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Abstract

Global radial basis function (RBF) collocation methods with infinitely smooth basis functions for par-
tial differential equations (PDEs) work in general geometries, and can have exponential convergence
properties for smooth solution functions. At the same time, the linear systems that arise are dense and
severely ill-conditioned for large numbers of unknowns and small values of the shape parameter that
determines how flat the basis functions are. We use Helmholtz equation as an application problem
for the theoretical analysis and numerical experiments. We analyze and characterize the convergence
properties as a function of the number of unknowns and for different shape parameter ranges. We
provide theoretical results for the flat limit of the PDE solutions and investigate when the non-symmetric
collocation matrices become singular. We also provide practical strategies for choosing the method
parameters and evaluate the results on Helmholtz problems in a curved waveguide geometry.

1 Introduction
We started writing this paper in 2004. Some of the results can be found in the MSc thesis of the second author [39]. At that time,
the first paper on the flat radial basis function (RBF) interpolation limit [7] had just been published, and most of the work on the
paper about multivariate flat RBF limits [24] was done, but the paper was not published yet. The focus of research in RBF-based
methods for partial differential equations (PDEs) was on global collocation methods, and we were interested in the limit behavior
for RBF approximations to PDEs. Then the manuscript ended up ‘in a drawer’ due to various circumstances, and we came to pick
it up again 15 years later. The current research focus has shifted to localized RBF-methods such as RBF-generated finite difference
methods (RBF-FD) [12] and RBF partition of unity methods (RBF-PUM) [27]. However, we think that the results in this paper,
even though they are on global RBF methods, provide insights that are generally useful also today. The objectives of the work are

• to investigate the approximation errors theoretically and numerically to gain understanding about the flat limit, the
convergence properties, and the dependence on the shape parameter,

• to identify the gaps between theoretical results and numerical behavior,

• to provide practically useful strategies for choosing the method parameters and assessing the results.

Other articles that consider global RBF methods for Helmholtz problems are [31], where a Cauchy Helmholtz problem is solved
using Bessel RBFs combined with regularization, and [53] where a global symmetric RBF collocation method is used for Helmholtz
equation with a manufactured solution. For papers where Helmholtz wave propagation problems such as those considered in this
paper are solved, we refer to [33] and [37] where localized RBF-FD methods are used.

The outline of the paper is as follows: In Section 2, we define three different Helmholtz test problems that are used throughout
the paper. In Section 3 we derive the systems of equations for non-symmetric and symmetric collocation. Section 4 is devoted to
cases where the non-symmetric collocation matrix is singular, and in Section 5, we discuss the limit properties. How to prove
these properties is sketched in Appendix A. Section 6 contains a combination of theoretical error estimates, and more heuristic
error approximations. Then in Section 7, we provide numerical results as well as practical strategies for method parameter
selection. The paper ends with a discussion of the results in Section 8.

2 Generic and specific model problems
Throughout the paper, we consider time-independent, linear, partial differential equations (PDEs). We assume that the PDE,
together with the different boundary conditions can be summarized as

Liu(x) = f i(x), x ∈ Ωi , i = 1, . . . , Nop, (1)
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where Li is a linear operator, u is the solution function, f i is a given function, x = (x1, . . . , xd) ∈ Rd , and Ωi ⊆ Ω̄ is a region in the
computational domain or a boundary segment.

To give examples and illustrate specific properties, we use a series of Helmholtz problems of increasing complexity. The
Helmholtz equation models time-harmonic wave propagation, and in all cases, we consider waveguide problems with a wave
originating from a source at the left boundary and propagating to the right. We allow reflected waves from the interior of the
domain to propagate back to the left and out through the left boundary, but no waves may enter from outside the right boundary.
The main reasons for our choice of model problems are the following:

• There is one problem parameter, the wavenumber κ, that can be varied to study its relation to the RBF method parameters.

• A Helmholtz problem is generally more difficult to solve than a Laplace or Poisson problem, especially for large wavenumbers,
due to the indefiniteness of the operator, the wave nature of the solution, and the typically more complicated boundary
conditions.

The Helmholtz PDE is in all examples given by

L1u(x) = −∆u(x)− κ2u(x) = 0, x ∈ Ω1 = Ω. (2)

The first and simplest model problem is one-dimensional, with Ω = (0,1). The non-reflecting (or radiation) boundary
conditions are given by

L2u(x) = −
du
d x
(x)− iκu(x) = −2iκ, x = 0, (3)

L3u(x) =
du
d x
(x)− iκu(x) = 0, x = 1, (4)

and the analytical solution is u(x) = exp(iκx), if κ is constant.
The second problem is two-dimensional with a rectangular domain Ω= (0, L1)× (0,1). At the top and bottom boundaries,

we use the Dirichlet boundary condition

L4u(x) = u(x) = 0, x = (0, x2) or x = (L1, x2), (5)

indicating that we consider a waveguide type of problem. The conditions at the left and right boundaries are

L2u(x) = −
∂ u
∂ x2
(x)− iβmu(x) = −2iβm sin(αm x1), x = (x1, 0), (6)

L3u(x) =
∂ u
∂ x2
(x)− iβmu(x) = 0, x = (x1, 1), (7)

where αm =
mπ
L1

, βm =
Æ

κ2 −α2
m, and m≥ 1 is an integer. These conditions allow for just one propagating mode in the solution,

which is given by u(x) = exp(iβm x2) sin(αm x1), assuming a constant κ. It should be noted that if κ and m are chosen such that
βm = 0, the problem is not well-defined, and we avoid such combinations in the experiments.

The third and final problem is also two-dimensional, but the domain Ω is now enclosed between two curves γ1(x2)< x1 <
γ2(x2), x2 ∈ (0,1), see Figure 1. The Dirichlet condition (5) is modified to hold at γ1 and γ2.

L4u(x) = u(x) = 0, x = (γ j(x2), x2), j = 1,2. (8)

At the left and right boundary, we use so called Dirichlet–to–Neumann map (DtN) radiation boundary conditions [22]

L2u(x) = −
∂ u
∂ x2

− i
∞
∑

m=1

βm〈u(·, 0),ψ0
m〉ψ

0
m(x1)

= −2i
∞
∑

m=1

Amβmψ
0
m(x1), x2 = 0,

L3u(x) =
∂ u
∂ x2

− i
∞
∑

m=1

βm〈u(·, 1),ψ1
m〉ψ

1
m(x1) = 0, x2 = 1,

(9)

where, for a fixed x2, the modes ψx2
m =

p
2sin(αm(x1 − γ1(x2)), with αm =

mπ
γ2(x2)−γ1(x2)

. The inner product is given by

〈u(·, x2),ψ
x2
m 〉=

∫ γ2(x2)

γ1(x2)

u(x1, x2)ψ
x2
m (x1) d x1, (10)

and the amplitudes Am =ψ0
m(xs), where xs is the position of the source in the vertical coordinate. The amplitudes are chosen to

emulate a point source. The DtN conditions allow for any combination of modes to move transparently through the vertical
boundaries. For practical and computational reasons, the infinite sum is truncated at µx2

= b κ(γ2(x2)−γ1(x2))
π c. For a discussion of

the assumptions behind this truncation and these particular DtN conditions, see [38].
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Figure 1: Wave propagation in an M-shaped duct. The source position is indicated by the marker at the left boundary and the wavenumber is
κ= 6π. The real part of the solution is displayed.

3 The RBF approximations
In this section, we first describe Kansa’s non-symmetric collocation method [20] for our model problems. The main advantage of
the non-symmetric collocation method is its simplicity. It has been shown that the non-symmetric RBF discretization matrix, in
rare cases [19], can become singular. This is discussed further in Section 4. It has further been shown that if a greedy method is
used for selection of basis functions and collocation points, the non-symmetric method is convergent [32].

To ensure non-singularity, symmetric collocation [55, 8, 17] can instead be employed. This is slightly more involved, especially
with non-trivial operators, which is why we include an example of how to do this for the one-dimensional model problem. Another
approach to avoid singularity is to use non-symmetric collocation in a least-squares setting. See [40] for an example of global
least squares RBF approximation and [50] for a general theoretical discussion of the stability of least squares approximation of
linear PDE problems.

The non-symmetric and symmetric collocation methods were compared in [23] and were found to give almost identical
approximation results. A similar comparison in [4], showed better performance with non-symmetric collocation in an adaptive
setting.

3.1 Non-symmetric collocation

When we use non-symmetric collocation to discretize the problem (1), the RBF approximant is given by

s(x) =
N
∑

j=1

λ jφ(ε‖x − x j‖) =
N
∑

j=1

λ jφ j(x), (11)

where x j , j = 1, . . . , N are the RBF center points and ε is the shape parameter. The collocation conditions are imposed at the N
center points. Let x k

j , j = 1, . . . , Nk be the subset of center points that belong to the region or section Ωk. The corresponding
operator is used for collocation, and we get the equations

Lks(x k
i ) =

N
∑

j=1

λ jLkφ j(x
k
i ) = f k(x k

i ), i = 1, . . . , Nk, k = 1, . . . , Nop.

