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Abstract

The Radial Basis Function–Finite Difference (RBF–FD) method is a mesh-less method for discretizing
differential operators in ordinary differential equations (ODEs) and partial differential equations (PDEs).
To solve a time-dependent PDE, it is common to use the method of lines approach (MOL), where one
discretizes the spatial differential operator using RBFs, converting the PDE into a system of ODEs. The
system of ODEs is solved using an appropriate numerical ODE solver. The RBF–FD approach has the
advantage of leading to a differentiation matrix that is sparse. However, spurious eigenvalues could lead
to unstable algorithms and resolving the issue could increase the computational cost. Typically, solving
an ODE is usually thought of as a set of sequential steps. In this work, we propose to use a parallel
ODE solver called the Parareal method that offers the ability to compute expensive steps in parallel. We
also introduce a new strategy to utilize coarse and fine differentiation matrices along with coarse and
finer ODE solvers in the Parareal algorithm to further speed up the computations. This strategy also
notably mitigates the effects that the spurious eigenvalues have on the computations and reduces the
computational cost of solving the system of ODEs with a standard approach.

1 Introduction
To construct numerical solutions to time-dependent partial differential equations (PDEs), one often applies the method of lines
(MOL) approach, where the spatial derivatives are discretized, leading to a system of differential equations which are subsequently
solved using standard (sequential) time integrators. A popular mesh-free approach for discretizing the spatial derivatives in
complicated domains or on surfaces is to generate finite difference stencils derived from radial basis functions (RBF–FD) [1]. In
contrast to global RBF approaches, the RBF–FD method formulates a “local collocation problem”, leading to a sparse differentiation
matrix while preserving high-order algebraic convergence [1]. Indeed, the RBF–FD has been successfully used to solve partial
differential equations in many areas, including computational fluid dynamics [2], geology [3, 4, 5], and physics [6].

A significant limitation of the RBF–FD method is the time step restriction imposed by the differentiation matrix. While this
is not an issue specific to the RBF–FD method (in general, one has to take increasingly smaller time steps as a spatial mesh is
refined), the issue can be exacerbated depending on the choice of the collocation nodes. Further, the differentiation matrices can
contain spurious eigenvalues [1, 7, 8, 9] i.e., eigenvalues located on the right half of the complex plane with positive real parts.
These spurious eigenvalues can cause the RBF-FD method to be unstable and numerical approximations to grow unbounded
over time. In order to resolve this issue, in instances where the positive real part is small in magnitude, one could take the time
step to be significantly small so that the eigenvalues are inside the stability region. There are ODE solvers whose stability region
stretches out to the right-hand side of the complex plane, such as the fourth order Runge Kutta method. However, it increases
the overall computational cost and still, the pseudospectrum may not necessarily be inside the stability region. Also, one could
add a very small artificial hyperviscosity term [1, 7] to the RBF-FD differentiation matrices, although too much of it could be
counterproductive.

Parallel-in-time (PinT) methods have been popular in recent times due to their fast convergence properties and the ability
to provide significant computational speed up. The Parareal algorithm is one such PinT algorithm developed by Lions, Maday,
and Turinici in [10]. Since then the method has been used in many applications such as geology [11], fluid dynamics [12, 13]
and chemistry [14]. This manuscript seeks to overcome the limitation of the RBF–FD method by using the parareal time-
integration framework to control multiple time levels with varying basis and finite-difference stencils. The overall construction
and intuition are straightforward: one uses a coarse finite-difference stencil (which gives rise to a differentiation matrix with
desirable eigenvalues) along with a cheap time-integrator on the coarse parareal level, and a more accurate finite-difference
stencil/time-integrator on the finer parareal levels.

The manuscript proceeds as follows. In Section 2, we begin with a brief introduction to the RBF method and its variants,
followed by an introduction to the Parareal algorithm. In Section 3, we provide numerical results for direct implementation of the
RBF-FD and parareal combination for several PDEs and then in Section 4, we present novel modifications to the RBF-FD method
along with numerical results. In Section 5, we present a numerical study about how the eigenvalues of the RBF-FD differentiation
matrices were affected by the new framework.
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2 RBF–FD and Parareal background
In Section 2.1 we present an explanation of the Radial Basis Function–Finite Difference (RBF–FD) method as a way of discretizing
differential operators in space. This is followed by Section 2.2 where we outline the details of the Parareal algorithm as a
Parallel-in-time (PinT) method for solving systems of differential equations.

2.1 RBF–FD method

In the following subsections we will review how to form an interpolant using radial basis functions and show how this idea can
be extended to the RBF-FD method for descritizing differential operators in space.

2.1.1 RBF interpolant

Consider the following scattered data points f ( x⃗ i), i = 1, . . . , N where x⃗ i are the locations of the data in a given coordinate
system and N is the total number of nodes. For example, x⃗ i could be ordered pairs in R2 or ordered triples in R3. We define an
RBF interpolant as

s ( x⃗) =
N
∑

j=1

λ j φ
�



 x⃗ − x⃗ j







�

,

where φ is a radial function (described below), and ∥ · ∥ is a distance function (in general, the Euclidean norm). By definition our
interpolant must satisfy s ( x⃗ i) = f ( x⃗ i) for some unknown, {λ j}. These conditions give rise to the linear system Aλ⃗= f⃗ ,









φ (∥ x⃗1 − x⃗1∥) φ (∥ x⃗1 − x⃗2∥) · · · φ (∥ x⃗1 − x⃗N∥)
φ (∥ x⃗2 − x⃗1∥) φ (∥ x⃗2 − x⃗2∥) · · · φ (∥ x⃗2 − x⃗N∥)

...
...

. . .
...

φ (∥ x⃗N − x⃗1∥) φ (∥ x⃗N − x⃗2∥) · · · φ (∥ x⃗N − x⃗N∥)

















λ1
λ2
...
λN









=









f ( x⃗1)
f ( x⃗2)

...
f ( x⃗N )









.

