hd d!
=: W,

with equality if and only if d ≤ k ≤ n− d.

Proof. By the definition of the minimal and maximal node distances h∗ and h, the distance between two arbitrary nodes xk and
x j satisfies

h∗|k− j| ≤ |xk − x j | ≤ h|k− j|. (2.1)

This leads to the lower bound

|wk|=
∑

i∈Jk

i+d
∏

j=i, j 6=k

1

|xk − x j |
≥

1

hd

∑

i∈Jk

i+d
∏

j=i, j 6=k

1

|k− j|
=

1

hd

∑

i∈Jk

1

(k− i)!(i+ d − k)!
=

1

hd d!

∑

i∈Jk

�

d

k− i

�

and similarly, using (1.6), to the upper bound

|wk| ≤
1

hd
∗d!

∑

i∈Jk

�

d

k− i

�

≤
M d

hd d!

∑

i∈Jk

�

d

k− i

�

.

The statement about the upper bound W of Wk follows directly from the definition of the index set Jk in (1.3).

If the nodes are equidistant, then M = 1 and |wk|=Wk for k = 0,1, . . . , n, as stated in [6].

Theorem 2.2. If the interpolation nodes are quasi-equidistant, then the Lebesgue constant in (1.4) satisfies

Λn ≤ (2+M ln n) ·

(

3
4

M , if d = 0,

2d−1M d , if d ≥ 1.
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Proof. From (1.5) it follows that Λn(xk) = 1 for k = 0, 1, . . . , n. Therefore, let xk < x < xk+1 for some k with 0≤ k ≤ n− 1, and
rewrite the Lebesgue function in (1.5) as

Λn(x) =

(x − xk)(xk+1 − x)
n
∑

j=0

|w j |
|x − x j |

(x − xk)(xk+1 − x)

�

�

�

�

�

n
∑

j=0

w j

x − x j

�

�

�

�

�

=:
Nk(x)
Dk(x)

.

We then derive an upper bound on the numerator Nk(x), following the proof of Theorem 2 in [3]. By Lemma 2.1,

Nk(x) = (x − xk)(xk+1 − x)
n
∑

j=0

|w j |
|x − x j |

≤ M dW (x − xk)(xk+1 − x)
n
∑

j=0

1

|x − x j |
,

and further, using the inequalities (1.6) and (2.1), and the fact that xk < x < xk+1,

Nk(x)

M dW
≤ (xk+1 − xk) + (x − xk)(xk+1 − x)

�k−1
∑

j=0

1

x − x j
+

n
∑

j=k+2

1

x j − x

�

≤ h+
�

h

2

�2
�k−1
∑

j=0

1

xk − x j
+

n
∑

j=k+2

1

x j − xk+1

�

≤ h+
�

h

2

�2 M

h

� k
∑

j=1

1

j
+

n−k−1
∑

j=1

1

j

�

≤ h+
Mh

2
ln n.

For establishing a lower bound on the denominator Dk(x), we distinguish the cases d = 0 and d ≥ 1. If d = 0, then the
weights in (1.2) simplify to wk = (−1)k and we have

Dk(x) = (x − xk)(xk+1 − x)

�

�

�

�

�

n
∑

j=0

(−1) j

x − x j

�

�

�

�

�

≥ (x − xk)(xk+1 − x)
�

−
1

x − xk−1
+

1

x − xk
+

1

xk+1 − x
−

1

xk+2 − x

�

(2.2)

= (xk+1 − xk)− (x − xk)(xk+1 − x)
�

1

x − xk−1
+

1

xk+2 − x

�

≥
2

3
h∗, (2.3)

where the inequality in (2.3) can be seen by first multiplying both sides with 3(x − xk−1)(xk+2 − x) and then verifying that the
quadratic polynomial

Qk(x) =
�

3(xk+1 − xk)− 2h∗
�

(x − xk−1)(xk+2 − x)− 3(x − xk)(xk+1 − x)(xk+2 − xk−1)

is non-negative. Substituting a = xk − xk−1, b = xk+1 − xk, c = xk+2 − xk+1, and y = x − xk, we find

Qk(y + xk) = (3a+ 2h∗ + 3c)y2 + (2ah∗ − 2bh∗ − 2ch∗ − 6ab)y + a(b+ c)(3b− 2h∗),

and it is easy to check that the minimal value of this quadratic expression is

a+ b+ c

3a+ 2h∗ + 3c
�

6ac(b− h∗) + a(bc− h2
∗) + b(ac− h2

∗) + c(ab− h2
∗)
�

,

which is non-negative, because 0 < h∗ ≤ min(a, b, c). Note that the inequality in (2.2) also holds if k = 0 or k = n− 1, for
example by letting x−1 = x0 − h and xn+1 = xn + h.