If the points are ordered according to the set affiliation, we get a system of equations, Mλ= f , with the following general block
structure





L1φ
...

LNopφ







 λ



=







f 1

...
f Nop






, (12)

where the block Lkφ is of size (Nk × N).
Applying the operators in the specific model problems to the RBFs is straightforward, except for the DtN operators in (9). The

left boundary condition applied to one of the RBFs and evaluated at the point x = (x1, 0) takes the form

L2φ j(x) = −
∂ φ j

∂ x2
(x)− i

µ0
∑

m=1

βm〈φ j(·, 0),ψ0
m〉ψ

0
m(x1).

To form the whole block L2φ, we need to evaluate µ0 ·N inner products. This cannot in general be done analytically for infinitely
smooth RBFs such as multiquadrics, inverse quadratics, or Gaussians.
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One of our aims with choosing the Helmholtz model problems was to see if using RBFs would make it difficult to implement
non-trivial boundary conditions. There are no fundamental issues preventing implementation of boundary conditions involving
linear functionals applied to the basis functions. A practical issue is that the computational cost for the quadrature is quite large,
although linear in N . In Section 7, we investigate how accurately we need to compute the inner products to not destroy the
overall accuracy of the solution. The experiments show that we need to compute the inner products more accurately than the
overall error tolerance, which increases the cost further.

3.2 Symmetric collocation

Non-singularity of the RBF approximation matrix can be ensured through symmetric collocation [55, 8, 17]. The idea is to view
the RBF φ(ε‖x−ξ‖) as a function of two variablesψ(x ,ξ). Then in the ansatz for the RBF approximation, for each basis function,
the operator corresponding to its center location is applied to the second argument of the basis function. Since we consider
complex operators, we also need to conjugate the operators in order to get a Hermitian matrix in the end. The approximation
then takes the form

s(x) =
Nop
∑

k=1

Nk
∑

j=1

λk
j L

k
ξ
ψ(x , x k

j ).

For the one-dimensional Helmholtz problem, collocation with this ansatz leads to a system of equations with the following
structure







L1
xL

1
ξ
ψ L1

xL
2
ξ
ψ L1

xL
3
ξ
ψ

L2
xL

1
ξ
ψ L2

xL
2
ξ
ψ L2

xL
3
ξ
ψ

L3
xL

1
ξ
ψ L3

xL
2
ξ
ψ L3

xL
3
ξ
ψ











λ1

λ2

λ3



=

 

0
−2iκ

0

!

,

where the block L j
xL

k
ξ
ψ is of size (N j × Nk). To see that the coefficient matrix M really is Hermitian, we can use the following

differentiation rules for the RBFs

∂ n

∂ ξn
ψ(x j , x k) = (−1)n

∂ n

∂ xn
ψ(x j , x k), (13)

∂ n

∂ xn
ψ(x k, x j) = (−1)n

∂ n

∂ xn
ψ(x j , x k). (14)

We can then show for the different blocks in the matrix that the matrix elements satisfy m jk = mk j . As an example, for elements
in the first two off-diagonal blocks we get

L1
xL

2
ξ
ψ(x j , xk) = (−

∂ 2

∂ x2
−κ2)(−

∂

∂ ξ
+ iκ̄)ψ(x j , xk) = (−

∂ 2

∂ x2
−κ2)(

∂

∂ x
+ iκ̄)ψ(x j , xk),

L2
xL

1
ξ
ψ(xk , x j) = (−

∂

∂ x
+ iκ̄)(−

∂ 2

∂ ξ2
−κ2)ψ(xk , x j) = (

∂

∂ x
+ iκ̄)(−

∂ 2

∂ x2
−κ2)ψ(x j , xk).

Apart from the important non-singularity property, limited numerical experiments also show that the conditioning is slightly
better (one order of magnitude) than for the non-symmetric method. However, the error curves, as functions of both x and ε , are
close to identical.

It would be challenging to implement the symmetric collocation method for the two-dimensional problem with DtN boundary
conditions. We would need to apply the non-local operators both to the basis functions and to their derivatives, and we would
need to apply nested non-local operators leading to double integrals for all mode combinations. As the integrals form a large part
of the computational cost, the symmetric collocation method is significantly more expensive than the non-symmetric collocation
method for a given accuracy for the problem sizes we consider.

In the following, we choose to study the properties of the non-symmetric collocation method. We are not using the greedy
method of [32] in our selection of center and collocation points. However, the results we present are in most cases valid both
for coinciding and decoupled center and collocation points. The numerical results that we present are slightly worse than what
we would get in the optimal case, but still represent the performance of the method well. In particular, we use well-distributed
center points, which is a key factor in keeping the condition number of the rather badly conditioned matrices under control.

4 Singularity of the RBF collocation matrix
As already stated, the RBF collocation matrix may become singular with the non-symmetric collocation approach. This becomes
particularly clear for problems with a parameter that can be varied freely as for our Helmholtz examples. For the one-dimensional
Helmholtz model problem, we can in fact show that for any given node distribution (with distinct nodes) there are always
wavenumbers κ that lead to a singular collocation matrix.

To get the equations in an appropriate form for eigenvalue analysis, we multiply the PDE (2) with −1 and the boundary
conditions (3) and (4) with iκ. After collocation with the PDE at the interior points x1

j , and the boundary conditions at the
boundary points, we get a collocation matrix M with elements

m jk =







κ2φk(x1
j ) + φ′′k (x

1
j ), j = 1, . . . , N − 2, k = 1, . . . , N ,

κ2φk(0) − iκφ′k(0) , j = N − 1, k = 1, . . . , N ,
κ2φk(1) + iκφ′k(1) , j = N , k = 1, . . . , N .
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We can express M as a matrix polynomial in κ,
M = κ2A+ κiB + C ,

where A, B, and C are real matrices. Furthermore, A is the usual RBF interpolation matrix. The question of singularity of M can
be posed as a quadratic eigenproblem

(κ2A+κiB + C)v = 0. (15)

For standard RBFs and distinct points, A is non-singular. By introducing w = κv we can then reformulate (15) as a standard
eigenvalue problem

�

0 I
−A−1C −iA−1B

��

v
w

�

= κ
�

v
w

�

.

Solving this problem leads to 2N eigenvalues. That is, values of κ for which the collocation matrix M is singular. Two of the
eigenvalues have to be κ= 0 because of the scaling of the boundary conditions. By conjugating equation (15), we get

(κ̄2A− κ̄iB + C)v̄ = ((−κ̄)2A+ (−κ̄)iB + C)v̄ = 0.

That is, if (κ, v) is an eigenvalue–eigenvector pair, then (−κ̄, v̄) also is. Hence, all eigenvalues with Re(κ) 6= 0 must come in pairs
(κ, −κ̄). Then, there may also be a number of eigenvalues on the imaginary axis. The κ that are of interest in the Helmholtz
problem are such that Re(κ)> 0. We are then left with a maximum of N − 1 potentially interesting wavenumbers that lead to a
singular problem.

In Figure 2, the eigenvalues that lead to a singular system are computed for different problem sizes using multiquadric and
Gaussian RBFs. For multiquadrics, there are no eigenvalues in the region of interest, that is, real wavenumbers with solutions that
are well resolved. The eigenvalues with the largest real part are closest to the real axis. These problems are resolved to 2πN/κ≈
2 points per wavelength, which is the theoretical lowest possible resolution to use for a wave propagation problem. The Gaussian
approximation produces eigenvalues that are closer to the real axis, but also here the eigenvalues with large real part correspond
to badly resolved problems. It should be noted that complex wavenumbers, typically with a significantly smaller imaginary part
than real part, are used in practical applications to model damping within the media that the waves propagate through.
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Figure 2: The wavenumbers that lead to a singular system for the one-dimensional problem using N = 6,8, . . . , 30 from bottom to top, for
multiquadric RBFs with ε = 5 (left) and Gaussian RBFs with ε = 10 (right).

