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Caratheodory-Tchakaloff Subsampling

Federico Piazzon a · Alvise Sommariva b · Marco Vianello c

Abstract

We present a brief survey on the compression of discrete measures by Caratheodory-Tchakaloff Sub-
sampling, its implementation by Linear or Quadratic Programming and the application to multivariate
polynomial Least Squares. We also give an algorithm that computes the corresponding Caratheodory-
Tchakaloff (CATCH) points and weights for polynomial spaces on compact sets and manifolds in 2D and
3D.
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1 Subsampling for discrete measures
Tchakaloff theorem, a cornerstone of quadrature theory, substantially asserts that for every compactly supported measure there exists a positive
algebraic quadrature formula with cardinality not exceeding the dimension of the exactness polynomial space (restricted to the measure support).
Originally proved by V. Tchakaloff in 1957 for absolutely continuous measures [31], it has then be extended to any measure with finite polynomial
moments, cf. e.g. [10], and to arbitrary finite dimensional spaces of integrable functions [1].

We begin by stating a discrete version of Tchakaloff theorem, in its full generality, whose proof is based on Caratheodory theorem about finite
dimensional conic combinations.

Theorem 1.1. Let µ be a multivariate discrete measure supported at a finite set X = {x i} ⊂ Rd , with correspondent positive weights (masses)
λ= {λi}, i = 1, . . . , M, and let S = span(φ1, . . . ,φL) a finite dimensional space of d-variate functions defined on K ⊇ X , with N = dim(S|X )≤ L.

Then, there exist a quadrature formula with nodes T = {t j} ⊆ X and positive weights w = {w j}, 1≤ j ≤ m≤ N, such that
∫

X
f (x) dµ=

M
∑

i=1

λi f (x i) =
m
∑

j=1

w j f (t j) , ∀ f ∈ S|X . (1)

Proof. Let {ψ1, . . . ,ψN } be a basis of S|X , and V = (vi j) = (ψ j(x i)) the Vandermonde-like matrix of the basis computed at the support points. If
M > N (otherwise there is nothing to prove), existence of a positive quadrature formula for µ with cardinality not exceeding N can be immediately
translated into existence of a nonnegative solution with at most N nonvanishing components to the underdetermined linear system

V t u = b , u ≥ 0 , (2)

where

b = V tλ=

�∫

X
ψ j(x) dµ

�

, 1≤ j ≤ N , (3)

is the vector of µ-moments of the basis {ψ j}.
Existence then holds by the well-known Caratheodory theorem applied to the columns of V t , which asserts that a conic (i.e., with positive

coefficients) combination of any numer of vectors in RN can be rewritten as a conic combination of at most N (linearly independent) of them; cf.
[8] and, e.g., [9, §3.4.4]. �

Remark 1. Our main application of Theorem 1 concerns total-degree polynomial spaces, S = Pd
ν(K). If K is (a compact subset of) an algebraic

variety of Rd , then dim(S|X ) ≤ dim(S) < L = dim(Pd
ν) =

�

ν+d
d

�

; if in addition X is S-determining, i.e. polynomials vanishing on X vanish
everywhere on K, then dim(S|X ) = dim(S). Indeed, a crucial step of our approach will be that of identifying, at least numerically, the right
dimension and a polynomial basis of S|X , starting from a standard basis of Pd

ν.
Since the discrete version of Tchakaloff theorem given by Theorem 1 is a direct consequence of Caratheodory theorem, we may term such an

approach Caratheodory-Tchakaloff subsampling, and the corresponding nodes (with associated weights) a set of Caratheodory-Tchakaloff (CATCH)
points.

The idea of reduction/compression of a finite measure by Tchakaloff or directly Caratheodory theorem recently arose in different contexts,
for example in a probabilistic setting [17], as well as in univariate [14] and multivariate [2, 22, 27, 30] numerical quadrature, with applications
to multivariate polynomial inequalities and least squares approximation [22, 30, 33]. In many situations CATCH subsampling can produce a
high Compression Ratio, namely when N � M like for example in polynomial least squares approximation [30] or in QMC (Quasi-Monte Carlo)
integration [2] or in particle methods [17],

Crat io =
M
m
≥

M
N
� 1 , (4)
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so that the efficient computation of CATCH points and weights becomes a relevant task.
Now, while the proof of the general Tchakaloff theorem is not, that of the discrete version can be made constructive, since Caratheodory

theorem itself has a constructive proof (cf., e.g., [9, §3.4.4]). On the other hand, such a proof does not give directly an efficient implementation.
Nevertheless, there are at least two reasonably efficient approaches to solve the problem.