Notice that each row of A evaluates φ at a given central node x⃗ i for all N nodes in the data set. So we can calculate our weights
λ⃗= A−1 f⃗ , which can then be used to form the interpolant.

There are two common classes of radial functions: infinitely smooth and piecewise smooth radial functions. The first four
functions in Table 1 are examples of infinitely smooth radial functions. Each function contains a shape parameter ϵ, where a small
ϵ value indicates a flatter radial function. The final two functions in Table 1 are examples of piecewise smooth radial functions,
which do not include the additional ϵ parameter. Furthermore, piecewise smooth RBFs augmented with polynomials have been
shown to reduce stagnation error; that is, the error is able to decrease to zero under node refinement [1, 15].

Table 1: There are two common types of RBFs: GA, MQ, IMQ, and IQ which are classified as infinitely smooth and all have a shape parameter ϵ
and piecewise smooth RBFs such as PHS and TPS that do not have a shape parameter.

Type of Radial Function Form of φ

Gaussian (GA) e−(ϵr)
2

Multiquadric (MQ)
q

1+ (ϵr)2

Inverse Multiquadric (IMQ)
1
Æ

1+ (ϵr)2

Inverse Quadratic (IQ)
1

1+ (ϵr)2
Polyharmonic Spline (PHS) r2m+1 or r2m log r

Thin plate spline (TPS) r2 log r

2.1.2 Finite difference weights of a differential operator – a global approach

Suppose that we wish to calculate L f ( x⃗ i), i = 1, . . . , N , where L is a linear differential operator. Applying the operator to our
interpolant from before yields

Ls ( x⃗ i) = L
N
∑

j=1

λ jφ
�



 x⃗ i − x⃗ j







�

=
N
∑

j=1

λ j Lφ
�



 x⃗ i − x⃗ j







�

, i = 1, . . . , N

It is crucial to notice that an approximation of L f (x i) is formed using the same weights as our interpolant of f (x i), but applied
to Lφ
�



 x⃗ i − x⃗ j







�

. We can now form a new linear system for the derivative of our interpolant as Ls⃗ = Bλ⃗, where

B =









Lφ (∥ x⃗1 − x⃗1∥) Lφ (∥ x⃗1 − x⃗2∥) · · · Lφ (∥ x⃗1 − x⃗N∥)
Lφ (∥ x⃗2 − x⃗1∥) Lφ (∥ x⃗2 − x⃗2∥) · · · Lφ (∥ x⃗2 − x⃗N∥)

...
...

. . .
...

Lφ (∥ x⃗N − x⃗1∥) Lφ (∥ x⃗N − x⃗2∥) · · · Lφ (∥ x⃗N − x⃗N∥)









.
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From our previous discussion we found λ⃗= A−1 f⃗ , which implies

Ls⃗ = BA−1 f⃗ = D f⃗ ≈ L f⃗ .

We refer to the quantity BA−1 as our differentiation matrix D which discretizes the linear differential operator L. This method of
approximating a differential operator is known as the RBF-Global method, because all the nodes in the data set are used to form
the weights necessary for approximating L f⃗ at a node. Since we use all N nodes to form D the resulting differentiation matrix
will be dense and computationally expensive for large node sets.

2.1.3 Radial basis function based finite difference (RBF-FD) method

Intuitively, approximated derivatives are not significantly enhanced with information that is far away from a central node since
derivatives are inherently local. We can leverage this idea to sparsify the differentiation matrix. From our global data set of N
nodes, we identify a set of n nearest neighbors for each node in the global set. This is efficiently accomplished via algorithms
such as MATLAB’s knnsearch. We then populate the differentiation matrix only with the weights at the nearest neighbors of a
given node. This results in a much sparser differentiation matrix since for large node sets N ≫ n.

2.1.4 Polyharmonic spline (PHS) + augmented polynomials

To avoid the nebulous task of selecting an appropriate shape parameter, a common choice for the RBF in the RBF-FD method is
the polyharmonic spline (PHS),

φ
�



 x⃗ − x⃗ j







�

=




 x⃗ − x⃗ j







m
, m is odd.

This is augmented with polynomial terms to help reduce stagnation error and inevitably drive the order of convergence
[1, 15, 16, 17, 18]. So our interpolant, formed with the n nearest neighbors, now looks like

s ( x⃗ i) =
n
∑

j=1

λ j





 x⃗ i − x⃗ j







m
+

B
∑

β=1

γβ Pβ ( x⃗ i) , i = 1, . . . , N , (1)

where Pβ is the β term of a ρ degree polynomial with a total of B =
�d+ρ

d

�

terms in Rd evaluated at the central node x⃗ i and γβ is
its corresponding coefficient. For example a third degree polynomial in R2, where x⃗ = (x , y), is

P ( x⃗) = γ1 + γ2 x + γ3 y + γ4 x2 + γ5 x y + γ6 y2 + γ7 x3 + γ8 x2 y + γ9 x y2 + γ10 y3.

By construction, the interpolant, eq. (1), must satisfy

1. s ( x⃗ i) = f (x i);

2.
n
∑

i=1

λi Pβ ( x⃗ i) = 0.