5 The flat RBF limit for PDE problems
The limits of multivariate RBF interpolants as the shape parameter ε goes to zero were analyzed in [24, 47, 30, 49, 29]. The
same type of limits for finitely smooth RBFs were studied in [52, 28]. We also mention the recent article [21], where limits of
linear functionals applied to Gaussian RBF approximations are investigated. The previous results show that the limit behavior is
closely related to polynomial unisolvency [2] on the set of node points. We define

NK ,d =
�

K + d
K

�

, (16)

which is the dimension of the space of polynomials of degree K in Rd . If N = NK ,d , and the node set is unisolvent, then the
(infinitely smooth) flat limit RBF interpolant reproduces the multivariate polynomial interpolant of degree K on these nodes, and
has the form

s(x) = PK(x) + ε
2PK+2(x) + ε

4PK+4(x) + · · · , (17)

where PK(x) is the polynomial interpolant and PK+2 j , j ≥ 1 are zero at the node points.
When we apply the non-symmetric collocation method to a PDE problem, the RBF approximant has the same general form (11),

and we can derive corresponding results for the limit. If the node set fulfills both unisolvency conditions described below, the
limit RBF approximant has the form (17), but here PK(x) is the unique polynomial solution of degree K to the PDE problem, and
PK+2 j have zero PDE residual at the node points. We note that for small shape parameters, the polynomial approximation is the
dominating part of the RBF approximation.
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In order to express the conditions for different limit results, we need to define two matrices, P and Q, from which we can
determine polynomial unisolvency and unisolvency of the discrete PDE problem. Let {p j(x)}Nj=1 be N linearly independent
monomials of minimal degree in d dimensions. For example, for N = 7 and d = 2, we can choose {1, x , y, x2, x y, y2, x3}. If
NK−1,d < N ≤ NK ,d , then the degree of pN (x) is K .

The set of node points {x i}Ni=1 satisfies polynomial unisolvency if there, for any given data at the node points, is a unique
linear combination

∑N
j=1 β j p j(x) that interpolates the data. This is equivalent to non-singularity of the matrix

P =









p1(x1) p2(x1) · · · pN (x1)
p1(x2) p2(x2) · · · pN (x2)

...
...

...
p1(xN ) p2(xN ) · · · pN (xN )









. (18)

In cases where P is singular, we instead construct a minimal non-degenerate basis [24]. Such a basis can be constructed by
choosing N monomials of smallest possible degree under the constraint that they give linearly independent columns in the matrix
P. The highest selected monomial degree M is then also the degree of pN (x). As an example, for N = 5 node points all located
on the line x = y , a minimal non-degenerate basis is {1, x , x2, x3, x4} and M = 4.

Unisolvency of the discrete PDE problem on the set of node points {x i}Ni=1 with respect to {p j(x)}Nj=1 requires a unique linear

combination
∑N

j=1 β j p j(x) that satisfies the collocation conditions

N
∑

j=1

β jLk p j(x
k
i ) = f k(x k

i ), i = 1, . . . , Nk, k = 1, . . . , Nop.

This is equivalent to non-singularity of the matrix

Q =







L1p1(x1
1) · · · L1pN (x1

1)
...

...
LNop p1(x

Nop
NNop
) · · · LNop pN (x

Nop
NNop
)






. (19)

As in [24], we need the RBFs to fulfill three conditions in order to get the results in the theorem given below. We repeat the
conditions and discuss their validity briefly here, but for a full explanation, we refer the reader to [24].

(I) The RBF φ(r) can be Taylor expanded as φ(r) =
∑∞

j=0 a j r
2 j .

(II) The PDE collocation matrix M in system (12) is non-singular in the interval 0< ε ≤ R, for some R> 0.

(III) Certain matrices Ap,J , built from the coefficients a j in the Taylor expansion of φ(r), are non-singular for 0≤ p ≤ d and
0≤ J ≤ K .

Condition (I) is true for all infinitely smooth RBFs that are commonly used. Condition (II) is likely to hold for some value of R,
but the previous section shows that M can become singular at any ε , given a specific combination of PDE problem and node
points. Condition (III) was shown to hold for these RBFs in [30].

The following theorem gives the different possibilities for the limiting RBF approximant as the shape parameter ε → 0.

Theorem 5.1. Assume that the RBF φ(r) fulfills conditions (I)–(III) and that the number of node points satisfies NK−1,d < N ≤ NK ,d .
The degree of a minimal non-degenerate basis for the point set is either K for a unisolvent set or M for a non-unisolvent set. If

(i) P and Q are non-singular, the limit exists and is a polynomial of deg K. If N = NK ,d it is the unique degree K polynomial
solution to the discrete PDE problem, otherwise the final polynomial depends on the choice of RBF.

(ii) P is singular, but Q is non-singular, the limit exists and is an RBF-dependent polynomial of degree M.

(iii) P is non-singular, but Q is singular, divergence will occur unless the right hand side f of system (12) happens to be in the range
of Q. If there is just a single null-space polynomial n(x) of degree K, the divergent term is proportional to ε−2n(x).

(iv) P has a nullspace of dimension m > 0 and Q has a nullspace of dimension p > 0, then if m ≥ p the limit is likely, but not
certain to exist. If it exists it is of degree M. If m< p divergence is likely, but not certain.

The proof builds on the results for RBF interpolation in [24]. The key arguments and differences are pointed out in Appendix A.
The uncomplicated case (i) is of course the most common and the other types are deviations stemming from degenerate node

point configurations or specific combinations of PDE problem parameters and node points that lead to degeneracy. Below, we
give an example of each type of degeneracy for the two-dimensional Helmholtz problem given by (2) and (5)–(7) with m= 1.
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Example (ii): The node set is not polynomially unisolvent

0 1

1

0

The N = 10 points are (1/2,1/2), (1,1/2), and (k/4,0), (k/4,1), k = 0, . . . , 3. The matrix
P has a nullspace defined by n(x) = x2(x2 −

1
2 )(x2 − 1). A non-degenerate basis is given by

{1, x1, x2, x2
1 , x1 x2, x2

2 , x3
1 , x2

1 x2, x1 x2
2 , x4

1} with M = 4. The limit is hence a polynomial of degree
four whose coefficients depend on the choice of RBF. To illustrate what this dependence can look like,
we give the general form of the limit polynomial p(x).

p(x) = β0 + β1 x2 + β2 x1 + β3 x2
2 + β4 x2 x1 + β5 x2

1

+ β6

�

−12a3(x
3
2 + 3x2 x2

1) +
8a2

2

a1
(x3

2 + x2 x2
1)

�

+ β7

�

−12a3(x
3
1 + 3x2

2 x1) +
8a2

2

a1
(x3

1 + x2
2 x1)

�

+ β8

�

−4a3(5x3
1 + 3x2

2 x1) +
8a2

2

a1
(x3

1 + x2
2 x1)

�

+ β9

�

− 4a4(9x3
2 + 36x2

2 x1 + 45x2 x2
1 + 20x3

1 − 24x3
2 x1 − 40x2 x3

1)

+
6a2a3

a1
(3x3

2 + 4x2
2 x1 + 3x2 x2

1 + 4x3
1)−

72a2
3

a2
(x3

2 x1 + x2 x3
1)

�

,

where a j are the Taylor expansion coefficients of the RBF, and β j are the ten unknown coefficients that are determined by the ten
discrete PDE collocation conditions. The result is κ-dependent as well as RBF-dependent.

Example (iii): The node set is not PDE-unisolvent

0 1

1

0

The N = 10 points are (0,0), (1/2,0), (1,0), (0,1), (1/4,1), (1,1), (1/6, (2545− 23
p

9233)/3936),
(1/4, 1/4), (3/4, 1/4), and (3/4, 969/1804). For κ = 4

p
246/9 the matrix Q has a nullspace defined by

q(x) = − 5
32 x2(x2 + 1) + x1

16 (8− 24x1 + 3x2 + 16x2
1 + 4x1 x2 − 7x2

2).

In this case, we get divergence of order ε−2 as ε → 0 for all RBFs that obey conditions (I)–(III). This can be observed not only in
exact arithmetic, but also in for example a double precision numerical simulation. However, if we move just one of the points or
change κ slightly, there is no longer a nullspace. This kind of degeneracy is very rare, since it requires very special combinations
of wavenumber and node points.

Example (iv): Both P and Q have a nullspace

0 1

1

0

The N = 10 points are (0,0), (0,1), (1,0), (1,1) and (1/2, k/5), k = 0, . . . , 5. The matrices P and
Q have a common nullspace of dimension two defined by q1(x) = x1(x1 −

1
2 )(x1 − 1) and q2(x) =

x2(x1 −
1
2 )(x2 − 1). The limit exists and is an RBF- and κ-dependent polynomial of degree M = 5.

A practical implication of this result is that if we use node sets that are not unisolvent, e.g., Cartesian nodes, both PDE
approximation and interpolation are expected to behave poorly in the small shape parameter regime. The condition number of
the linear system is larger than in the unisolvent case, and the result contains a term that diverges as ε → 0.