The first, adopted for example in [14] (univariate) and [30] (multivariate) in the framework of polynomial spaces, rests on Quadratic
Programming, namely on the classical Lawson-Hanson active set method for NonNegative Least Squares (NLLS). Indeed, we may think to solve the
quadratic minimum problem

NNLS :
§

min‖V t u − b‖2
u ≥ 0 (5)

which exists by Theorem 1 and can be computed by standard NNLS solvers based on the Lawson-Hanson method [16], which seeks a sparse
solution. Then, the nonvanishing components of such a solution give the weights w = {w j} as well as the indexes of the nodes T = {t j} within
X . A variant of the Lawson-Hanson method is implemented in the Matlab native function lsqnonneg [18], while a recent optimized Matlab
implementation can be found in [28].

The second approach is based instead on Linear Programming via the classical simplex method. Namely, we may think to solve the linear
minimum problem

LP :
§

min c t u
V t u = b , u ≥ 0 (6)

where the constraints identify a polytope (the feasible region) in RM and the vector c is chosen to be linearly independent from the rows of V t

(i.e., it is not the restriction to X of a function in S), so that the objective functional is not constant on the polytope. To this aim, if X ⊂ K is
determining on a supspace T ⊃ S on K , i.e. a function in T vanishing on X vanishes everywhere on K , then it is sufficient to take c = {g(x i)},
1≤ i ≤ M , where the function g|K belongs to T |K \ S|K . For example, working with polynomials it is sufficient to take a polynomial of higher
degree on K with respect to those in S|K .

Observe that in our setting the feasible region is nonempty, since b = V tλ, and we are interested in any basic feasible solution, i.e., in any
vertex of the polytope, that has at least M − N vanishing components. As it is well-known, the solution of the Linear Programming problem is a
vertex of the polytope that can be computed by the simplex method (cf., e.g., [9]). Again, the nonvanishing components of such a vertex give the
weights w = {w j} as well as the indexes of the nodes T = {t j} within X .

This approach was adopted for example in [27] as a basic step to compute, when it exists, a multivariate algebraic Gaussian quadrature
formula (suitable choices of c are also discussed there; see Example 1 below). Linear Programming is also used in [19], to generate iteratively
moment matching scenarios in view of probabilistic applications (e.g., stochastic programming).

Even though both, the active set method for (5) and the simplex method for (6), have theoretically an exponential complexity (worst case
analysis), as it is well-known their practical behavior is quite satisfactory, since the average complexity turns out to be polynomial in the dimension
of the problems (observe that in the present setting we deal with dense matrices); cf., e.g., [13, Ch. 9]. It is worth quoting here the extensive
theoretical and computational results recently presented in the Ph.D. dissertation [32], where Caratheodory reduction of a discrete measure is
implemented by Linear Programming, claiming an experimental average cost of O(N3.7).

A different combinatorial algorithm (Recursive Halving Forest), based on the SVD, is also there proposed to compute a basic feasible solution
and compared with the best Linear Programming solvers, claiming an experimental average cost of O(N2.6). The methods are essentially applied
to the reduction of Cartesian tensor cubature measures.

In our implementation of CATCH subsampling [23], we have chosen to work with the Octave native Linear Programming solver glpk [21]
and the Matlab native Quadratic Programming solver lsqnonneg [18], that are suitable for moderate size problems, like those typically arising
with total-degree polynomial spaces (S = Sν = Pd

ν(K)) in dimension d = 2, 3 and small/moderate degree of exactness ν. On large size problems,
like those typically arising in higher dimension and/or high degree of exactness, the solvers discussed in [32] could become necessary.

Now, since we may expect that the underdetermined system (2) is not satisfied exactly by the computed solution, due to finite precision
arithmetic and by the effect of an error tolerance in the iterative algorithms, namely that there is a nonzero moment residual

‖V t u − b‖2 = ε > 0 , (7)

it is then worth studying the effect of such a residual on the accuracy of the quadrature formula. We can state and prove an estimate still in the
general discrete setting of Theorem 1.

Proposition 1.2. Let the assumptions of Theorem 1 be satisfied, let u be a nonnegative vector such that (7) holds, where V is the Vandermonde-like
matrix at X corresponding to a µ-orthonormal basis {ψk} of S|X , and let (T, w ) be the quadrature formula corresponding to the nonvanishing
components of u. Moreover, let 1 ∈ S (i.e., S contains the constant functions).