As a general rule of thumb, we take n = 2B, i.e., twice as many neighbor nodes as the number of terms in the appended polynomial
[1]. We can form our differentiation matrix following the same construction as before with our linear system f⃗ = Aλ⃗ now
exhibiting the following block structure

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
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
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






















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which can be written more compactly as
�

Φ P
PT 0

��

λ⃗

γ⃗

�

=

�

f⃗
0⃗

�

The γ⃗ weights are discarded when populating the differentiation matrix, but are included for forming the local interpolant. The
expected order of convergence of the RBF–FD method with PHS augmented with polynomials is O(hρ−k+1), where k is the order
of the differential operator being approximated [1], and h is the fill distance of the nodes.
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2.2 Parareal algorithm

Consider the following initial value problem,

du(t)
d t

= f (t,u(t)) , t ∈ (0, T]

u(0) = α.
(2)

If we subdivide the time domain into M intervals, 0 = T0 < T1 < T2 < · · · < TM = T , we can rewrite eq. (2) as a sequence of
(coupled) initial value problems. For m= 1,2, . . . M ,

dum(t)
d t

= f (t,um(t)) , t ∈ (Tm−1, Tm]

um(Tm−1) = um−1(Tm−1), with u0(T0) = α.
(3)

Here, um(t) denotes the solution in the time interval (Tm−1, Tm]. The Parareal framework decouples the system of IVPs,
eq. (3), by rapidly solving (inaccurately) for the initial conditions in each time interval, and then iteratively correcting the initial
conditions. For k = 1, 2, . . . and for m= 1, 2, . . . M ,

duk
m(t)

d t
= f
�

t,uk
m(t)
�

, t ∈ (Tm−1, Tm]

uk
m(Tm−1) = Uk−1

m−1

(4)

where U0
0 = α and {U0

m}
M−1
m=1 are the initial conditions (also known as shooting parameters) in each time interval. Some parallel

speedup can be observed if one defines and appropriately uses

1. a coarse propagation operator G(Tm, Tm−1,um−1), where G stands for the French translation of coarse: ’grossier’;
2. a fine propagation operator F(Tm, Tm−1,um−1), where F stands for ’fine’.

The coarse and fine propagators approximate a solution to the differential equation u′ = f(t,u) at T = Tm given
an initial condition u (Tm−1)≈ um−1 for some time interval (Tm−1, Tm].
As their names imply, the fine propagator computes a more accurate approximation of the solution than the coarse propagator.

It is common to either take larger time steps or a lower-order integrator as the coarse propagator.
The Parareal algorithm is given in Algorithm 1. The algorithm begins by initializing U0

0
and solving eq. (4) for U0

m for m = 1, . . . , M −1 sequentially using the coarse propagator G. The shooting parameters are then
corrected over K iterates as outlined in the correction loop of Algorithm 1. It is worth noting that F

�

Tm, Tm−1,Uk−1
m−1

�

, m = 1 . . . M
(line 8 of Algorithm 1) can be computed in parallel to provide parallel speedup.

Algorithm 1 The Parareal Algorithm

1: Set U0
0 = u(t0)

2: for m= 1,2, . . . , M do ▷ Initial Coarse Approximation (0th level)
3: U0

m = G(Tm, Tm−1,U0
m−1)

4: end for

5: for k = 1,2, . . . , K do ▷ The correction loop
6: Uk

0 = u(t0)
7: for m= 1, . . . , M do
8: Uk

m = F(Tm, Tm−1,Uk−1
m−1) +G(Tm, Tm−1,Uk

m−1)−G(Tm, Tm−1,Uk−1
m−1)

9: end for
10: end for

The Parareal algorithm is assured to converge in at most K = M correction iterations [19], often referred to as the finite-step
convergence property of the Parareal framework. A full error analysis of the Parareal algorithm is given in [20]. However, there
is no benefit to the Parareal framework if M correction iterations are used.

For efficiency, the Parareal algorithm must
1. converge with less iterations than the number of initial time intervals, i.e. K ≪ M ;
2. utilize M processors to compute F

�

Tm+1, Tm,Uk
m

�

, m= 0 . . . M − 1 (line 9) in parallel.

We overload our fine and coarse propagator function definition so that F(Tm, Tm−1,Uk−1
m−1, MF ) denotes that the fine propagator

takes MF internal Euler time steps, and G(Tm, Tm−1,Uk−1
m−1, MG) denotes that the coarse propagator takes MG internal time steps.

To quantify parallel speedup, it is convenient to assume that the time subintervals are of equal length. Let γ f and γc denote the
computational time needed for each step in the fine/coarse propagator to solve the initial condition over one time subinterval,
e.g., F(Tm, Tm−1,Uk−1

m−1, MF ). Consider Nf and Nc are the number of steps for the fine and coarse propagator for [Tm, Tm+1]. Then,
the parallel speedup (if M processors are used in the computation) is

parallel speedup =
1

(K + 1) Nc
N f

γc
γ f
+ K

M

(5)

Further theoretical results regarding the computational speedup can be found in [21, 22].
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3 Loose coupling of the RBF–FD + Parareal Framework
This section verifies that a loose coupling of the RBF–FD + Parareal is compatible. Specifically, the RBF-FD method with the PHS
basis function/polynomial augmentation is used to discretize the spatial operators using a fixed number of spatial nodes in a
method of lines approach; the resulting linear system of differential equations was solved using the Parareal algorithm. We used
a combination of PHS and polynomials because it has been proven to be effective in the RBF-FD method [15, 16, 17]. Finite step
convergence is exhibited regardless of the augmented polynomials degree, so we only present results for a 4th degree polynomial
augmentation. In the following subsections we will explore the framework applied to three PDEs: the 2-D heat equation, the 2-D
convection–diffusion equation, and the linearized shallow water equations.

3.1 2D heat equation

Consider the boundary value problem:










∂ u
∂ t

=∆u+ f (x , y, t), (x , y) ∈ Ω, t ∈ [0, T]

u(x , y, t) = g(x , y, t), (x , y) ∈ ∂Ω, t ∈ [0, T]
u(x , y, 0) = h(x , y), (x , y) ∈ Ω

(6)

where Ω= [0, 1]× [0,1], and t ∈ [0,0.2] and the chosen exact solution is: u(x , y, t) = (y3 − 1)(x2 − 1) e−t .

• (Spatial Discretization): A seventh-order polyharmonic spline (PHS) augmented with a 4th degree polynomial was
employed for the RBF–FD spatial discretization, with N = 1600 equispaced nodes.