An important property of interpolation with Gaussian RBFs is that it never diverges [47]. In the PDE case, this property also
holds as long as Q is non-singular. However, it can still be difficult to compute the limit numerically using a stable evaluation
method. The RBF-QR method derived in [15, 13], and further explored for solving PDEs [26] uses pivoting to handle non-
unisolvent cases. This means that a limit can always be computed, but it may be different from the Gaussian limit. The RBF-GA
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method [14] always reproduces the correct Gaussian limit, but instead cannot handle large values of N . To compute limit
approximations for other types of RBFs, the Contour-Padé method [16], see also the further developed version called the RBF-RA
method [54], can be used. It works for any small shape parameter value, but is limited to intermediate values of N .

6 Convergence properties and error estimates
In this section, we investigate errors and convergence properties from different perspectives, as well as quantify how the choice
of shape parameter affects the results. We start by formulating general residual-based error estimates in the following subsection.

6.1 General error estimates using Green’s functions

We define the error function as the difference between the RBF approximant and the exact solution to the PDE problem (1)

e(x) = s(x)− u(x). (20)

In the interpolation case, the error and the residual are the same, and if the function u(x) is known at a point, the corresponding
error can be explicitly computed. In the PDE case, we can compute the residual for each operator, while the error is governed by
the same type of PDE as the solution

Li e(x) = Lis(x)− f i(x)≡ r i(x), x ∈ Ωi , i = 1, . . . , Nop, (21)

where r i are residuals. One way to find the error is to solve the above PDE problem. However, because the residuals are zero at
the collocation points, they are highly oscillatory and more node points are required to approximate the error than to solve the
original PDE.

Instead of solving the error equation, we can formulate a posteriori error estimates in terms of the residual. Writing out the
error PDE for the one-dimensional problem we get

( −∆e(x)−κ2e(x) = r(x),
−e′(0)− iκe(0) = 0,

e′(1)− iκe(1) = 0.
(22)

A Green’s function satisfying the boundary conditions is given by

G(x ,ξ) =
i

2κ
eiκ|x−ξ|, (23)

with
∂ G
∂ ξ
=

�

1
2 eiκ|x−ξ|, x ≥ ξ,
− 1

2 eiκ|x−ξ|, x < ξ,
and ∆ξG = −

iκ
2

eiκ|x−ξ| −δ(x − ξ), (24)

such that −∆ξG −κ2G = δ(x − ξ), which allows us express the error as

e(ξ) =

∫ 1

0

G(x ,ξ)r(x) d x . (25)

We can use this form of the error to formulate an error estimate as

‖e‖∞ ≤
∫ 1

0

|G(x ,ξ)||r(x)| d x =
1

2κ

∫ 1

0

|r(x)|d x . (26)

For the two-dimensional Helmholtz problem in a rectangular domain, the corresponding Green’s function satisfying the boundary
conditions is given by

G(x ,ξ) =
∞
∑

m=1

i
2βm

eiβm |x2−ξ2 |ψm(x1)ψm(ξ1), (27)

with −∆ξG−κ2G = δ(x2 −ξ2)
∑∞

m=1ψm(x1)ψm(ξ1), and with the vertical eigenfunctions ψm(x1) =
p

2sin(mπx1). Similarly as
for the one-dimensional problem we define the error as

e(ξ) =

∫ 1

0

∫ L1

0

G(x ,ξ)r(x) d x1 d x2. (28)

To see how this works, we note that the vertical eigenfunctions form an orthonormal basis, and we can express the residual as

r(x1, x2) =
∞
∑

m=1

〈r(·, x2),ψ
x2
m 〉ψ

x2
m ≡

∞
∑

m=1

rm(x2)ψm(x1). (29)

This allows us to simplify the error expression

e(ξ) =
∞
∑

m=1

i
2βm

∫ 1

0

eiβm |x2−ξ2 |

∫ L1

0

ψm(x1)ψm(ξ1)
∞
∑

n=1

rn(x2)ψn(x1) d x1 d x2

=
∞
∑

m=1

i
2βm

ψm(ξ1)

∫ 1

0

eiβm |x2−ξ2 |rm(x2) d x2 (30)
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To convert this into an error estimate, we first note that for m ≤ µ0 = bκL1/πc, the horizontal wavenumber βm is real, and
|eiβm |x2−ξ2 ||= 1, while for m> µ0, βm is purely imaginary and |

∫ 1

0
eiβm |x2−ξ2 | d x2| ≤ |

∫ 1

0
eiβm |x2−

1
2 | d x2|=

2
|βm |
(1− e−

1
2 |βm |). Then

we get

‖e‖∞ ≤
µ0
∑

m=1

1
p

2βm

∫ 1

0

|rm(x2)| d x2 +
∞
∑

m=µ0+1

p
2

|βm|2
(1− e−

1
2 |βm |)

∫ 1

0

|rm(x2)| d x2

≤
µ0
∑

m=1

1
p

2βm

‖rm‖∞ +
∞
∑

m=µ0+1

p
2

|βm|2
(1− e−

1
2 |βm |)‖rm‖∞. (31)

For the two-dimensional problem in a domain with curved boundaries, we cannot provide an explicit Green’s function. The
horizontal wavenumber and the modal expansion in this case varies with x2. The residual in the error PDE should be understood
as a source function that sends out waves in each direction from each point. For the rectangular duct, the projected residual in an
infinitesimal slice, located at x2 and with width d x2, provides the contribution rm(x2)p

2βm(x2)
d x2 to the total error for a propagating

mode. In the curved case, we use this quantity as a heuristic approximation of the local error contribution, and then integrate
over the horizontal direction to get the global error approximation

‖e‖∞ ≈
∞
∑

m=1

∫

Xℜe
m

|rm(x2)|p
2βm(x2)

d x2

+
∞
∑

m=1

∫

Xℑm
m

p
2

|βm(x2)|2
(1− e−

1
2 |βm(x2)|)|rm(x2)| d x2, (32)

where Xℜe
m = {x2 ∈ [0,1] |ℜe(βm(x2)) > 0} and X ℑm

m = {x2 ∈ [0,1] | ℑm(βm(x2)) > 0}. We evaluate this error approximation
numerically in Section 7 and find that we get surprisingly good results.

6.2 Convergence properties for small ε

As discussed in the previous section, we approach the polynomial limit, s(x) = p(x), as ε → 0. For polynomial interpolation in
one dimension, the interpolation error eI (x) takes the form

eI (x) = u(x)− p(x) =

∏N
j=1(x − x j)

N !
u(N)(ξ),

where ξ ∈ (x1, xN ). For equispaced points, x j+1 − x j = h, this can be estimated by

|eI (x)| ≤
hN

N
max

ξ∈(x1 ,xN )
|u(N)(ξ)|,

see [18, pp. 39–40]. In the PDE case, the residual plays the role of the error. By following the steps for the proof of the polynomial
error [18, pp. 43–44], we can get a similar estimate for the residual.

Theorem 6.1. For a one-dimensional linear PDE problem
( L1u(x) = f 1(x), x1 < x < xN ,

L2u(x) = f 2(x), x = x1,
L3u(x) = f 3(x), x = xN ,

with a polynomial solution p(x) determined through collocation at the nodes x i , i = 1, . . . , N the residual r(x) = L1p(x)− f (x) has
the form

r(x) =

∏N−1
j=2 (x − x j)

(N − 2)!
r(N−2)(ξ),

where ξ ∈ (x1, xN ). For equispaced points, x j+1 − x j = h, this can be estimated by

|r(x)| ≤ hN−2 max
ξ∈(x1 ,xN )

|r(N−2)(ξ)|
§

1 x < x1 or x > xN−1,
1/(N − 2) x1 ≤ x ≤ xN−1.

Proof. Let Ψ(s) = r(s)− r(x)
χ(x)χ(s), where χ(x) =

∏N−2
j=2 (x − x j). Then Ψ(x) = 0 and Ψ(x j) = 0, j = 2, . . . , N − 1, since r(x j) = 0

at all interior node points where the equation is enforced. This means that Ψ(s) has at least N − 1 zeros. By repeated application
of Rolle’s theorem, we find that Ψ(N−2)(s) has at least one zero. That is,

0= Ψ(N−2)(ξ) = r(N−2)(ξ)−
r(x)
χ(x)

(N − 2)!.

Rearranging gives the expression for r(x).
For the interior part of the interval x1 ≤ x ≤ xN−1 the bound on the residual follows from the interpolation bound. For the

end intervals, the absolute value of the product term is largest at the end points, and is given by ΠN−1
i=2 (i − 1)h= hN−2(N − 2)!,

providing the second part of the bound.
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We note that N − 2= h−1 − 1 and use the residual bound in the integral over the absolute value of the residual to get
∫ 1

0

|r(x)|d x ≤ hN−2
�

h+
1− 2h
h−1 − 1

+ h
�

‖r(N−2)‖∞ ≤ 3hN−1‖r(N−2)‖∞. (33)

This bound is not tight. By numerically integrating
∏N−1

j=2 (x − x j)/(N − 2)! for different values of N , we find that the result is
always smaller than hN−1, and that for N ≥ 10 it is smaller than 0.5hN−1.

