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Abstract

The Structural Similarity index (SSIM) is a very popular tool for the evaluation of the similarity between
two images. In this work, we extend it by introducing the continuous SSIM (cSSIM) index. Then,
focusing on Radial Basis Function (RBF) interpolation, we provide theoretical results concerning the
convergence rate of a RBF interpolant in terms of the cSSIM index. The theoretical findings are then
confirmed by numerical experiments.

1 Introduction
The Structural Similarity index (SSIM) [10] is widely-employed in assessing the similarity between two images. Indeed, in several
studies, it proved to perform better than other standard metrics, such as the mean-squared error, in evaluating the perceived
quality of image reconstruction methods. Therefore, in recent years such an index has been proposed and adapted to different
frameworks, as in e.g. [8, 7], and much work has been devoted to the analysis of its mathematical properties and to the study of
related metrics [1]. Moreover, SSIM-based loss functions have been considered in the field of supervised machine learning [12].

Due to its increasing popularity, it has been also considered in the context of 2D function approximation, since the target
function to be recovered may be interpreted as an image in many applications [3, 5]. However, detailed analyses of the asymptotic
behavior of the SSIM index in interpolation processes are still lacking and have never been taken into consideration.

In this work, we consider the SSIM index in the framework of Radial Basis Function (RBF) interpolation, where the interpolant
is built upon (strictly) positive definite radial kernels; we refer to [6, 11] for a complete discussion.

After introducing the continuous SSIM (cSSIM) index, which is directly derived from the standard SSIM score, we investigate
the convergence of an RBF interpolant towards the related underlying function in terms of the cSSIM index.

The results obtained in Section 3, which show that the rate of convergence is directly linked to the regularity of the kernel,
are then confirmed by numerical tests carried out in Section 4.

2 RBF interpolation
Let Ω⊆ Rn n≥ 1 be bounded and let X = {x i , i = 1, . . . , N} ⊂ Ω be a set of distinct nodes. Let F = { fi = f (x i), i = 1, . . . , N} be
the set of function values associated to X , which is obtained by sampling some (unknown) function f : Ω−→ R. The scattered
data interpolation problem consists in approximating f by means of a function r : Ω −→ R which satisfies the interpolating
conditions

r(x i) = fi , i = 1, . . . , N . (1)

Here, we look for r ∈ span{κ(·, x i), x i ∈ X }, where κ : Ω×Ω−→ R is a strictly positive definite, radial and symmetric kernel.
In this case, the interpolation problem (1) admits a unique solution and the resulting kernel-based interpolant takes the form

r(x ) =
N
∑

i=1

ciκ(x , x i), x ∈ Ω.

More precisely, the vector of coefficients c = (c1, . . . , cN )ᵀ is obtained by solving the linear system Kc = f , where K ∈ RN×N ,
Ki j = κ(x i , x j), i, j = 1, . . . , N is the so-called kernel matrix and f = ( f1, . . . , fN )ᵀ is the vector of function values.

We recall that, since κ is radial, there exists a univariate function ϕ : [0,∞)−→ R such that

κ(x , y) = ϕ(‖x − y‖2) = ϕ(r),

where r = ‖x − y‖2 and ‖·‖2 is the Euclidean norm on Rn.
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Furthermore, we associate to κ a Reproducing Kernel Hilbert Space (RKHS) Nκ(Ω), also called the native space, which is
defined as the completion of the pre-Hilbert space

Hκ(Ω) = span{κ(·, x ), x ∈ Ω},

equipped with the bilinear form (·, ·)Hκ(Ω), with respect to the norm || · ||Hκ(Ω).
The accuracy of the interpolation procedure can be expressed in terms of the so-called fill distance, which is defined as

h= hX ,Ω = sup
x∈Ω

min
xi∈X
‖x − x i‖2.

Indeed, we have the following result.

Theorem 2.1 ([6, Theorem 14.5, p. 121]). Let Ω⊆ Rn be bounded and suppose that it satisfies an interior cone condition. Moreover,
let κ ∈ C2k (Ω×Ω) be a strictly positive definite kernel. Then, there exist positive constants h0 and C, independent of x , f and κ,
such that

| f (x )− r (x ) | ≤ Chk
X ,Ω

p

Cκ (x )‖ f ‖Nκ(Ω), (2)

provided hX ,Ω ≤ h0 and f ∈Nκ(Ω), where

Cκ (x ) = max
|β |=2k

 

max
w ,z∈Ω∩B(x ,c2hX ,Ω)

�

�

�Dβ2 κ (w , z)
�

�

�

!