• (Time Discretization): We split the time domain into M = 100 sub-intervals. The fine and coarse propagators are
constructed using Backward Euler integrators with differing number of time steps. We present results for MF = {40, 80}
and MG = {1,5}.

Figure 1 shows that the RBF-FD–Parareal algorithm converges in a finite number of iterations, significantly less than M = 100.
The error is computed by comparing the Parareal solution at T = 0.2 to a reference solution generated by applying the fine
propagator sequentially across the M time domains. The blue curve corresponds to a convergence study with a coarse solver
consisting of one internal time step, G(Tm, Tm−1,Uk−1

m−1, 1). Since the fine solver consists of taking MF = 40 internal time steps, the
ratio of the computational effort between G and F is Nc

N f
= 1

40 . Notice that since we use the same spatial discretization and the

same ODE solver in both coarse and fine steps γc
γ f
= 1. Convergence is achieved in K ≈ 14 steps, so a theoretical speedup of

approximately 2× (to machine precision) is possible, if 100 processors are used in the computation, see eq. (5). The red curve
corresponds to simulations with a coarse solver consisting of five internal time steps, G(Tm, Tm−1, U k−1

m−1, 5) and MF = 80. Now, the
ratio of the computational effort between G and F is Nc

N f
= 1

16 . Convergence is achieved in K ≈ 7 steps, so a theoretical speedup of
approximately 1.7× (to machine precision) is possible according to eq. (5).
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10
-14
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10
-4

Figure 1: Parareal applied to a system of DEs, obtained by an RBF-FD discretization of the spatial operator in the 2-D heat equation. The blue
curve corresponds to simulations with a coarse solver consisting of one internal time step, G(Tm, Tm−1,Uk−1

m−1, 1) and the red curve corresponds to
simulations with a coarse solver consisting of five internal time steps, G(Tm, Tm−1,Uk−1

m−1, 5). In both cases, finite step convergence is observed.
The more accurate coarse solver (MG = 5) has a superior rate of convergence, consistent with published error analysis in the literature [20].

The test case was also used to see if we can obtain the order of convergence (in space) stated in the literature when we use
the Parareal algorithm. We can see from Figure 2 that the RBF–FD method yields an order of convergence consistent with the
literature O(hρ−k+1) [1], where ρ is the degree of the appended polynomial, k is the order of the differential operator in space. In
fact, since the finite step convergence was already observed from Figure 1, we argue that the testing for space convergence is not
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needed in general as the approximations from the parareal algorithm converge to the solution you would get from just applying
the finer time integrator in the traditional way. Hence, if one knows that the RBF–FD can obtain a spatial order of convergence of
O(hρ−k+1) with a regular time integrator, showing finite step convergence will suffice to claim that the parareal method can also
obtain the proper order of convergence.

20 30 40 50 60 70 80
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-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

Figure 2: Spatial convergence for RBF–FD for the Parareal algorithm for T = 0.2. The RBF-FD method was applied to eq. (6) with varying
augmented polynomials. Solid curves correspond to error decay with each polynomial degree, and the dashed curves are standard rates from
O(h2) to O(h4). Overall, we can observe rate of convergence of O(hρ−k+1) where, ρ is the degree of the polynomial, k is the order of the
differential operator being approximated, and h is the fill distance of the nodes [1].

3.2 2D convection–diffusion equation

Consider the boundary value problem:

∂ u
∂ t
+ β

∂ u
∂ x
+ β

∂ u
∂ y
= µ∆u (x , y) ∈ Ω, t ∈ [0, T]

u(x , y, t) = g(x , y, t), (x , y) ∈ ∂Ω, t ∈ [0, T]
u(x , y, 0) = h(x , y), (x , y) ∈ Ω

where Ω= [0, 1]× [0,1], and t ∈ [0, T]. The boundary and initial conditions are chosen so that the exact solution is

u(x , y, t) =
1

4t + 1
exp

�

−(x − β t − 0.5)2 − (y − β t − 0.5)2

µ(4t + 1)

�

.

• (Spatial Discretization): A seventh-order polyharmonic spline (PHS) augmented with a 4th degree polynomial was
employed for the RBF–FD spatial discretization, with N = 1600 equispaced nodes. The PDE parameters are chosen as
µ= 0.01 and β = 0.8.

• (Time Discretization): We split the time domain into M = 100 sub-intervals. The fine and coarse propagators are
constructed using Backward Euler integrators with differing number of time steps. We present results for MF = 80 and
MG = {1,5}.

Figure 3 shows that the RBF-FD–Parareal algorithm converges in a finite number of iterations, significantly less than M = 100.
The error is computed by comparing the Parareal solution at T = 0.03 to a reference solution generated by applying the fine
propagator sequentially across the M time domains. The blue curve corresponds to a convergence study with a coarse solver
consisting of one internal time step, G(Tm, Tm−1,Uk−1

m−1, 1). Since the fine solver consists of taking MF = 80 internal time steps, the
ratio of the computational effort between G and F is Nc

N f
= 1

80 . Convergence is achieved in K ≈ 13 steps, so a theoretical speedup
of approximately 3× (to machine precision) is possible, if 100 processors are used in the computation, see eq. (5). The red curve
corresponds to simulations with a coarse solver consisting of five internal time steps, G(Tm, Tm−1, U k−1

m−1, 5) and MF = 80. Now, the
ratio of the computational effort between G and F is Nc

N f
= 1

16 . Convergence is achieved in K ≈ 7 steps, so a theoretical speedup of
approximately 1.7× (to machine precision) is possible according to eq. (5).