To see how this can help us in understanding the behavior of the error for small ε , we insert the numerical estimate of the
integral, hN−1, in the error estimate (26) for the one-dimensional Helmholtz problem to get

‖e‖∞ ≤
hN−1

2κ
‖r(N−2)‖∞. (34)

In the flat limit, the residual is r(x) = −p′′(x)− κ2p(x), where p(x) is the limit polynomial of degree N − 1. Then r(N−2)(x) =
−κ2p(N−2)(x). We know that p(x)≈ u(x) = exp(iκx), but even if p(x) is a very good approximation of u(x), p(N−2)(x) (which is
a line) is a rather poor approximation of u(N−2)(x). However, numerical tests indicate that the order of magnitude is right. That

is, |p(N−2)| ≈ | d
N−2 exp(iκx)

d xN−2 | = κN−2. We cannot use this as a bound, but we get an approximate expression for the error in the limit

‖e‖∞ ≈
hN−1

2κ
κ2κN−2 =

1
2
(κh)N−1. (35)

Note that the quantity κh is small only if the problem is adequately resolved.
For the two-dimensional problem, the limit polynomial has degree K if NK−1,d < N ≤ NK ,d and it is zero at the interior node

points. To get an estimate for the residual in terms of its derivatives, we could potentially use a sampling inequality such as [35,
Theorem 3.5], which says that for all h≤ h0

‖r‖∞ ≤ Ckhk
∑

|σ|=k

‖Dσr‖∞, (36)

where h0 depends on the geometry ofΩ. For the unit square, which we are using here, h0 =
1

2kc2
with c2 = 12. In the discretizations

that we use h= 1/(
p

N − 1). Requiring h≤ h0 leads to the following condition k ≤ (
p

N − 1)/24. We want to use the theorem
for k = K − 1, where inverting the expression for NK ,d yields that K = b

p
2
p

N + 1/8− 1.5c. That is, the theorem does not hold
in this case. From practical experience, the result holds also for larger k (larger h), and we will therefore use it to approximate
the residual.

In this case, using that r(x) = −∆p(x)−κ2p(x), and, for |σ|= K − 1, Dσr(x) = −κ2Dσp(x)≈ −κ2Dσu(x), we get

‖r‖∞ ≤ CK−1hK−1κ2
∑

|σ|=K−1

β
σ2
1 α

σ1
1 ≤ CK−1κ

2K(κh)K−1,

Combining the approximate expression for the residual with the error estimate (31) restricted to the first mode (scaled by 1/
p

2)
gives

‖e‖∞ ≈
1

2|β1|
CK−1κ

2K(κh)K−1

Numerical experiments show that KCK−1 = C/(K − 1), provides the appropriate behavior with respect to N (both K and h are
coupled with N). This leads to

‖e‖∞ ≈
Cκ2(κh)K−1

2|β1|(K − 1)
≈ C̃(κh)K ,

where the final expression is just to show that the dimension is similar to that of the one-dimensional error approximation.
Figure 3 shows the computed errors of the one-dimensional and two-dimensional problems for small values of the shape

parameter. The error behavior agrees well with the derived error approximations. For the two-dimensional problem, we also
show that the error expression can be multiplied by a constant to get a very good fit to the actual error. This means that we can
use ‖e‖∞ ≈ C(κh)K a priori with C = 1 to determine the necessary resolution for a given tolerance. Given at least two numerical
solutions, we can also estimate the constant C . The error approximation is most likely to be valid for problems that are almost
rectangular or with mildly varying coefficients, but only for small shape parameter values.

6.3 Convergence properties for larger ε

As shown in [48, 50, 27], the convergence of a PDE approximation can be expressed in terms of the approximation properties of
the interpolant (consistency error) and a stability term. The consistency error of the PDE operator can for example be expressed
as

EL = L(Ih(u)− u),

where Ih(u) interpolates u using a node set with fill distance h. Several authors have derived exponentially converging error
results for RBF interpolation [43, 36, 34, 3, 56, 44]. The first papers are focused on interpolation errors, while [44] also provides
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Figure 3: The computed errors using the Gaussian RBF together with the RBF-QR method for ε = 0.5 (�), ε = 0.25 (+), and ε = 0.01 (◦)
for κ= π, 2π, 4π, 6π, from left to right, together with the approximation ‖e‖∞ ≈

1
2 (κh)N−1 for the one-dimensional problem (left), and for

κ = 1.2π, 2.4π, 4.8π, 7.2π, from left to right, together with the approximation ‖e‖∞ ≈ (κh)K for the two-dimensional problem (right) (dashed
curves). In the one-dimensional case, we also show the error approximation using the numerically computed integral of the product term
(dotted curves), and in the two-dimensional case for κ= 4.8π and 7.2π, we also show the error approximation using C = 1/40 and C = 1/800,
respectively (dotted curves).

estimates for derivatives of functions with many zeros, such as the interpolation error. We use the optimality property of RBF
interpolants in the native space (reproducing kernel Hilbert space) [9]

‖Ih(u)‖N (Ω) ≤ ‖u‖N (Ω),

to replace the interpolation error norm with the function norm, since ‖Ih(u) − u‖N (Ω) = ‖EI‖N (Ω) ≤ 2‖u‖N (Ω). We get the
following estimates for RBF interpolants in compact cube domains using [44, Corollary 5.1] for Gaussians

‖EI‖∞ ≤ eCG log(h)/h‖EI‖NG (Ω) ≤ 2eCG log(h)/h‖u‖NG (Ω),

where CG > 0, and for inverse multiquadrics

‖EI‖∞ ≤ e−CQ/h‖EI‖NQ(Ω) ≤ 2e−CQ/h‖u‖NQ(Ω),

when h≤ h0, and with CQ > 0. The constants CG and CQ depend on the number of dimensions d and properties of the domain Ω.
The results for derivatives of the interpolation error are given for Lipschitz domains, which are more general than compact

cubes, but the results are instead weaker in terms of the convergence rate. From [44, Theorem 3.5], we get

‖EL‖∞ ≤ 2eC̃G log(h)/
p

h‖u‖NG (Ω),

‖EL‖∞ ≤ 2e−C̃Q/
p

h‖u‖NQ(Ω),

for Gaussians and inverse multiquadrics respectively. The higher rate of Gaussian RBFs is related to the behavior of embedding
constants for the native space in relation to Sobolev spaces of increasing order. The constants C̃G and C̃Q depend on properties
of the domain Ω, and C̃Q also depends on L and d. In [45], it is shown that the better convergence rates are obtained also for
derivatives of the interpolation error if the nodes are clustered in a layer close to the boundary.

In order to investigate numerically what the actual behavior of the error is for the Helmholtz problem, we solve the one-
dimensional problem for a range of shape parameter values and different numbers of node points. In this test, we have used
multiquadric RBFs. We assume that the error for multiquadric RBFs has the form

‖e‖∞ = AM exp(−CM f (h)),

where CM > 0, f (h) = 1/h or f (h) = 1/
p

h, and the native space norm has been absorbed into the constant. Then a plot of the
logarithm of the error against f (h) should result in a straight line. From Figure 4, it is clear that f (h) = 1/h is a better fit. The
dashed lines correspond to a fit of the model with f (h) = 1/h to the actual errors, where the results suffering from ill-conditioning
effects have been ignored.

Figure 5 shows the fitted model parameters AM and CM for different shape parameter values. The different curves correspond
to different wavenumbers, and it should be noted that the exponential rate CM becomes independent of the wavenumber when
ε § 0.5. The rate CM also decreases with increasing shape parameter values. The optimal rate is attained for a small positive
shape parameter value, and for even smaller shape parameters, the asymptotic (polynomial) rate is dominating. The coefficient
AM instead seems to be largest where the rate is optimal, and smallest where the rate is lowest, which makes it harder to determine
the best shape parameter value. We discuss this further in the following subsection.
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Figure 4: The error in the one-dimensional Helmholtz solution when multiquadric RBFs are used as a function of 1/h (left) and 1/
p

h (right)

for shape parameters ε = 10−2+ 4
9 q , q = 1, . . . , 9 (left to right). The dashed black lines/curves correspond to a fit of ‖e‖∞ = AM exp(−CM/h) to

the error data (in both cases). The computations were performed in quad precision and the Contour-Padé method [16] was used for the three
smallest shape parameters.
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Figure 5: The result of fitting the model parameters AM and CM to the computed errors for the one-dimensional Helmholtz problem using
multiquadric RBFs and different values of the shape parameter ε , and for κ= π (solid line), κ= 2π (dashed line), κ= 4π (dash-dot line), and
κ= 6π (dotted line).