Then, for every function f defined on X , the following error estimate holds
�

�

�

�

�

∫

X
f (x) dµ−

m
∑

j=1

w j f (t j)

�

�

�

�

�

≤ CεES( f ; X ) + ε‖ f ‖`2
λ
(X ) , (8)

where
ES( f ; X ) =min

φ∈S
‖ f −φ‖`∞(X ) , Cε = 2

�

µ(X ) + ε
Æ

µ(X )
�

. (9)

Proof. First, observe that
∫

X
φ(x) dµ= 〈γ, b〉 , ∀φ ∈ S , (10)

γ= {γk}, b = {bk}= V tλ, where 〈·, ·〉 denotes the Euclidean scalar product in RN and

γk =

∫

X
φ(x)ψk(x) dµ , bk =

∫

X
ψk(x) dµ , 1≤ k ≤ N ,

are the coefficients of φ in the µ-orthonormal basis {ψk} and the µ-moments of {ψk}, respectively.
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Take φ ∈ S. By a classical chain of estimates in quadrature theory, we can write
�

�

�

�

�

∫

X
f (x) dµ−

m
∑

j=1

w j f (t j)

�

�

�

�

�

≤
∫

X
| f (x)−φ(x)| dµ

+

�

�

�

�

�

∫

X
φ(x) dµ−

m
∑

j=1

w j φ(t j)

�

�

�

�

�

+
m
∑

j=1

w j |φ(t j)− f (t j)|

≤

 

µ(X ) +
m
∑

j=1

w j

!

‖ f −φ‖`∞(X ) +

�

�

�

�

�

∫

X
φ(x) dµ−

m
∑

j=1

w j φ(t j)

�

�

�

�

�

. (11)

Now,
m
∑

j=1

w j φ(t j) =
N
∑

k=1

γk

m
∑

j=1

w jψk(t j) = 〈γ, V t u〉 ,

and thus by the Cauchy-Schwarz inequality
�

�

�

�

�

∫

X
φ(x) dµ−

m
∑

j=1

w j φ(t j)

�

�

�

�

�

= |〈γ, b− V t u〉| ≤ ‖γ‖2 ‖b− V t u‖2 = ‖φ‖`2
λ
(X ) ε . (12)

Moreover
‖φ‖`2

λ
(X ) ≤ ‖φ − f ‖`2

λ
(X ) + ‖ f ‖`2

λ
(X )

≤
Æ

µ(X )‖φ − f ‖`∞(X ) + ‖ f ‖`2
λ
(X ) . (13)

On the other hand
m
∑

j=1

w j ≤

�

�

�

�

�

m
∑

j=1

w j −
∫

X
1 dµ

�

�

�

�

�

+

∫

X
1 dµ=

�

�

�

�

�

m
∑

j=1

w j −
∫

X
1 dµ

�

�

�

�

�

+µ(X )

≤ ε ‖1‖`2
λ
(X ) +µ(X ) = ε

Æ

µ(X ) +µ(X ) , (14)

where we have applied (12) with φ = 1.
Putting estimates (12)-(14) into (11 we obtain

�

�

�

�

�

∫

X
f (x) dµ−

m
∑

j=1

w j f (t j)

�

�

�

�

�

≤
�

2µ(X ) + ε
Æ

µ(X )
�

‖ f −φ‖`∞(X )

+ε
�

Æ

µ(X )‖φ − f ‖`∞(X ) + ‖ f ‖`2
λ
(X )

�

, ∀φ ∈ S ,

and taking the minimum over φ ∈ S we finally get (8). �

It is worth observing that the assumption 1 ∈ S is quite natural, being satisfied for example in the usual polynomial and trigonometric spaces.
From this point of view, we can also stress that sparsity cannot be ensured by the standard Compressive Sensing approach to underdetermined
systems, such as the Basis Pursuit algorithm that minimizes ‖u‖1 (cf., e.g., [12]), since if 1 ∈ S then ‖u‖1 = µ(X ) is constant.

Moreover, we notice that if K ⊃ X is a compact set, then

ES( f ; X )≤ ES( f ; K) , ∀ f ∈ C(K) . (15)

If S is a polynomial space (as in the sequel) and K is a “Jackson compact”, ES( f ; K) can be estimated by the regularity of f via multivariate
Jackson-like theorems; cf. [26].

To conclude this Section, we sketch the pseudo-code of an algorithm that implements CATCH subsampling, via the preliminary computation
of an orthonormal basis of S|X .