3.3 Linearized shallow-water equations

The linearized shallow-water equations (SWEs), eq. (7), are useful for modeling turbulence when the flow depth is much smaller
than the vertical scale.
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Figure 3: Parareal applied to a system of DEs, obtained by an RBF-FD discretization of the spatial operator in the 2-D convection-diffusion
equation. The blue curve corresponds to simulations with a coarse solver consisting of one internal time step, G(Tm, Tm−1,Uk−1

m−1, 1) and the
red curve corresponds to simulations with a coarse solver consisting of five internal time steps, G(Tm, Tm−1,Uk−1

m−1, 5). In both cases, finite step
convergence is observed. The more accurate coarse solver (MG = 5) has a superior rate of convergence, consistent with published error analysis
in the literature [20].

ρt + Fx + Gy = S

where

• The vector of mass and momentum ρ = (h, hu, hv)T .

• h(x , y, t) is the total water depth and (u(x , y, t), v(x , y, t))T representing horizontal and vertical average fluid velocity.

• The flux vectors are F = (hu, hu2 + gh2

2 , huv)T , and G = (hv, huv, hv2 + gh2

2 )
T .

• The external force term S = (0,−hbx ,−hby)T , and b(x , y) has the information about the lower surface.

• g is the gravitational acceleration.

The linearized SWEs, eq. (7), can be obtained under the assumption that the source term S is negligible because the water surface
wave elevation η is smaller than the mean water height H (η≪ H).

∂ η

∂ t
+H
�

∂ u
∂ x
+
∂ v
∂ y

�

= 0

∂ u
∂ t
+ g
∂ η

∂ x
= 0

∂ v
∂ t
+ g
∂ η

∂ y
= 0

, (7)

where η is the water surface height, H is the mean water height, (u, v) represents the horizontal and vertical fluid velocity, and g
is the gravitational constant. We solve the 2D tidal wave problem [23] on the spatial domain Ω = [0,1000 km]× [0,50 km].
Notice L = 1000km. The average water depth H is 20 m while the initial water surface elevation η0 is 1 m. T is the tidal-wave
maker period, and ω= 2π

T .
Defining k = ωp

gH
, the exact solution is given by:

η(x , y, t) = η0 cos(ωt)
cos (k(L − x))

cos (kL)

u(x , y, t) = −η0 sin(ωt)
sin (k(L − x))

cos (kL)
v(x , y, t) = 0

The boundary conditions are given by:

η(x , y, t) = η0 cos (ωt), u(x , y, t) = 0, v(x , y, t) = 0, (x , y) ∈ ∂Ω

• (Spatial Discretization): A seventh-order polyharmonic spline (PHS) augmented with a 6th degree polynomial was
employed for the RBF–FD spatial discretization, with the total number of equispaced nodes as N = 1600. The solutions
were approximated at T = 2000 seconds.
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• (Time Discretization): We split the time domain into M = 100 sub-intervals. The fine and coarse propagators are
constructed using Backward Euler integrators with differing number of time steps. We present results for MF = 100 and
MG = 5.

Figure 4: The analytical solution (η) of the eq. (7).
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Figure 5: Parareal applied to a system of DEs, obtained by an RBF-FD discretization of the spatial operator in the 2-D shallow water equations.
Both curves correspond to simulations with a coarse solver consisting of one internal time step, G(Tm, Tm−1,Uk−1

m−1, 1). The blue curve represents
error decay of η while the yellow curve represents the error decay of u. In the yellow curve, finite step convergence is observed. However, η
seems not to have the desired finite step convergence. The accuracy of the η plot can be improved by increasing MF . Further investigation on the
reasoning behind this is ongoing work.

Figure 5 shows that the RBF-FD–Parareal algorithm converges in a finite number of iterations, significantly less than M = 100
for the dependent variable u. η does not converge to machine precision.

The Parareal algorithm is known to have stability issues when it is used to solve hyperbolic type PDEs [24]. If the PDE does
not have diffusion, high wave numbers could cause high amplification, which leads to an unstable algorithm [25]. This is also
exacerbated by the coarse solver. Several remedies are suggested in [26, 27, 28]. Further investigation of the convergence failure
and adapting the methods stated in [26, 27, 28] is ongoing work. The error is computed by comparing the Parareal solution at
T = 2000 seconds to a reference solution generated by applying the fine propagator sequentially across the M time domains. The
blue curve corresponds to a convergence study of η while the yellow curve corresponds to u with a coarse solver consisting of
five internal time steps, G(Tm, Tm−1,Uk−1

m−1, 5). Since the fine solver consists of taking MF = 100 internal time steps, the ratio of
the computational effort between G and F is Nc

N f
= 1

20 . Convergence is achieved in K ≈ 8 steps for η and K ≈ 13 for u (machine
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precision), so a theoretical speedup of approximately 1.8× (to 10 digits precision) for η and 1.2× (to machine precision) for u is
possible, if 100 processors are used in the computation, see eq. (5).

4 Tighter coupling of the RBF–FD + Parareal framework
A key idea in the parareal algorithm is to use coarse and fine ODE solvers within a correction iteration. However, one can also
apply spatial coarsening [29] within the fine and coarse propagators. In this section, we explore a tighter coupling between the
RBF–FD + parareal framework using two strategies to construct a (cheaper) coarse differentiation matrix. One approach is to
utilize a lower degree augmented polynomial to generate a coarse differentiation matrix with more sparsity due to the reduced
number of neighbors. The second approach is to use a smaller number of spatial nodes to construct a coarse differentiation matrix.
For instance, one could use 100 nodes to build a coarser differentiation matrix and 10000 nodes for the finer differentiation
matrix. We also explore a combination of these two approaches. Overall, these modifications could further speed up the
computations because these modifications yield sparser or smaller differentiation matrices. In addition, Section 5 shows that
coarse differentiation matrices tend to have a better spectrum than differentiation matrices with a larger number of nodes and
higher degree polynomial. However, there are two important criteria to be met with these modifications. We need to ensure
that we can obtain finite step convergence, and that the spatial order of convergence remains the same. That is, the order of
convergence is related to the degree of the augmented polynomial used in the finer differentiation matrix. In the following
subsections, we will analyze each proposed modification.