6.4 Convergence as a function of the shape parameter

Dependence on the shape parameter is not discussed in [44], and the results reported in the previous subsection hold for a fixed
value of ε . However, using a shape parameter ε0 6= 1 for an interpolation problem defined in the domain Ω with fill distance
h is equivalent to using a shape parameter ε1 = 1 for a problem in the scaled domain ε0Ω with fill distance ε0h. This can be
understood by noting that φ(ε0‖x i − x j‖) = φ(1 · ‖ε0 x i − ε0 x j‖). Hence, the native space norm is the same in both cases, and
the errors are the same in both cases.

If we let the constants AM and CM in the error estimate for a specific domain Ω and shape parameter ε be denoted by AM (Ω,ε)
and CM (Ω,ε), this means that

AM (Ω,ε)e−CM (Ω,ε )/h = AM (εΩ, 1)e−CM (εΩ,1)/(εh). (37)

That is, the convergence rate in terms of h for a fixed value of ε is larger when ε is small. This can also be seen in Figure 5, where
the slope in the logarithmic plot of CM against ε is approximately equal to −1. It should be stressed that this does not hold in the
flat limit regime, only for ε § 0.5 (in our case). This also corresponds to the theoretical result given in [34], where an explicit
constraint on the smallest shape parameter for which the results hold is given as ε ≥ 1/D, where for a cube domain, D is the side.
This coincides well with the numerical results. However, there is also an upper bound ε ≤ 1, which is harder to reconciliate with
what we observe.

Figures 6 and 7 show the error as a function of ε for two one-dimensional problems, and one two-dimensional problem,
respectively. The error curves represent a common behavior for smooth solution functions. Starting from a large shape parameter
and moving towards smaller values, the error first decreases rapidly then reaches an optimal region, and finally levels out at the
polynomial approximation error, see [24] for a more detailed discussion about the error curve and the optimal shape parameter.
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Due to the conditioning problems for decreasing values of ε and increasing values of N , a common approach in the literature
is to scale the shape parameter such that, e.g., εh = C , which is called stationary interpolation. A problem is that stationary
interpolation does not converge as h goes to zero. This can be understood by again looking at analogous problems. If we start
from a problem on the domain Ω with shape parameter ε and fill distance h, and we refine to get fill distance h/q and shape
parameter qε , then the equivalent problem is (qΩ,ε , h). That is, the refinement corresponds to stretching out the domain, while
keeping the fill distance and shape parameter constant. This makes the apparent solution function become increasingly smooth,
and approaching a constant. Since constants are only reproduced for ε = 0 for the commonly used infinitely smooth RBFs,
there is no convergence for a fixed non-zero ε . By augmenting the RBF approximation with polynomial terms, convergence
corresponding to the polynomial order can be recovered also in the stationary case [11].

The convergence curves when choosing the shape parameter as ε = Chβ for different exponents β are shown as dashed lines
in Figures 6 and 7. As expected, the stationary choice, β = −1 levels out as N increases. For β > −1 we get convergence along
different paths. The choice β = 0 corresponds to the exponential convergence case for fixed shape parameter values. For these
Helmholtz problems, the curve with ε = Ch3/2 captures the optimal shape parameter values well. For other types of problems,
the relation would look different.

10
-2

10
0

10
2

10
-15

10
-10

10
-5

10
0

10
-2

10
0

10
2

10
-15

10
-10

10
-5

10
0

Figure 6: The maximum error as a function of ε for κ = 2π (left) and κ = 4π (right) using multiquadric RBFs. The number of node points is from
top to bottom N = 6, 7, . . . , 21, 30, 40, . . . , 100, 200, 300, 400 in the left subfigure, and N = 10, 11, . . . , 20, 30, . . . , 100, 200, 300, 400 in the right
subfigure. The dashed lines show how the error curves are traversed if the shape parameter is chosen as ε = Chβ , with β = 3

2 , 1
2 , 0,− 1

2 ,− 3
4 ,−1,− 3

2
from left to right. The computations were performed in quad precision and the Contour-Padé method [16] was used for small shape parameter
values.

For the two-dimensional problem, the curves are more irregular due to several interacting terms in the error [24]. However,
the overall behavior for the different ways to choose the shape parameter is very similar to the one-dimensional case.

Assuming that CM (εΩ, 1) in (37) does not vary strongly with ε , something that can be verified by noting that the slope the
line in Figure 5 for CM is approximately equal to −1, we can finally provide a convergence rate for the scaled ε convergence case.
If we have exponential convergence as 1/εh and ε = Chβ we end up with

‖e‖∞ = AεM e−CεM /h
β+1

, −1< β ≤ 0, (38)

where CεM > 0 and the superscript indicates the potential ε-dependence. If β > 0, the convergence curves may enter the
polynomial region, and we cannot in general get increasing convergence rates for increasing β . The validity of this expression is
further investigated numerically in Section 7.

7 Numerical experiments
In this section, we focus on the third test problem with curved boundaries, see Figure 1. We look at how to choose the method
parameters and how we can use the theoretical estimates to interpret the results. Unless otherwise mentioned, the problem
parameters are given by wavenumber κ= 6π, source location xs = 0.3, and boundary curves

γ1 = 0.3exp(−20(x2 − 0.5)2),
γ2 = 0.8− 0.3

�

exp(−80(x2 − 0.3)2) + exp(−80(x2 − 0.7)2)
�

.

For global RBF approximations and shape parameters that are not in the flat limit a uniform node spacing is in general
recommended [41]. However, when the problem size is large enough, there can instead be problems at the boundaries unless the
nodes are clustered towards the boundaries [42, 13]. In our experiments, we do not reach the regime where this is an issue.
Therefore, we use quasi uniform nodes. The nodes are constructed from the input parameters n1 and n2, that specify the number
of nodes in the vertical direction at the left boundary, and the number of nodes in the horizontal direction. We define the step
sizes h1 = 0.8/(n1 − 1) and h2 = 1/(n2 − 1). Based on these step sizes, the nodes are then placed uniformly along vertical lines
with as similar node distance as possible. The nodes at the top and bottom boundaries are placed with uniform arc length. If the
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Figure 8: Node points with n1 = 20 and n2 = 25 (left) and the evaluation grid with 60× 60 points used for the convergence experiments (right).

nodes are too regular, they are not unisolvent, and the conditioning gets higher at least for shape parameters that are small [24].
Therefore, we add a random perturbation to each node. In all experiments performed here, the size of the random perturbation
is 0.25(h1, h2) for the interior nodes, while boundary nodes are only perturbed along the boundary. The solution, residual, and
errors are evaluated on a grid. An example of both nodes and evaluation grid is given in Figure 8. The resulting numbers of node
points for the grids we have used in the experiments are shown in Table 1.

Errors are measured against a reference solution computed using the largest node set with n1 × n2 = 100× 125. This is the
largest problem size that fits in the memory of the Dell Latitude E6230 laptop with an i5-3360 dual core CPU running at 2.8 GHz
that was used for the experiments. When we refer to the maximum norm of the numerical errors or the solution, we evaluate
them on the 60× 60 evaluation grid, except for the solutions with higher wavenumbers, where we use 100× 100 grid points. We
use multiquadric RBFs in all numerical experiments. No stable methods are used here. The MATLAB implementations of the
solvers that were used in the experiments are available at the first author’s software page.

7.1 Selecting a tolerance for constructing the DtN boundary conditions

As mentioned in Section 3.1, we need to compute N inner products with each vertical eigenmode ψm present in the problem at
the two vertical boundaries. Accurate numerical computation of these integrals is a significant computational cost, e.g., up to
n f = 1700 function evaluations per integral are needed for tolerance 1e− 15. The question is which tolerance to choose.

The sensitivity of the problem (ill-conditioning) depends strongly on the shape parameter ε with an exponentially increasing
condition number as the shape parameter goes to zero. By using a stable evaluation method such as RBF-QR for Gaussian RBFs,
the sensitivity is removed and the tolerance for the integrals does not need to be smaller than the desired error in the solution.
However, for the test problem considered here, too small values of ε , leading to a global polynomial approximation is not an
appropriate choice, and we are not able to use RBF-QR.
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Table 1: The size N of the different node sets that are used in the experiments. The parameters n1 and n2 are chosen to make h1 and h2 as equal
as possible.

n1 × n2 10× 12 11× 14 12× 15 13× 16 14× 17 15× 19 16× 20
N 104 131 152 174 194 235 261

n1 × n2 17× 21 18× 22 19× 24 20× 25 22× 27 24× 30 26× 32
N 287 317 362 396 462 563 639

n1 × n2 28× 35 30× 37 32× 40 34× 42 36× 45 38× 47 40× 50
N 747 844 971 1079 1219 1341 1493

n1 × n2 50× 62 60× 75 70× 87 80× 100 90× 112 100× 125
N 2294 3306 4434 5813 7300 9029

Table 2 shows the average number of function evaluations needed by MATLAB’s quadl to approximate one integral to a
prescribed absolute tolerance for different values of the shape parameter ε for a node set with n1 × n2 = 30× 38. The bold faced
entries in the table show the largest tolerance that can be used before the approximation changes significantly. The tolerance is
much smaller than the absolute error in the solution, which is about 0.5 compared with the reference solution. The condition
numbers computed by MATLAB are between 1 · 1017 for ε = 5 and 1 · 1011 for ε = 12. For larger N , the ill-conditioning also
increases, so we expect that even smaller tolerances are needed in this case.