,

with B
�

x , c2hX ,Ω

�

denoting the ball of radius c2hX ,Ω centred at x , where c2 is derived from [6, Theorem 14.4, p. 120].
Remark 1. Referring to (2) and denoting the uniform error as
E f ,r := supx∈Ω | f (x)− r(x)|, for any x ∈ Ω we can express the interpolation error as

r(x ) = f (x ) + u(E f ,r)

where u(E f ,r) =O(E f ,r) as E f ,r → 0 and thus, since E f ,r =O(hk) as h→ 0,

r(x ) = f (x ) + ū(h)

where ū(h) =O(hk) as h→ 0. This formulation will be useful in our analysis.
We point out that the error bound in Theorem 2.1 can be refined for specific kernels. For example, considering the C k-

Wendland kernel or the C k-Matérn kernel, which are defined e.g. in [11, Definition 9.11, p. 128] and [6, Section 4.4, p. 41]
respectively, we have that (see [6, Example 15.4 & Example 15.5, p. 126])

| f (x )− r(x )| ≤ Ch(k+1)/2
X ,Ω ‖ f ‖Nκ(Ω), (3)

where C is a positive constant. Moreover, specific error bounds for discontinuous kernels have been derived in [4].

3 Convergence in terms of cSSIM index

3.1 Extending the SSIM index

Let X , Y ∈ Rp×q
≥0 , p, q ∈ N be positive-valued matrices representing two images. We consider the SSIM index defined as in [10]

SSIM(X , Y ) =
2µXµY + c1

µ2
X +µ

2
Y + c1

·
2σX ,Y + c2

σ2
X +σ

2
Y + c2

, c1, c2 > 0, (4)

where µX ,µY are the sample mean of X and Y respectively, while σ2
X ,σ2

Y and σX ,Y are the sample variances and covariance.
Instead of directly considering the whole images, we point out that the SSIM index is usually obtained by computing (4) on

many local windows, then pooling the resulting indices by taking, for example, the mean value. Moreover, the constants c1, c2
have been introduced for stability purposes and they are chosen to be small positive numbers.

It can be proved that −1 < SSIM(X , Y ) ≤ 1, with SSIM(X , Y ) = 1 if and only if X = Y . Furthermore, we observe that
both SSIM(X , Y ) and the related dissimilarity measure DSSIM(X , Y ) := 1− SSIM(X , Y ) are not valid metrics, though various
SSIM-based distances can be derived; we refer to [2] for a detailed discussion.

Here, we give an extension of (4) for real positive-valued functions. More precisely, letting f , g : Ω−→ R≥0, f , g ∈ L2(Ω), we
consider the expressions

µ f =
1

meas(Ω)

∫

Ω
f dx ,

σ f ,g =
1

meas(Ω)

∫

Ω
( f −µ f )(g −µg) dx ,

σ2
f = σ f , f ,

where meas(Ω) is the standard Lebesgue measure of the set Ω. Then, we define the cSSIM index between f and g as

cSSIM( f , g) :=
2µ f µg + c1

µ2
f +µ

2
g + c1

·
2σ f ,g + c2

σ2
f +σ

2
g + c2

, c1, c2 > 0. (5)

We observe that the cSSIM index is indeed a continuous extension of the original SSIM, since important properties such as
−1< cSSIM( f , g)≤ 1 and cSSIM( f , g) = 1 if and only if f = g a.e. still hold.
Moreover, even if in Section 4 we focus on the case n= 2, the cSSIM index may be considered in any dimension n ∈ N, n≥ 1.
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3.2 Convergence analysis

In what follows, we investigate the asymptotic behavior of the cSSIM index in the context of RBF interpolation. First, we need
the following lemma.
Lemma 1. Let f , g : Ω−→ R≥0, f , g ∈ L1(Ω) and let E f ,g = supx∈Ω | f (x)− g(x)|. We have

µg = µ f + v(E f ,g).

with v(E f ,g) =O(E f ,g) as E f ,g → 0.