To handle the case d ≥ 1, we use two results from [6] to get

Dk(x) = (x − xk)(xk+1 − x)

�

�

�

�

�

n
∑

j=0

w j

x − x j

�

�

�

�

�

= (x − xk)(xk+1 − x)

�

�

�

�

�

n−d
∑

j=0

λ j(x)

�

�

�

�

�

≥ (x − xk)(xk+1 − x)|λi(x)|=
(x − xk)(xk+1 − x)
∏i+d

j=i |x j − x |
,

for any i ∈ Jk \ {k− d}. It then follows from (2.1) that

Dk(x)≥
1

∏k−1
j=i (x − x j)

∏i+d
j=k+2(x j − x)

≥
1

∏k−1
j=i (xk+1 − x j)

∏i+d
j=k+2(x j − xk)

≥
1

hd−1(k+ 1− i)!(i+ d − k)!
≥

1

hd−1d!
.

For equidistant nodes (i.e., M = 1), the upper bound in Theorem 2.2 improves the one given in [3] for d = 0 by a factor of 3/4,
and it simplifies to the one given in [4] for d ≥ 1.
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Theorem 2.3. If the interpolation nodes are quasi-equidistant, then the Lebesgue constant in (1.4) satisfies

Λn ≥
1

2d+2M d+1

�

2d + 1

d

�

·
¨
�

2+ ln(2n+ 1)
�

, if d = 0,
ln
� n

d
− 1
�

, if d ≥ 1.

Proof. In order to establish this lower bound, we follow the idea of the proof of Theorem 2 in [4] and derive a lower bound

for the numerator N(x) =
∑n

j=0
|w j |
|x−x j |

and an upper bound for the denominator D(x) =
�

�

∑n
j=0

w j

x−x j

�

� of the Lebesgue function

in (1.5) at the midpoint x∗ = (x0 + x1)/2 between the first two interpolation nodes. According to (2.1), the distance between x∗

and x j satisfies
h∗
2
|2 j− 1| ≤ |x∗ − x j | ≤

h

2
|2 j− 1|. (2.4)

For the numerator, we omit some terms of the sum and use the lower bound W from Lemma 2.1 as well as inequality (2.4) to
get

N(x∗) =
n
∑

j=0

|w j |
|x∗ − x j |

≥
n−d
∑

j=d

|w j |
|x∗ − x j |

≥W
n−d
∑

j=d

1

|x∗ − x j |
≥W

2

h

n−d
∑

j=d

1

|2 j− 1|
.

If d = 0, we then have

N(x∗)
W

≥
2

h

�

1+
n
∑

j=1

1

2 j− 1

�

≥
2

h

�

1+

∫ n+1

1

d x

2x − 1

�

=
1

h
�

2+ ln(2n+ 1)
�

,

and for d ≥ 1 we find

N(x∗)
W

≥
2

h

n−d
∑

j=d

1

2 j− 1
≥

2

h

∫ n−d+1

d

d x

2x − 1
=

1

h
ln
�

2n− 2d + 1

2d − 1

�

≥
1

h
ln
� n

d
− 1
�

.

To bound the denominator, we first rewrite it in terms of the functions λ j and notice that λ0(x∗) and λ1(x∗) both have the
same sign, and that the subsequent λ j(x∗) oscillate in sign and decrease in absolute value. Therefore,

D(x∗) =

�

�

�

�

�

n
∑

j=0

w j

x − x j

�

�

�

�

�

=

�

�

�

�

�

n−d
∑

j=0

λ j(x
∗)

�

�

�

�

�

≤ |λ0(x
∗)|+ |λ1(x

∗)|=
1

∏d
j=0|x

∗ − x j |
+

1
∏d+1

j=1 |x
∗ − x j |

.