4.1 Lower degree polynomials

The degree of the augmented polynomial constrains the order of convergence in space in the RBF–FD method using the
polyharmonic spline augmented with polynomials. The RBF–FD method yields an order of convergence O(hρ−k+1) [1] when
approximating the kth derivative using a ρth degree polynomial. In addition, the differentiation matrices from the RBF-FD are
O(nN) sparse where n is the number of neighbors while N is the total number of nodes. Typically, n is chosen to be as twice the
number of terms in the augmented polynomial. Therefore, using a lower degree polynomial to construct the differentiation matrix
in the coarse level in the parareal algorithm can save some computational cost if the sparsity structure of the differentiation matrix
is exploited, but it is important to see if this has an impact on the overall order of convergence of the method. We implemented
the above modifications to the 2D heat equation stated in eq. (6). For the finer differentiation matrix, we chose a 6th degree
polynomial and the coarser differentiation matrix was created using polynomials of 3rd degree to 5th degree. Parareal parameters
were chosen to be M = 100, MF = 20,MG = 1, and K = 100. It is also important to highlight that the same number of nodes were
used to create both differentiation matrices for the tests in this subsection.
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Figure 6: In all three graphs, the fine solver was created using a 6th degree polynomial. However, the polynomial degree for the coarse solve was
varied. Finite step convergence was tested in three different cases where the coarse solver was varied as 3rd, 4th and 5th degree polynomials (left
to right). All three figures display finite step convergence with K ≪ M .

It is evident from Figure 6 that no matter the degree of the augmented polynomial used, finite step convergence can be
observed. The effectiveness of the new framework is solidified from Figure 7 as we can see that the order of convergence in the
finer differentiation matrix in space was still related to the augmented polynomial even for lower degrees ρ. It is also important
to notice that one can run the algorithm with only a few iterations to obtain 7-8 digits of accuracy in the final solution. Not
running all K correction iterations allows for an increase in computational efficiency.

Dolomites Research Notes on Approximation ISSN 2035-6803



Kulasekera Mudiyanselage · Blazejewski · Ong · Piret 17

0 20 40 60 80 100 120

10
-18

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Figure 7: The heat equation was solved with 6th degree polynomial for both coarse and fine solver. Error was calculated by comparing these
highly accurate solution with solutions using 3rd, 4th and 5th degree polynomials for a coarse solver while keeping the finer solver a 6th degree
polynomial. This further solidifies that when one uses a lower degree polynomial the order of convergence still will remain related to the degree
of the polynomial used with the fine solver.

4.2 Smaller number of nodes for the coarse solver

Another approach to construct a coarse differentiation matrix is to use a smaller number of nodes. For instance, for the tests
implemented in this subsection, we used 10000 nodes to create a differentiation matrix for the finer level while at minimum we
used 100 nodes to create a coarse differentiation matrix. In order to test finite step convergence, we varied the number of nodes
used for the coarse differentiation matrix between 100 nodes to 5000 nodes. However, since the node distribution changes within
the time integrator, an interpolation is necessary to switch between the data in the problem. Since the domain is fixed in all
our test cases, we can pre-compute the interpolation matrices for efficiency. We used two approaches with interpolation. First a
global RBF approach for interpolation with Gaussian RBFs and then an RBF-FD local approach. Polyharmonic Splines RBFs were
used to construct differentiation weights with a 6th degree polynomial augmentation for both coarser and finer differentiation
matrices. Parareal parameters were chosen to be M = 100, MF = 20, MG = 1, and K = 100.

Figure 8 shows finite step convergence, but at the cost of several digits of accuracy and a slightly higher number of iterations.
We believe this is a result of the interpolation error and the choice of the shape parameter. When the shape parameter goes to
zero the accuracy is expected to increase but at the cost of increasing the condition number of the interpolation matrix [30].
Hence, one needs to find an optimal shape parameter to get the best results. Therefore, in order to avoid choosing a suitable
shape parameter, we used PHS RBFs and a local interpolation approach. Figure 9 shows that with the local interpolation, there is
no loss of accuracy or increase in the number of iterations needed to observe finite step convergence. Therefore, the tests in this
section show that one could use coarse differentiation matrices in the coarse level in Parareal algorithm and still observe finite
step convergence, and obtain a computational speed up. In addition, the order of convergence in space remains related to the
degree of the augmented polynomial used in the finer level despite using a node distribution with a smaller number of nodes or a
lower degree polynomial at the coarse level.

Consider analyzing the theoretical speed-up that can be obtained using a lower degree polynomial and a smaller node set in
the coarse solver. For the test cases in this section, the fine solver consists of taking MF = 20 internal time steps, the ratio of
the computational effort between G and F is Nc

N f

γc
γ f
= 1

20 × 0.0026. Inverting the coarse differentiation matrix using MATLAB’s
backslash operator is 100 times faster than inverting the fine differentiation matrix to solve a single step in Backward Euler’s
method. Hence, we obtain the ratio as γc

γ f
= 0.0026. This is calculated by testing the time that it takes to solve a single step of

Backward Euler with coarse and fine solver. The coarse differentiation matrix is constructed out of a 3rd degree polynomial with
100 nodes while the fine differentiation matrix was constructed with a 6th degree polynomial, with 10000 nodes. Convergence is
achieved in K ≈ 18 steps, so a theoretical speedup of approximately 5× (to machine precision) is possible, if 100 processors are
used in the computation, see eq. (5). This speed up is significant and useful when solving large system of equations, i.e., RBF
discretizations with a large number of nodes.