Algorithm: (computation of CATCH points and weights):

• input: the discrete measure (X ,λ), the generators (φk) = (φ1, . . . ,φL) of S, possibly the dimension N of S|X
1. compute the Vandermode-like matrix U = (uik) = (φk(x i))

2. if N is unknown, compute N = rank(U) by a rank-revealing algorithm

3. compute the QR factorization with column pivoting
p
ΛU(:,π) =QR, where Λ= diag(λi) and π is a permutation vector (we observe that

rank(Q) = rank(
p
ΛU) = rank(U) = N)

4. select the orthogonal matrix V =Q(:, 1 : N); the first N columns of Q correspond to an orthonormal basis of S|X with respect to the measure
(X ,λ), (ψ j) = (φπ j

)R−1
N , 1≤ j ≤ N, where RN = R(1 : N , 1 : N)

5. compute a sparse solution to V t u = b = V tλ, u ≥ 0, by the Lawson-Hanson method for the NNLS problem (5) or by the simplex method for
the LP problem (6)

6. compute the residual ε = ‖V t u − b‖2
7. ind = {i : ui 6= 0}, w = u(ind), T = X (ind)

• output: the CATCH compressed measure (T, w ) and the residual ε (that appears in the relevant estimates (8)-(9))
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Remark 2. We observe that there are two key tools of numerical linear algebra in this algorithm, that allow to work in the right space, in view
of the fact that rank(U) = dim(S|X ). The first is the computation of such a rank, that gives of course a numerical rank, due to finite precision
arithmetic. Here we can resort, for example, to the SVD decomposition of U in its less costly version that produces only the singular values (with
a threshold on such values), which is just that used by the rank Matlab/Octave native function. The second is the computation of a basis of S|X ,
namely an orthonormal basis, by the pivoting process which is aimed at selecting linearly independent generators.

An alternative approach could consist in adopting a Rank-Revealing QR factorization algorithm (RRQR), that would reduce steps 2-3 to one
single matrix factorization. Such algorithms, however, are not at hand in standard Matlab and typically require the use of MEX files (cf., e.g.,
[11]).

2 Caratheodory-Tchakaloff Least Squares
The case where (X ,λ) is itself a quadrature/cubature formula for some measure on K ⊃ X , that is the compression (or reduction) of such formulas,
has been till now the main application of Caratheodory-Tchakaloff subsampling, in the classical framework of algebraic formulas as well as in
the probabilistic/QMC framework; cf. [14, 27, 30] and [2, 17, 32]. In this survey, we concentrate on another relevant application, that is the
compression of multivariate polynomial least squares.

Let us consider the total-degree polynomial framework, that is

S = Sν = Pd
ν(K) , (16)

the space of d-variate real polynomials with total-degree not exceeding ν, restricted to K ⊂ Rd , a compact set or a compact (subset of a) manifold.
Let us define for notational convenience

En( f ) = EPd
n (K)
( f ; K) = min

p∈Pd
n (K)
‖ f − p‖L∞(K) , (17)

where f ∈ C(K).
Discrete LS approximation by total-degree polynomials of degree at most n on X ⊂ K is ultimately an orthogonal projection of a function f

on Pd
n(X ), with respect to the scalar product of `2(X ), namely

‖ f −Ln f ‖`2(X ) = min
p∈Pd

n (K)
‖ f − p‖`2(X ) = min

p∈Pd
n (X )
‖ f − p‖`2(X ) . (18)

Recall that for every function g defined on X

‖g‖2
`2(X ) =

M
∑

i=1

g2(x i) =

∫

X
g2(x) dµ , (19)

where µ is the discrete measure supported at X with unit masses λ= (1, . . . , 1).
Taking p∗ ∈ Pd

n(X ) such that ‖ f − p∗‖`∞(X ) is minimum (the polynomial of best uniform approximation of f in Pd
n(X )), we get immediately

the classical LS error estimate
‖ f −Ln f ‖`2(X ) ≤ ‖ f − p∗‖`2(X ) ≤

p
M ‖ f − p∗‖`∞(X ) ≤

p
M En( f ) , (20)

where M = µ(X ) = card(X ). In terms of the Root Mean Square Error (RMSE), an indicator widely used in the applications, we have

RMSEX (Ln f ) =
1
p

M
‖ f −Ln f ‖`2(X ) ≤ En( f ) . (21)

Now, if M > N2n = dim(Pd
2n(X )) (we stress that here polynomials of degree 2n are involved), by Theorem 1 there exist m≤ N2n Caratheodory-

Tchakaloff (CATCH) points T2n = {t j} and weights w = {w j}, 1≤ j ≤ m, such that the following basic `2 identity holds

‖p‖2
`2(X ) =

M
∑

i=1

p2(x i) =
m
∑

j=1

w j p2(t j) = ‖p‖2`2w (T2n)
, ∀p ∈ Pd

n(X ) . (22)

Notice that the CATCH points T2n ⊂ X are Pd
n(X )-determining, i.e., a polynomial of degree at most n vanishing there vanishes everywhere on X ,

or in other terms dim(Pd
n(T2n)) = dim(Pd

n(X )), or equivalently any Vandermonde-like matrix with a basis of Pd
n(X ) at T2n has full rank. This also

entails that, if X is Pd
n(K)-determining, then such is T2n.