We then conclude, using first (2.4) and then (1.6), that

D(x∗)≤
2d+1

hd+1
∗

∏d
j=0|2 j− 1|

+
2d+1

hd+1
∗

∏d+1
j=1 |2 j− 1|

=
2d+1

hd+1
∗

�

2d + 1
∏d+1

j=1 (2 j− 1)
+

1
∏d+1

j=1 (2 j− 1)

�

≤
22d+2M d+1

hd+1d!
�2d+1

d

�
.

Note that the lower bound in Theorem 2.3 simplifies to the one given in [4] for d ≥ 1 and equidistant nodes with M = 1.

3 Numerical experiments
We finally present some results of the extensive numerical experiments that we carried out. We first considered the situation
where a set of equidistant interpolation nodes is perturbed randomly with a fixed maximum relative perturbation δ ∈ (0,1/2).
Since Lebesgue constants are invariant with respect to translations and uniform scalings of the interpolation nodes, due to the
invariance of Lagrange elementary polynomials to affine transformations, we simply used

x j = j+δ j , j = 0, . . . , n,

with randomly chosen δ j ∈ [−δ,δ]. Hence, the global mesh ratio is at most M = (1+ 2δ)/(1− 2δ). For fixed d and n, we
generated N = 1, 000, 000 different sets of such interpolation nodes and computed the corresponding Lebesgue constants. The
vertical bars in Figure 1 show the ranges of these N Lebesgue constants and the crosses mark their averages. We observe that
the variance of the Lebesgue constants grows rapidly with both d and δ and only slowly with n. Moreover, the average values
are not too far from the Lebesgue constants in the equidistant setting with the same number of interpolation nodes, which are
indicated by the circles in Figure 1, and the relative distance decreases with d. The case d = 3 also reveals that the random
perturbations can actually improve the Lebesgue constant, and that this becomes less likely as n increases. In principle, one could
expect the circles to always lie within the range of Lebesgue constants, as the perfectly uniform distribution is just a special case
of the randomly perturbed nodes. The fact that this is not always the case is explained by the bullets in Figure 1, which mark the
smallest global mesh ratio M that we found among the N randomly created sets of nodes; the greatest M is not shown because it
was close to (1+ 2δ)/(1− 2δ) in all examples.

Figure 2 shows the Lebesgue functions for some sets of quasi-equidistant nodes with global mesh ratio M = 2. We tested
many such sets of nodes and found two cases to give particularly large Lebesgue constants: in the first case, we let the first
subinterval [x0, x1] be of length M and all others of length 1, in the second case we let the central subinterval

�

xbn/2c, xbn/2c+1

�

be of length M and again all others of length 1. For a better comparison, we scaled the nodes so that [x0, xn] = [0, 1]. Except for
d = 0 and the first set of nodes, the maximum of the Lebesgue function is always found in the single interval of length M , and for
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Figure 1: Minimum, maximum, and average Lebesgue constants (vertical bars with crosses) for quasi-equidistant nodes with a random
perturbation of at most δ = 1/6 (left) and δ = 3/10 (right), that is, with global mesh ratios at most M = 2 (left) and M = 4 (right). Circles
indicate the Lebesgue constants for equidistant nodes, bullets mark the minimal global mesh ratios. The plots for d = 0 are not shown because
they are very similar to those for d = 1.

d ≥ 2, the first set gives larger Lebesgue constants than the second set. This can also be seen in Figure 3, where the bullets mark
the Lebesgue constants for the first set of nodes and the circles correspond to the second set. We observe that these are still quite
far from the theoretical upper bound that we derive in Theorem 2.2, and it remains to be figured out, as discussed in [5] in the
case of polynomial interpolation, if there are node configurations with a fixed global mesh ratio that lead to yet larger Lebesgue
constants than those displayed here.
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Figure 2: Lebesgue functions for two specific sets of n = 15 (left) and n = 31 (right) quasi-equidistant nodes with fixed global mesh ratio M = 2.
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