5 Behavior of the eigenvalues of RBF–FD modifications to parareal
One drawback of using the RBF-FD spatial discretization in time-dependent PDEs is that the differentiation matrices can contain
undesirable spurious eigenvalues, i.e., some spurious eigenvalues with positive real components requiring very small time steps
to reside within the ODE solver’s stability region, increasing the computational cost [1, 7, 8, 9].However, reducing the time step

Dolomites Research Notes on Approximation ISSN 2035-6803



Kulasekera Mudiyanselage · Blazejewski · Ong · Piret 18

0 20 40 60 80 100 120

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

Figure 8: Finite-step convergence display when a small node distribution is used for the coarse solver. The black curve shows finite step
convergence when 10000 nodes are used for both the coarse and fine solver. Other curves show finite step convergence when the number of
nodes used for the coarse solver is less than 10000 while keeping the number of nodes of the fine solver fixed at 10000. There is an accuracy loss
due to the choice of shape parameter in the global RBF interpolation.
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Figure 9: Finite-step convergence display when a small node distribution is used for the coarse solver but with RBF–FD for interpolation.
Comparing to Figure 8 there is no accuracy lost as we used shape parameter independent local interpolation approach.
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is not enough in many instances to address this issue. It is common to add a very small artificial hyperviscosity term to shift
the eigenvalues to the left half of the complex plane. It has been observed that the differentiation matrix tends to have more
spurious eigenvalues as we increase the number of nodes or increase the degree of the appended polynomial. Since the coarse
differentiation matrices from parareal are constructed with a smaller number of nodes or a lower degree polynomial, the coarse
differentiation matrix tends to have a better spectrum than the fine differentiation matrix. Therefore, our proposed framework of
choosing a coarse differentiation matrix allows for larger time steps in the coarse level. Although the fine solver still requires
smaller time steps due to the undesirable spurious eigenvalues, the computation in the finer level can be done in parallel. In
this section, we provide a stability analysis of the RBF–FD and parareal algorithm using the existing theoretical results from the
literature [20]. In addition, we use the same theoretical results to show why using a coarse differentiation matrix at the coarse
level in parareal is better than using a finer differentiation matrix in both levels. We will first discuss the results for the heat
equation and later for the transport equation.

5.1 Heat equation

Consider the one dimensional heat equation:

∂ u
∂ t
= ux x x ∈ Ω, t ∈ [0, T]

u(x , t) = g(x , t), x ∈ ∂Ω, t ∈ [0, T]
u(x , 0) = h(x), x ∈ Ω

(8)

Theorem 5.1. [20] Let F(Tm+1, Tm, U k
m) be the exact solution at Tm+1 of eq. (8) with u(Tm) = U k

m, and let G(Tm+1, Tm, U k
m) be a

coarse solver with stability function R, such that supx<0 |ex − R(x)|= ρs. Then the parareal algorithm applied to the heat equation
satisfies the superlinear convergence bound

max
1≤m≤≤M





u(tm)− U k
m





≤
ρk

s

k!
max

1≤m≤M





u(Tm)− U0
m







2 (9)

where ∥·∥2 denotes the spectral norm in space and the constant ρs is universal, ρs = 0.2036321888. On unbounded time intervals,
we have

sup
n>0





u(tm)− U k
m





≤ ρk
l sup

m>0







u(Tm)− U0
m







2 (10)

where the universal constant ρl = 0.2984256075.

We can rewrite eq. (8) as an ODE using Fourier transformation in space:

Òut = −ω2
bu

We will call the constants ρs and ρl in eqs. (9) and (10) as superlinear and linear contraction factors respectively from now
on. The derivation of these universal contraction factors is independent of the spatial discretization, i.e., they are purely based
on the ODE theory. For further details on the proof, refer to [20]. Let R refer to the stability function of an ODE solver which
provides its stability region in the complex plane. For the Backward Euler method, the upper bounds for contraction factors in
eqs. (9) and (10) are

ρs = sup
z∈R−

�

�

�

�

ez −
1

1− z

�

�

�

�

, and ρl = sup
z∈R−

�

�ez − 1
1−z

�

�

1−
�

�

1
1−z

�

�

,

where z = −ω2∆T .
If we consider the system of ODEs ut = Du derived using the method of lines approach, we can show that the contraction

factors are given by the complex values z = λ∆T , where λ ∈ C are the eigenvalues of the differentiation matrix formed from
the discretization stencil. If we compare the RBF–FD differentiation matrix to the five-point stencil finite-difference method,
the eigenvalues of the latter will be purely real and negative, and the universal constants stated in the theorem can be verified.
However, the differentiation matrices from RBF–FD will have eigenvalues scattered over the entire complex plane, and therefore,
an important question to investigate is whether the contraction factors from the above theorem are still valid for RBF–FD
discretizations. In order to answer this problem, we take a closer look at the two complex functions used to find contraction
factors:

f (z) =

�

�

�

�

ez −
1

1− z

�

�

�

�

, g(z) =

�

�

�

�

ez −
1

1− z

�

�

�

�

1−
1

1− z

.

Figure 10 shows the contours of f (z) on the left half of the complex plane, and the spectrum of the RBF–FD discretized
Laplace operator made out of equispaced 100 nodes augmented with a third-degree polynomial. The black mark indicates the
maximum of f (z) evaluated at the eigenvalues (hence eigenvalue that produce the contraction factor as maximum of f (z) is the
contraction factor). The first key observation is that the spectrum of the differentiation matrix does not have spurious eigenvalues,
and it is densely arranged close to the real axis of the left half of the complex plane. This is because the eigenvalues are from a
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Table 2: The maximum value of g(z) found amongst the eigenvalues of the differentiation matrices discretizing the Laplacian operator formed
from various combinations of total nodes and degree of polynomial. The nodes were arranged in a hexagonal grid to produce the best spectrum.
When the total number of nodes and/or the polynomial degree is increased, the table shows that the contraction value gets larger than the
universal value. This can be observed by looking at the right part upper and lower corner of the table. In addition, the contraction factor is less
than one for all choices.