Consider the `2
w (T2n) LS polynomial Lc

n f , namely

‖ f −Lc
n f ‖`2w (T2n)

= min
p∈Pd

n (K)
‖ f − p‖`2w (T2n)

= min
p∈Pd

n (X )
‖ f − p‖`2w (T2n)

. (23)

Notice that Lc
n is a weighted least squares operator; reasoning as in (21) and observing that

∑m
j=1 w j = M since 1 ∈ Pd

n , we get immediately

‖ f −Lc
n f ‖`2w (T2n)

≤
p

M En( f ) . (24)

On the other hand, we can also write the following estimates

‖ f −Lc
n f ‖`2(X ) ≤ ‖ f − p∗‖`2(X ) + ‖Lc

n(p
∗ − f )‖`2(X )

and
‖Lc

n(p
∗ − f )‖`2(X ) = ‖Lc

n(p
∗ − f )‖`2w (T2n)

≤ ‖p∗ − f ‖`2w (T2n)
,

where we have used the basic `2 identity (22), the fact that Lc
np∗ = p∗ and that Lc

n f is an orthogonal projection. By the two estimates above we
get eventually

‖ f −Lc
n f ‖`2(X ) ≤

p
M
�

‖ f − p∗‖`∞(X ) + ‖ f − p∗‖`∞(T2n)
�

≤ 2
p

M En( f ) , (25)

or, in RMSE terms,
RMSEX (Lc

n f )≤ 2En( f ) , (26)

which shows the most relevant feature of the “compressed” least squares operator Lc
n at the CATCH points (CATCHLS), namely that
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• the LS and compressed CATCHLS RMSE estimates (21) and (26) have substantially the same size.

This fact, in particular the appearance of the factor 2 in the estimate for the compressed operator, is reminiscent of hyperinterpolation theory
[29]. Indeed, what we are constructing here is a sort of hyperinterpolation in a fully discrete setting. Roughly summarizing, hyperinterpolation
ultimately approximates a (weighted) L2 projection on Pd

n by a discrete weighted `2 projection, via a quadrature formula of exactness degree 2n.
Similarly, here we are approximating a `2 projection on Pd

n by a weighted `2 projection with a smaller support, again via a quadrature formula of
exactness degree 2n.

The estimates above are valid by the theoretical exactness of the quadrature formula. In order to take into account a nonzero moment
residual as in (7), we state and prove the following

Proposition 2.1. Let µ be the discrete measure supported at X with unit masses λ= (1, . . . , 1), let u be a nonnegative vector such that (7) holds,
where V is the orthogonal Vandermonde-like matrix at X corresponding to a µ-orthonormal basis {ψk} of Pd

2n(X ), and let (T2n, w ) be the quadrature
formula corresponding to the nonvanishing components of u. Then the following polynomial inequalities hold for every p ∈ Pd

n(X )

‖p‖`2(X ) ≤ αM (ε)‖p‖`2w (T2n)
≤
p

M βM (ε)‖p‖`∞(T2n) , (27)

where
αM (ε) =

�

1− ε
p

M
�−1/2

, βM (ε) = αM (ε)
�

1+ ε/
p

M
�1/2

, (28)

provided that ε
p

M < 1.

Corollary 2.2. Let the assumptions of Proposition 2 be satisfied. Then the following error estimate holds for every f ∈ C(K)

‖ f −Lc
n f ‖`2(X ) ≤ (1+ βM (ε))

p
M En( f ) . (29)

Proof of Proposition 2 and Corollary 1. First, observe that

‖p‖2
`2(X ) =

∫

X
p2(x) dµ=

m
∑

j=1

w j p2(t j) + ε2n

≤
m
∑

j=1

w j p2(t j) + |ε2n|= ‖p‖2`2w (T2n)
+ |ε2n| ,

where by Proposition 1
|ε2n| ≤ ε‖p2‖`2(X ) .