Table 2: The average number of function evaluations for approximating one integral of the type in (9) using quadl for multiquadric RBFs. Bold
faced numbers show the largest tolerance that does not significantly alter the result. The relative error against the reference solution is also given.
A × indicates that the approximation had an error of the same order as the size of the solution.

Tolerance 1e−4 1e−6 1e−8 1e−10
ε = 5 33 × 52 × 97 × 164 2.5e−1
ε = 6 34 × 54 × 102 1.4e−1 168 1.4e−1
ε = 7 35 × 56 6.3e−1 106 6.1e−2 173 5.9e−2
ε = 8 36 × 58 6.6e−2 109 5.2e−2 180 5.2e−2
ε = 9 36 × 59 6.0e−2 112 5.0e−2 187 5.0e−2
ε = 10 36 × 60 5.0e−2 114 5.0e−2 193 5.0e−2
ε = 11 37 3.5e−1 62 5.1e−2 115 5.1e−2 198 5.1e−2
ε = 12 37 7.9e−2 63 5.2e−2 117 5.2e−2 202 5.2e−2

7.2 Choosing the starting value for the shape parameter

To solve a large scale problem efficiently it pays off to choose the shape parameter carefully, since it does not affect the cost, only
the accuracy. As was discussed in Section 6.4, a practical way to achieve convergence in spite of the ill-conditioning is to choose
the shape parameter as ε = Chβ , with β > −1. We are going to use β = −1/2, which provides a trade-off between convergence
rate and conditioning problems. Then we need to decide which C to use.

Compared with the full solution, it is not so expensive to solve a much less resolved problem a few times for different shape
parameters. A related approach was used for estimating the shape parameter in [6]. We want to test if the residual-based error
approximation (32) can help us find the best shape parameter value for such a problem, and from there the C to use. We also try
the `2-norm of the residual as an indicator, since the residual should be small when the error is small. The maximum norm of the
residual was also tested, but did not correlate strongly with the error. Figure 9 shows the relative error approximation as well as
the relative `2-norm of the residual together with the actual relative error against the reference solution. In the first example, the
shape parameter values corresponding to the smallest error approximation, εapp, and the smallest residual norm, εres, are both
close to the actual minimum ε∗. In the second example, the minimum for the error approximation is a bit higher than the true
value. Note that in the left subfigure, for large shape parameters, the error approximation underestimates the actual error. In our
experiments, this only happened for small N and large actual errors.

Table 3 gives the minimal shape parameter values for ten different (small to medium) problem sizes. In most of the cases the
error approximation, the residual estimate, or both are close to the true value. We have also computed the C-values corresponding
to the average of the two estimates. If we had solved only the first problem, we would have chosen C = 1.5. This is what we have
used for the convergence experiments in the following subsection. We also tried C = 1, but then the ill-conditioning prevented us
from solving the largest problems.

An alternative method to find a good shape parameter value is to use the leave-one-out cross validation method. It was first
introduced for RBF interpolation methods [46], and a cost effective version of the method was derived in [57]. It was suggested
to use LOOCV for PDE problems using the residual as error indicator in [5], and this was implemented in [10]. We tried to use
residual-based LOOCV on the Helmholtz problems in this paper, but the preliminary results were not close enough to the optimal
values, and we therefore decided to use the error approximation instead.
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Figure 9: The error approximation (32) (×), the `2-norm of the residual (dotted line) and the error against a highly resolved reference solution
(◦) for the 10× 12 (left) and 40× 50 (right) node sets. The minima are indicated by black squares.

Table 3: The optimal shape parameter for the error against the reference solution ε∗, the error approximation εapp, and the `2-norm of the
residual εres and the constant C̃ implied by the average of the two estimates for different problem sizes.

n1 × n2 10 × 12 11 × 14 12 × 15 13 × 16 14 × 17
ε∗ 4.8 4.6 5.7 4.6 7.0
εapp 5.1 6.7 8.7 6.7 3.2
εres 4.8 5.4 7.4 5.4 3.7
C̃ 1.5 1.7 2.2 1.6 0.9
n1 × n2 15 × 19 16 × 20 20 × 25 30 × 37 40 × 50
ε∗ 7.4 4.8 9.7 9.2 9.7
εapp 7.8 6.0 9.2 13.3 13.3
εres 6.3 5.4 7.0 9.7 10.2
C̃ 1.7 1.3 1.7 1.9 1.7

7.3 Convergence experiments

Here, we use the relation ε = C/
p

h = 1.5/
p

h to run a convergence experiment. We solve the test problem for different problem
sizes and compute the error approximation and the error against the reference solution. According to equation (38), with this
choice of shape parameter scaling, the error should be of the form

‖e‖∞ = AM exp(−CM/
p

h).

In Figure 10, we plot the relative error and the relative error approximation (32) against 1/
p

h. A line has been fitted to the data
set, and it is clear from the picture that it is a good fit of the convergence trend. The slopes CM are 0.78 for the error and 0.75 for
the error approximation, which means that the error approximation gives very good results for the ratio of errors at different
resolutions, even if the constant is not precise. The constant AM is 3.0 times larger for the error approximation than for the error.
Based on the curves in Figure 9, we expect AM to be problem and/or parameter dependent.

If we compare the error reduction from the smallest to the largest problem size with what we would get with an algebraically
converging method where the error is O(hp), a reduction in error with a factor 242 for a step size reduction of 10 corresponds to
p = 2.4. That is, even if we have exponential convergence, the overall error reduction is not that impressive. However, the small
numbers of points we can use, while still getting reasonable results are impressive. The smallest problem has 12 points in the
horizontal direction, which corresponds to 4 points per wavelength. A rule of thumb for a finite difference method is that at least
15 points per wavelength, that is 45 for this problem, are needed for geometric resolution. For the largest problems, the tolerance
for the quadrature had to be lowered. The small perturbations introduced by the inexact quadrature with tolerance 1 · 10−10 are
enough to prevent the convergence curve from following the straight line, and the convergence rate then seems to decrease.
These experiments were run using tolerance 1 · 10−14.

In the right subfigure of Figure 10, the `2-norm of the residual is plotted together with the same relative error results. Even
though the residual norm gives reasonable estimates for the optimal shape parameter, it is clear that we cannot use it to follow
the error trend.

7.4 Experiments with larger wavenumbers

We have also solved problems with larger wavenumbers as this usually is a challenge for wave propagation problems. For
these problems κ= 12π and 24π, corresponding to 6 and 12 wavelengths along the duct. The solution functions are shown in
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Figure 10: The relative error approximation (32) (×) and the error against the reference solution as a function of 1/
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the optimal shape parameter values. The dashed lines represent lines fitted to the data points.

Figure 11.
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Figure 11: The solution function for κ= 12π (left) and κ= 24π (right). The solution is computed using nodes with n1 × n2 = 50× 62. The
source is located at the left boundary at xs = 0.3.

These solutions have 9 and 19 propagating modes at the left boundary, respectively. A problem here was to compute the inner
products with the eigenmodes to high enough accuracy. The accuracy of the boundary conditions is crucial to get the correct
wave pattern. We were not able to run the simulations for κ= 24π for a larger problem size than 50× 62 (with good results).
The same shape parameter scheme as for the convergence experiment was used.