Proof. As also pointed out in [9], since
�

�

�

�

∫

Ω

f dx −
∫

Ω

g dx

�

�

�

�

≤meas(Ω) sup
x∈Ω
| f (x )− g(x )|,

we have
∫

Ω

g dx =

∫

Ω

f dx +O(E f ,g).

Therefore, we obtain the following results. We point out the cSSIM approaches the value of 1 in case of convergence, since it
is a similarity index.

Theorem 3.1. Let Ω ⊆ Rn be bounded and let f : Ω −→ R≥0, f ∈ L2(Ω). Moreover, let κ be a strictly positive definite kernel on
Ω×Ω and let r be the κ-based interpolant of f at X as in (1). Then, letting E f ,r = supx∈Ω | f (x)− r(x)|, we have that

cSSIM( f , r) =
1

1+O(E2
f ,r)

as E f ,r → 0.

Proof. In the following, we denote E f ,r = E. Recalling that σ f ,r = µ f r −µ f µr and in view of Lemma 1 and Remark 1, we get

σ f ,r =
1

meas(Ω)

∫

Ω

f ( f + u(E)) dx −µ f (µ f + v(E))

= µ f 2 −µ2
f + (u(E)− v(E))µ f

and

σ2
r =

1

meas(Ω)

∫

Ω

( f + u(E))2 dx − (µ f + v(E))2

= µ f 2 −µ2
f + 2(u(E)− v(E))µ f + u2(E)− v2(E).

Therefore, by substituting in the definition (5) with w(E) := u(E)2 − v(E)2 we obtain

cSSIM( f , r) =
2µ f (µ f + v(E)) + c1

µ2
f + (µ f + v(E))2 + c1

·
2σ2

f + 2(u(E)− v(E))µ f + c2

2σ2
f + 2(u(E)− v(E))µ f + c2 +w(E)

=
2µ2

f + 2v(E)µ f + c1

2µ2
f + 2v(E)µ f + c1 + v2(E)

·
2σ2

f + 2(u(E)− v(E))µ f + c2

2σ2
f + 2(u(E)− v(E))µ f + c2 +w(E)

=
1

1+ t1(E)
·

1

1+ t2(E)
=

1

1+ t1(E) + t2(E) + t1(E)t2(E)
,

where t1(E) := v2(E)/(2µ2
f + 2v(E)µ f + c1) and t2(E) := w(E)/(2σ2

f + 2(u(E)− v(E))µ f + c2). Finally, we observe that both
t1(E) and t2(E) are O(E2) as E→ 0, thus

t1(E) + t2(E) + t1(E)t2(E) =O(E2) as E→ 0.

Corollary 3.2. Let Ω⊆ Rn be bounded and suppose that it satisfies an interior cone condition. Let f : Ω−→ R≥0, f ∈ L2(Ω), and let
κ ∈ C2k (Ω×Ω) be a strictly positive definite kernel so that f ∈Nκ(Ω). Moreover, let r be the κ-based interpolant of f at X as in
(1). Therefore,

cSSIM( f , r) =
1

1+O(h2k)
as h→ 0.

Proof. As observed in Remark 1, Theorem 2.1 yields E f ,r =O(hk) as h→ 0, which implies O(E2
f ,r) =O(h2k).
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We observe that the convergence rate in terms of the similarity index cSSIM is strongly related to the smoothness of the
considered kernel, as a consequence of Theorem 2.1.
More specifically, while we showed that the convergence of the uniform error implies the convergence in the cSSIM index, we
remark that the converse is not true. Indeed, for example, letting Ω = [−1,1], ε > 0,

f (x) =

¨

ε if x = 0,

0 otherwise,
x ∈ Ω,

and the sequence of functions ( fn(x))n∈N, where

fn(x) =

¨

ε if x ∈ [−e−n, e−n],
0 otherwise,

x ∈ Ω,

we have E f , fn = ε ∀n ∈ N, while cSSIM( f , fn) quickly approaches 1 as n gets larger.
In the next section, numerical tests confirm the presented results.