Now, using the fact that we are in a fully discrete setting, we get

‖p2‖`2(X ) ≤
p

M ‖p2‖`∞(X ) =
p

M ‖p‖2
`∞(X ) ≤

p
M ‖p‖2

`2(X ) ,

and finally putting together the three estimates above

‖p‖2
`2(X ) ≤ ‖p‖

2
`2w (T2n)

+ ε
p

M ‖p‖2
`2(X ) ,

that is the first inequality in (27), provided that ε
p

M < 1. To get the second inequality in (27), we simply observe that for every function g
defined on X

‖g‖2
`2w (T2n)

≤

 

m
∑

j=1

w j

!

‖g‖2
`∞(T2n)

≤ M
�

1+ ε/
p

M
�

‖g‖2
`∞(T2n)

(30)

in view of (14) (here µ(X ) = M). We notice incidentally that the estimates in [30, §4] must be corrected, since the factor (1+ ε/
p

M)1/2 is
missing there.

Concerning Corollary 1, take p∗ ∈ Pd
n(X ) such that ‖ f − p∗‖`∞(X ) is minimum (the polynomial of best uniform approximation of f in Pd

n(X )).
Then we can write, in view of Proposition 1 and the fact that Lc

n is an orthogonal projection operator in `2
w (T2n),

‖ f −Lc
n f ‖`2(X ) ≤ ‖ f − p∗‖`2(X ) + ‖Lc

n(p
∗ − f )‖`2(X )

≤
p

M ‖ f − p∗‖`∞(X ) +αM (ε)‖Lc
n(p
∗ − f )‖`2w (T2n)

≤
p

M ‖ f − p∗‖`∞(X ) +αM (ε)‖p∗ − f ‖`2w (T2n)

≤
p

M ‖ f − p∗‖`∞(X ) +
p

M βM (ε)‖p∗ − f ‖`∞(T2n)

≤
p

M (1+ βM (ε)) En( f ) , (31)

that is (29). �
Remark 3. Observe that βM (ε)→ 1 as ε→ 0, and quantitatively, βM (ε)≈ 1 for ε

p
M � 1. Then we can write the approximate estimate

RMSEX (Lc
n f )® (2+ ε

p
M/2) En( f ) , ε

p
M � 1 , (32)

i.e., we substantially recover (26), as well as the size of (21), with a mild requirement on the moment residual error (7).

Dolomites Research Notes on Approximation ISSN 2035-6803



Piazzon · Sommariva · Vianello 10

Table 1: Cardinality m, Compression Ratio, moment residual and RMSEX by LS and CATCHLS for the Gaussian f1(ρ) = exp(−ρ2) and the power
function f2(ρ) = (ρ/2)5, ρ =

p

x2 + y2, where X is the Halton point set of Fig. 1.

deg n 3 6 9 12 15 18
N2n 28 91 190 325 496 703

NNLS: m 28 91 190 325 493 693
LP: m 28 91 190 325 493 691
Crat io 200 62 29 17 11 8

NNLS: residual ε 4.9e-14 1.2e-13 3.4e-13 4.3e-13 8.8e-13 2.5e-12
LP: residual ε 2.0e-14 3.0e-14 9.1e-14 9.8e-14 7.7e-14 7.6e-14

NNLS/LP 0.38 0.23 0.19 0.27 0.74 0.70
(cputime ratio)

f1: LS 3.6e-02 4.8e-03 2.3e-04 3.1e-06 2.0e-07 2.2e-09
NNLS-CATCHLS 4.1e-02 4.9e-03 2.3e-04 3.2e-06 2.0e-07 2.2e-09

LP-CATCHLS 5.0e-02 6.1e-03 2.7e-04 3.5e-06 2.0e-07 2.3e-09
f2: LS 2.8e-01 2.4e-03 1.5e-04 2.6e-05 6.7e-06 2.2e-06

NNLS-CATCHLS 3.1e-01 2.4e-03 1.6e-04 2.7e-05 6.8e-06 2.2e-06
LP-CATCHLS 3.9e-01 3.0e-03 1.8e-04 3.0e-05 6.7e-06 2.2e-06

Example 2.1. An example of reconstruction of two bivariate functions with different regularity by LS and CATCHLS on a nonstandard domain
(union of four disks) is displayed in Table 1 and Figure 1, where X is a low-discrepancy point set, namely the about 5600 Halton points of the
domain taken from 10000 Halton points of the minimal surrounding rectangle. Polynomial least squares on low-discrepancy point sets have been
recently studied for example in [20], in the more general framework of Uncertainty Quantification.