For each problem, we ran three different problem sizes in order to get an estimate of the errors in the solutions. Then we
computed the relative errors of the coarser solutions with respect to the finest solution. The computed errors are compared with
the error estimate (32) to find the approximate ratio between real errors and estimate. Then we use the worst case ratio to project
an error estimate also for the finest solution. The results are shown in Tables 4 and 5, indicating around 1% error for κ= 12π
and around 12% error for κ= 24π. The numbers of points per wavelength are 75/6=12.5 and 62/12≈ 5.2, respectively. For
the problem with κ= 6π and the same two node sets, we had 0.6–0.7% error and 21–25 points per wavelength. If we look at
the error for 5 points per wavelength for κ= 6π, it is around 20%. That is, it seems that we do not need to resolve more with
increasing frequency. For finite difference and finite element methods the error in a waveguide Helmholtz problem is typically
proportional to hpκp+1 [1, 38, 25]. This effect diminishes as the order of the method increases, and for a spectral method it
disappears. This is consistent with the results for small ε in Section 6.2, where the error approximations are proportional to
(κh)K .
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Table 4: The relative error in relation to the finest solution, the relative error estimate, the ratio, the adjusted error estimate, and the local slope
for the problem with κ= 12π.

n1 × n2 ‖e‖∞/‖u‖∞ ‖ẽ‖∞/‖u‖∞ ‖ẽ‖∞/‖e‖∞
‖ẽ‖∞
‖u‖∞

/min ‖ẽ‖∞‖e‖∞
CM

40 × 50 0.0435 0.3083 7.1 0.0435 −
50 × 62 0.0240 0.1781 7.4 0.0251 0.66
60 × 75 − 0.0699 − 0.0099 1.2

Table 5: The relative error in relation to the finest solution, the relative error estimate, the ratio, the adjusted error estimate, and the local slope
for the problem with κ= 24π.

n1 × n2 ‖e‖∞/‖u‖∞ ‖ẽ‖∞/‖u‖∞ ‖ẽ‖∞/‖e‖∞
‖ẽ‖∞
‖u‖∞

/min ‖ẽ‖∞‖e‖∞
CM

30 × 37 0.3842 1.4909 3.9 0.3842 −
40 × 50 0.1292 0.7941 6.1 0.2047 0.64
50 × 62 − 0.4756 − 0.1226 0.62

8 Discussion
The main benefits of using global RBF methods for solving Helmholtz-type problems are that very few points per wavelength are
needed to obtain a qualitatively correct solution, and that the number of points per wavelength does not need to increase with κ
(the number of wavelengths). It is also relevant that non-trivial waveguide geometries can be managed easily, since there is no
need for an orthogonal or even a structured grid. In [38, 25], we used orthogonal grids, which limits how much the boundaries
can vary. It should be mentioned that the DtN boundary conditions assume a smooth continuation with horizontal boundaries
outside of the domain. In our example, the derivative of the boundary curves is non-zero at x2 = 0, 1, which introduces an error.
However, since we got optimal convergence rates in the experiments, these errors are not large enough to influence the results at
the level of errors that we could reach.

The main challenge of using a global RBF method for a PDE problem is the computational cost. In Helmholtz applications it
is of interest to solve problems that are large in terms of wavelengths, and therefore require a certain resolution. With a dense
linear system, both the storage requirements and the computational cost for a direct solver quickly become difficult to manage at
least without using distributed computing. On top of that, the severe ill-conditioning of the linear systems makes them sensitive
to numerical errors in the quadrature employed in DtN conditions as well as to rounding errors. An attractive alternative to
using global RBF collocation methods is to use localized methods such as RBF-generated finite differences (RBF-FD) [12] and
RBF partition of unity methods (RBF-PUM) [27]. In [51] it was shown that for an option pricing application, there was no
significant difference in accuracy between the global method and RBF-PUM for a given problem size, while the computational
cost is significantly lower for RBF-PUM due to sparsity of the linear systems.

We compared the non-symmetric and symmetric collocation approaches and found that the symmetric method, even though
elegant, becomes cumbersome especially for non-trivial operators. The main benefit of the symmetric collocation is the guaranteed
non-singularity of the interpolation matrix. However, for the non-symmetric method, singularity only occurred for wavenumbers
that were physically uninteresting or for problems that were numerically unresolved. Furthermore, if a greedy method is used for
the selection of center points and collocation points, then also the non-symmetric method is guaranteed to lead to non-singular
matrices and convergence as h is refined [32].

We investigated the error behavior as a function of N and ε from different perspectives. Some of this can be explained by the
limit behavior. We studied the limits for interpolation in [24], but here we looked at what is different for PDE problems. If the
node set is unisolvent and PDE unisolvent, the limit RBF approximant has the form s(x) = PK(x) + ε2PK+2(x) + . . ., where PK(x)
is the unique polynomial solution of degree K to the PDE problem, and PK+2 j have zero PDE residual at the node points. When ε
is small, PK(x)− u(x) dominates the error. This is the flat region in the error as a function of ε , see Figures 6 and 7. Then as ε
starts to grow, there may be an optimal ε -range where the additional terms improve on the polynomial error, but eventually, the
ε-terms dominate the error, and the exponential convergence rate depends mainly on ε and not on the problem, see Figure 5.

A contribution that we think is novel and of practical interest is the discussion about convergence for scaled shape parameters.
We provide arguments for why ε = Chβ should lead to a convergence rate of the form e−CM /h

β+1
, and show that this is what we

also get numerically for β = −1/2.
Another practical contribution is that we have shown that given a reasonable error estimate, we can decide on a good choice

for the shape parameter based on a small test problem. Then using a converging shape parameter strategy, we can solve the real
problem, and also based on a comparison of error estimates and errors against the finest solution, we can get an improved error
estimate for the solution of the most resolved problem.

Even though global collocation methods are not really practical for large scale problems, many of the things we have learned
can be transferred also to localized methods, as these are based on ‘local global collocation’.
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A Proof sketches
In order to save space and not repeat already published material, we do not give the full proof for Theorem 5.1 here, instead
we give instructions on how to carry out the proof using the machinery laid down in [24, pp. 122–127]. Because the RBF
approximant in the PDE case has exactly the same form as the usual RBF interpolant, we get the exact same expansion [24,
Eq. (28)] of the solution for small ε

s(x ,ε) = ε−2K(ε−2q P−q(x) + · · ·+ ε2K PK(x) + · · · ). (39)

What differs from the interpolation case is the conditions that the polynomials must fulfill. In the PDE case we have that

PK satisfies the inhomogeneous PDE and
boundary conditions at the N node points,

Pj , j 6= K satisfy the homogeneous PDE and
boundary conditions at the N node points.

(40)

The proof of part (i) is completely analogous to the proofs of Theorems 4.1 and 4.2 in [24]. For part (iii), we follow the steps in
the proof of Theorem 4.1. For simplicity, we first assume that the nullspace n(x) of the matrix Q defined in (19) is of degree K .
The steps are identical until the point were we are considering the conditions for P−q+K . There are three possibilities

• If q = 0, then the polynomial is PK and must satisfy the PDE. However, since the matrix Q is singular, this can only happen
in the (unlikely) case that the right hand side f is in the range of Q.

• If q > 0 and P−q+K is identically zero, then the moment vector σ−q is zero, leading to λ−q, because of the non-singularity of
P. This means that we could have omitted the −q term in the expansion and we must have q = 0. This is in conflict with
the previous case.

• Then we must have q > 0 and P−q+K must contain a nullspace component αn(x). This means that we have at least one
divergent term in the expansion of the solution.

If there is just a single nullspace component of degree K, and extending Q with an appropriate monomial of degree K + 1
leads to rank(Q) = N , then at the next step looking at P−q+1+K we get the two possibilities α= 0, which has been ruled out, or
P−q+1+K = PK . Hence, we must have q = 1 and divergence of order ε2.

If the nullspace is of lower degree than K , we will also get divergence, but the negative power of ε could be higher.
The argument behind part (ii) is that we need to go to the polynomial P−q+M before we have enough degrees of freedom to

satisfy the discrete PDE problem. Therefore, the limit must have degree M . However, because Q is non-singular, all previous
polynomials must be identically zero and accordingly there can be no divergence. Compare with the proofs of Theorems 4.2
and 4.3.

For part (iv) of the proof, we follow the proof of Theorem 4.3. The important difference is that the relation between the
moments is determined by the nullspace of P, but the possible nullspace parts in the polynomials P−q+J are determined by the
nullspace of Q. In [24], we arrive at an equation C T B−1Cα= 0. The corresponding equation here becomes

C T B−1Dα= 0, (41)

where C is of size n×m and D has dimensions n× p. To be precise, at step J of the proof, m is the dimension of the J -degree
part of the nullspace of P and p is the corresponding dimension for Q.

If m = p, the system (41) is square, but non-singularity cannot be guaranteed when C and D are different. If m> p, the system
is over-determined and it is likely that the only solution is α= 0. If on the other hand, m< p the system is under-determined,
allowing for non-zero nullspace components in the expansion polynomials.

If n(x) defines a nullspace component for P, then p(x)n(x) defines a higher degree nullspace component using any polynomial
p(x). Therefore, the dimension m typically grows with J . However, there is no similar mechanism for the nullspace of Q (since
Ln(x) = 0 does not generally imply L(p(x)n(x)) = 0). Accordingly, the dimension p is likely to stay the same or decrease with J .

These facts taken together lead to the statements in part (iv). We use the formulation likely, since it should be theoretically
possible to construct counter examples in both the convergent and the divergent case.
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