4 Numerics
Let Ω = [−1,1]2 and Ξ = {z1, . . . , zM}, M ∈ N, be an equispaced evaluation grid with step ζ= 5 · 10−3.

In what follows, we test the convergence rate in terms of cSSIM in RBF interpolation. Moreover, we compare it with the
convergence in terms of the standard uniform norm.
As a discrete approximation of the cSSIM, we take the Matlab built-in implementation of the SSIM index, which coincides with
the formulation in (4), with c1 = c2 = 10−3. Concerning the uniform norm, we consider the Maximum Absolute Error (MAE)
which is defined as

MAE( f , r) = max
1≤i≤M

| f (zi)− r(zi)|.

For a better comparison with the MAE, we plot the dissimilarity DSSIM instead of the SSIM index.

In our tests, we consider the following strictly positive definite radial kernels

ϕε1(r) = (1− εr)4+(4εr + 1), Wendland C2,
ϕε2(r) = e−εr

�

15+ 15εr + 6ε2r2 + ε2r3
�

, Matérn C6,

where ε > 0 is the so-called shape parameter and, with x = (x1, x2), the test functions f1, f2 : Ω−→ R defined as

f1(x ) = 2(x1 x2)
2 − sinc(x1) sinc(x2) + 1, f2(x ) = e−(x1+x2) − 3x1 + x2 + 5.

As interpolation sets, we take Xk, k = 1, . . . , 4, so that Xk is an equispaced grid on Ω with step ξk = 4 · 2−(k−1)10−1 and,
consequently, with fill distance hk =

p
2ξk/2.

In Figure 1 and Figure 2, we fix ε = 1 and we display the convergence results in terms of the fill distances hk, k = 1, . . . , 4.
We adopt the notation

rk
i [ j] = rXk

ϕ1
i
[ f j], i, j = 1, 2, k = 1, . . . , 4,

for the kernel-based interpolant built on ϕ1
i which interpolates f j at Xk.
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Figure 1: Convergence rates:
�

hk , MAE( f1, rk
i [1])

�

(black squares) and
�

hk ,DSSIM( f1, rk
i [1])

�

(red circles) varying k = 1, . . . , 4. The case i = 1
is on the left, while the case i = 2 is on the right. The red and dashed black lines are the respective regression lines.

Then, in Table 1 we verify the results of Theorem 3.1. There, the reported experimental slopes refer to the regression lines in
Figure 1 and Figure 2, while the theoretical slopes are derived from (3).

Finally, in Figure 3 and Figure 4 we fix the interpolation set Xk by setting k = 3 and we display the behaviour of the MAE and
DSSIM indices varying the value of the shape parameter ε ∈ [0.05,2] of the kernels.
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Figure 2: Convergence rates:
�

hk , MAE( f2, rk
i [2])

�

(black squares) and
�

hk ,DSSIM( f2, rk
i [2])

�

(red circles) varying k = 1, . . . , 4. The case i = 1
is on the left, while the case i = 2 is on the right. The red and dashed black lines are the respective regression lines.

Kernel
Theor. slopes Exper. slopes f1 Exper. slopes f2

MAE DSSIM MAE DSSIM MAE DSSIM
ϕ1

1 1.5 3 1.74 3.60 1.78 3.23
ϕ1

2 3.5 7 3.69 8.38 3.78 7.72

Table 1: The theoretical slopes concerning ϕ1
1 ,ϕ1

2 and the experimental slopes obtained in the interpolation of f1 and f2.
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Figure 3: Interpolation of f1 varying ε and taking ϕε1 (left) and ϕε2 (right): the MAE is displayed in dashed black, while the DSSIM index is in
red.

0 0.5 1 1.5 2
10 -8

10 -6

10 -4

10 -2

10 0

M
A

E
  o

r 
 D

S
S

IM

0 0.5 1 1.5 2
10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

M
A

E
  o

r 
 D

S
S

IM

Figure 4: Interpolation of f2 varying ε and taking ϕε1 (left) and ϕε2 (right): the MAE is displayed in dashed black, while the DSSIM index is in
red.
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5 Conclusions
In this paper, after introducing the cSSIM index as an extension of standard SSIM, we analysed the convergence behavior in
terms of cSSIM in the framework of RBF interpolation. There, the role played by the regularity of the kernel is proved and then
verified by means of numerical tests.

We point out that the carried out analysis may be also considered in other interpolation frameworks. Therefore, future work
consists in investigating on the cSSIM index in different approximation settings, as well as in improving the presented results by
looking for more refined bounds, especially in the case of irregular kernels.
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