We have implemented CATCH subsampling by NonNegative Least Squares (via the lsqnonneg Matlab native function) and by Linear
Programming (via the glpk Octave native function). In the Linear Programming approach, one has to choose a vector c in the target functional.
Following [27], we have taken c =

�

x2n+1
i + y2n+1

i

	

, where X = {(x i , yi)}, 1 ≤ i ≤ M , i.e., the vector c corresponds to the polynomial
x2n+1 + y2n+1 evaluated at X . There are two reasons for this choice. The first is that (only) in the univariate case, as proved in [27], it leads
to 2n+ 1 Gaussian quadrature nodes. The second is that the polynomial x2n+1 + y2n+1 6∈ P2

2n, and thus we avoid that c t u be constant on the
polytope defined by the constraints (recall, for example, that for c t = (1, . . . , 1) we have c t u =

∑

ui = M).
Observe that the CATCH points computed by NNLS and LP show quite different patterns, as we can see in Figure 1. On the other hand they

both give a compressed LS operator with practically the same RMSEs as we had sampled at the original points, with remarkable Compression
Ratios. The moment residuals appear more stable with LP, but are in any case extremely small with both solvers. On the other hand, at least with
the present degree range and implementation (Matlab 7.7.0 (2008) and Octave 3.0.5 (2008) with an Athlon 64 X2 Dual Core 4400+ 2.40GHz
processor), NNLS turn out to be more efficient than LP (the cputime varies from the order of 10−1 sec. at degree n = 3 to the order of 102 sec. at
degree n= 18).

We stress that the compression procedure is function independent, thus we can preselect the re-weighted CATCH sampling sites on a given
region, and then apply the compressed CATCHLS formula to different functions. This approach to polynomial least squares could be very useful
in applications where the sampling process is difficult or costly, for example to place a small/moderate number of accurate sensors on some
region of the earth surface, for the measurement and reconstruction of a scalar or vector field.

2.1 From the discrete to the continuum
In what follows we study situations where the sampling sets are discrete models of “continuous” compact sets, in the framework of polynomial
approximation. In particular, we have in mind the case where K is the closure of a bounded open subset of Rd (or of a bounded open subset of
a lower-dimensional manifold in the induced topology, such as a subarc of the circle in R2 or a subregion of the sphere in R3). The so-called
“Jackson compacts”, that are compact sets where a Jackson-like inequality holds, are of special interest, since there the best uniform approximation
error En( f ) can be estimated by the regularity of f ; cf. [26].

Such a connection with the continuum has already been exploited in the previous sections, namely on the right-hand side of the LS error
estimates, e.g. in (21) and (29). Now, to get a connection also on the left-hand side, we should give some structure to the discrete sampling set X .
We shall work within the theory of polynomial meshes, introduced in [7] and later developed by various authors; cf., e.g., [3, 4, 6, 15, 24] and the
references therein.

We recall that a weakly admissible polynomial mesh of a compact set K (or of a compact subset of a manifold) in Rd (or Cd , we restrict here
to the real case), is a sequence of finite subsets Xn ⊂ K such that

‖p‖L∞(K) ≤ Cn ‖p‖`∞(Xn) , ∀p ∈ Pd
n(K) , (33)

where Cn = O(nα), Mn = card(Xn) = O(Nβ ), with α ≥ 0, and β ≥ 1. Indeed, since Xn is automatically Pd
n(K)-determining, then Mn ≥ N =

dim(Pd
n(K)) = dim(Pd

n(Xn)). In the case where α = 0 (i.e., Cn ≤ C) we speak of an admissible polynomial mesh, and such a mesh is termed
optimal when card(Xn) =O(N).

Polynomial meshes have interesting computational features (cf. [6]), e.g.

• extension by algebraic transforms, finite union and product

• contain computable near optimal interpolation sets [4, 5]

• are near optimal for uniform LS approximation, namely [7, Thm. 1]

‖Ln‖= sup
f ∈C(K), f 6=0

‖Ln f ‖L∞(K)

‖ f ‖L∞(K)
≤ Cn

p

Mn , (34)

where Ln is the `2(Xn)-orthogonal projection operator C(K)→ Pd
n(K).
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Figure 1: Extraction of 190 points for CATCHLS (n = 9) from M ≈ 5600 Halton points on the union of 4 disks: Crat io = M/m ≈ 29; top: by
NonNegative Least Squares as in (5); bottom: by Linear Programming as in (6).