Polynomial degree Total number of nodes
100 196 900 1600 3600

3 2.97E-01 2.98E-01 2.98E-01 2.98E-01 5.67E-01
4 2.98E-01 2.98E-01 4.65E-01 2.98E-01 2.98E-01
5 2.98E-01 2.98E-01 3.00E-01 1.46E+00 2.98E-01
6 3.07E-01 3.72E-01 5.79E-01 6.87E-01 3.00E-01

coarser differentiation matrix and a lower degree polynomial. However, if the differentiation matrix has spurious eigenvalues,
they could fall into the regions where the iso-curves of f (z) (or g(z)) would have larger values. As another test, we increased the
number of nodes and the degree of the polynomial in coarser differentiation matrices and evaluated g(z) at the eigenvalues of
those respective matrices and recorded the maximum value of g(z) found at amongst the eigenvalue evaluations in Table 2. It
clearly shows that the linear contraction factor increases as we increase the number of nodes or the degree of the polynomial. For
a smaller number of nodes or a lower degree of polynomial the contraction factor is closer to the universal value given in the
theorem. It is also important to notice that in Theorem 5.1, the contraction values are related to the coarse solver and hence it is
important to ensure that we have a differentiation matrix with the best spectrum at the coarse level. Therefore, to ensure the
stability and efficiency of the algorithm, it is better to use a coarse differentiation matrix.

Figure 10: Spectrum of the RBF-FD discretized Laplacian operator using a seventh order PHS augmented with a 3rd degree polynomial overlayed
with the contours of f (z).

5.2 Transport equation

The issue of spurious eigenvalues can be severe when solving purely advective equations. A common practice among RBF
researchers is to introduce artificial viscosity (hyperviscosity) to the model to ensure the stability of the algorithm [31]. In the
upcoming analysis, we show that using a coarse differentiation matrix at the coarse level of the parareal algorithm is an excellent
option compared to how large the contraction values can get when a finer differentiation matrix is used. For the numerical study,
we again use a theorem from the parareal literature [20]. It is also important to notice that in Theorem 5.2, again the stability
function R of the coarse solver is the key factor when it comes to choosing a contraction factor.

Theorem 5.2. [20] Let F(Tm+1, Tm, U k
m) be the exact solution at Tm+1 of eq. (8) with u(Tm) = U k

m, and let G(Tm+1, Tm, U k
m) be a

coarse solver with stability function R, such that supx∈R

�

�ei x − R(i x)
�

� = ρs. Then the parareal algorithm applied to the transport
equation satisfies the superlinear convergence bound

max
1⩽m≤⩽M





u(tm)− U k
m





≤
ρk

s

k!
max

1⩽m≤⩽M





u(Tm)− U0
m







2

where ∥.∥2 denotes the spectral norm in space and the constant ρs is universal, ρs = 1.224353426.
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Figures 11 and 12 shows the spectrum of the differentiation matrices constructed with a 3rd degree polynomial and a 6th
degree polynomial augmentation respectively. Figure 11 shows that the largest value of f (z) is around 0.2 for the spectrum of a
differentiation matrix made with a lower degree polynomial. This is well below the contraction factor stated in Theorem 5.2.
It is also important to notice that when we compare Figures 11 and 12, we observe that the finer differentiation matrix has
spurious eigenvalues. This is further validated when we look at Table 3, we see that the contraction factor gets larger when we
increase the number of nodes. One could argue that for RBF–FD problems, 3600 nodes is a relatively small number of nodes.
Therefore, one could use a coarse differentiation matrix at the coarse level that ensures the stability of the algorithm and use a
finer differentiation matrix and a small-time step at the finer level since the computations at the finer level are done in parallel.
In addition, despite ρs > 1 the parareal still has super-linear convergence

�

1
k!

�

, which allows it to solve advection equation with
K ≪ M .

Table 3: The maximum value of f (z) found amongst the eigenvalues of the differentiation matrices discretizing the transport equation formed
from various combinations of total nodes and degree of polynomial. The nodes were arranged in a Cartesian grid to produce the best spectrum.
When the total number of nodes and/or the polynomial degree is kept low, the table shows that the contraction value is smaller and better than
the universal value. This can be observed by looking at the left part upper and lower corner of the table. In addition, the method converges for all
choices of node distributions and the polynomial degree.

Polynomial degree Total number of nodes
100 196 900 1600 3600

3 1.80E-01 3.28E-01 8.65E-01 1.09E+00 1.27E+00
4 2.00E-01 3.81E-01 8.65E-01 1.17E+00 1.23E+00
5 1.90E-01 3.65E-01 9.48E-01 1.15E+00 1.27E+00
6 1.83E-01 3.45E-01 9.29E-01 1.14E+00 1.51E+00

6 Conclusion
In this manuscript, we explore RBF-FD + parareal as an approach to solve time dependent PDEs. There are several theoretical
and practical implications of our study. The first is the ability to reduce computational cost in solving a time-dependent PDE by
reducing the number of computational nodes for the differentiation matrix in the coarse solver and by computing segments of the
fine solution in parallel. This reduction in computational cost is attractive, especially when solving PDEs with larger amount of
discretization data. The second is a way to mitigate the effect of the spurious eigenvalues introduced by high order polynomials
by using the parareal algorithm with coarse RBF-FD stencils and lower degree polynomial augmentation.We believe our proposed
framework can be adopted to solve PDEs in three spatial dimensions, and this is part of our future work. Finally, our numerical
study paves the way to theoretically analyze the behavior of spurious eigenvalues of RBF–FD differentiation matrices.
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Figure 11: Spectrum of the RBF-FD discretized transport equation using a seventh order PHS augmented with a 3rd degree polynomial overlayed
with the contours of f (z).

Figure 12: Spectrum of the RBF-FD discretized transport equation using a seventh order PHS augmented with a 6th degree polynomial overlayed
with the contours of f (z).
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