To prove (34), we can write the chain of inequalities

‖Ln f ‖L∞(K) ≤ Cn ‖Ln f ‖`∞(Xn) ≤ Cn ‖Ln f ‖`2(Xn)

≤ Cn ‖ f ‖`2(Xn) ≤ Cn
p

Mn ‖ f ‖`∞(Xn) ≤ Cn
p

Mn ‖ f ‖L∞(K) , (35)

where we have used the polynomial inequality (33) and the fact that Ln f is a discrete orthogonal projection. From (34) we get in a standard way
the uniform error estimate

‖ f −Ln f ‖L∞(K) ≤ (1+ ‖Ln‖) En( f )≤
�

1+ Cn
p

Mn
�

En( f ) , (36)

valid for every f ∈ C(K).
These properties show that polynomial meshes are good models of multivariate compact sets, in the context of polynomial approximation.

Unfortunately, several computable meshes have high cardinality.
In [7, Thm. 5] it has been proved that admissible polynomial meshes can be constructed in any compact set satysfying a Markov polynomial

inequality with exponent r, but these have cardinality O(nrd ). For example, r = 2 on convex compact sets with nonempty interior. Construction
of optimal admissible meshes has been carried out for compact sets with various geometric structures, but still the cardinality can be very large
already for d = 2 or d = 3, for example on polygons/polyhedra with many vertices, or on star-shaped domains with smooth boundary; cf., e.g.,
[15, 25].

As already observed, in the applications of LS approximation it is very important to reduce the sampling cardinality, especially when the
sampling process is difficult or costly. Thus we may think to apply CATCH subsampling to polynomial meshes, in view of CATCHLS approximation,
as in the previous section. In particular, it results that we can substantially keep the uniform approximation features of the polynomial mesh. We
give the main result in the following
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Proposition 2.3. Let Xn be a polynomial mesh (cf. (33)) and let the assumptions of Proposition 2 be satisfied with X = Xn.
Then, the following estimate hold

‖Lc
n‖= sup

f ∈C(K), f 6=0

‖Lc
n f ‖L∞(K)

‖ f ‖L∞(K)
≤ Cn

p

Mn βMn
(ε) , (37)

provided that ε
p

Mn < 1, where Lc
n f is the least squares polynomial at the Caratheodory-Tchakaloff points T2n ⊆ Xn. Moreover,

‖p‖L∞(K) ≤ Cn
p

Mn βMn
(ε)‖p‖`∞(T2n) , ∀p ∈ Pd

n(K) . (38)

Proof. To prove (37), we can write the estimates

‖Lc
n f ‖L∞(K) ≤ Cn ‖Lc

n f ‖`∞(Xn) ≤ Cn ‖Lc
n f ‖`2(Xn)

≤ Cn αMn
(ε)‖Lc

n f ‖`2w (T2n)
≤ Cn αMn

(ε)‖ f ‖`2w (T2n)
,

using the first estimate in (27) for p = Lc
n f and the fact that Lc

n f is a discrete orthogonal projection, and then conclude by (30) applied to f .
Concerning (38), we can write

‖p‖L∞(K) ≤ Cn ‖p‖`∞(Xn) ≤ Cn ‖p‖`2(Xn) ,

and then apply (27) to p. �

By Proposition 3 and (28), we have that the (estimate of) the uniform norm of the CATCHLS operator has substantially the same size of (34),
as long as ε

p

Mn� 1. On the other hand, inequality (38) with ε = 0 says that

• the 2n-deg CATCH points of a polynomial mesh are a polynomial mesh

‖p‖L∞(K) ≤ Cn
p

Mn ‖p‖`∞(T2n) , ∀p ∈ Pd
n(K) . (39)

Moreover, (38) shows that such CATCH points, computed in finite-precision arithmetic, are still a polynomial mesh in the degree range where
ε
p

Mn� 1. For a discussion of the consequences of (39) in the theory of polynomial meshes see [33].
In order to make an example, in Figure 2 we consider the (high cardinality) optimal polynomial mesh constructed on a smooth convex set

(C2 boundary), by the rolling ball theorem as described in [25] (the set boundary corresponds to a level curve of the quartic x4 + 4y4). The
CATCH points have been computed by NNLS as in (5), and the LS and CATCHLS uniform operator norms have been numerically estimated on a
fine control mesh via the corresponding discrete reproducing kernels, as discussed in [6, §2.1]. In Figure 2-bottom, we see that the CATCHLS
operator norm is close to the LS operator norm, as we could expect from (34) and (37), which however turn out to be large overestimates of the
actual norms.
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