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Abstract

Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential
energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential
functions. Our lower bounds are optimal for absolutely monotone potentials in the sense that for the
linear programming technique they cannot be improved by using polynomials of the same or lower degree.
When additional information about the structure (upper and lower bounds for the inner products) of the
designs is known, improvements on the bounds are obtained. Furthermore, we provide ‘test functions’
for determining when the linear programming lower bounds for energy can be improved utilizing higher
degree polynomials. We also provide some asymptotic results for these energy bounds.

1 Introduction

Let S™! be the unit sphere in R". We refer to a finite set C C S*! as a spherical code and, for a given (extended real-valued)
function h : [—1,1] — [0,+00], we consider the h-energy (or the potential energy) of C defined by

E(n,C;h):== > h((x,y)), ¢))

x,y€C,x#y

where (x, y) denotes the inner product of x and y. At times we shall require h to be absolutely monotone or strictly absolutely
monotone on [—1,1); i.e., its k-th derivative satisfies h*(t) > 0 (WO(t) > 0, resp.) for all k >0 and t € [—1, 1).

A spherical T-design C C S"!, whose cardinality we denote by |C|, is a spherical code such that

1 1
e f e = i D f)

xeC

(u(x) is the surface area measure) holds for all polynomials f (x) = f(x;,xs,...,X,) of total degree at most 7. The maximal
number T = 7(C) such that C is a spherical T-design is called the strength of C.

A commonly arising problem is to estimate the potential energy of certain sets of codes C (see [2, 8, 16, 23, 30, 36, 40]). In
this paper we address this problem for the class of spherical designs of fixed dimension, strength and cardinality. Denote by

L(n,N,7;h) :=inf{E(n,C;h) : |C| =N, C c S"! is a 7-design} 2

and
Un,N,;h) :=sup{E(n,C;h): |C| =N, C c S"! is a T-design} 3)

the minimum and the maximum possible h-energy of a spherical 7-design of N points on S}, respectively. In this paper we
derive lower bounds on £(n,N, 7;h) and upper bounds on U/(n,N, 7;h), which then define a strip where the energies of all
designs of fixed dimension, strength and cardinality lie (see Theorem 3.7).

Concerning lower bounds for energy, a general linear programming technique originally introduced by Delsarte [19] for
investigating codes over finite fields (see also [27]) has been utilized by Yudin [40], Kolushov and Yudin [30] and Andreev
[2] (see also [1, 3, 29]) to prove the optimality of certain spherical codes among all possible codes. In 2007, Cohn and Kumar
augmented this technique by introducing the notion of conductivity to prove the universal optimality of sharp codes. (A code is
sharp if for some positive integer m, the code is a 2m — 1 design with at most m different values of the distance between distinct
points in the code.) By universal optimality of a code we mean that among all codes of the same cardinality, it minimizes the

YInstitute of Mathematics and Informatics, Bulgarian Academy of Sciences, 8 G Bonchev Str., 1113 Sofia, Bulgaria and Faculty of Mathematics and Natural Sciences,
South-Western University, Blagoevgrad, Bulgaria. email: peter@math.bas.bg The research of this author was supported, in part, by a Bulgarian NSF contract
101/0003.

bDepartment of Mathematical Sciences, Indiana-Purdue University Fort Wayne, IN 46805, USA, email: dragnevp@ipfw.edu The research of this author was supported,
in part, by a Simons Foundation grant no. 282207.

“Center for Constructive Approximation, Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA, email:doug.hardin@vanderbilt.edu and
edward.b.saff@vanderbilt.edu The research of these authors was supported, in part, by the U. S. National Science Foundation under grants DMS-1412428 and
DMS-1516400.

dFaculty of Mathematics and Informatics, Sofia University, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria, email:stoyanova@fmi.uni-sofia.bg, The research of this
author was supported, in part, by the Science Foundation of Sofia University under contract 015/2014 and 144/2015.



/O‘Q\,\ Boyvalenkov - Dragnev - Hardin - Saff - Stoyanova 52

energy for all absolutely monotone potentials. Essential to their method are certain quadrature rules associated with those sharp
codes. Here, by combining the Delsarte method with quadrature formulas developed by Levenshtein, we derive lower bounds
for general designs that are optimal for the linear programming technique when restricted to the use of polynomials of fixed
maximal degree.

Since the collection of spherical designs is a special subclass of codes for a given dimension and cardinality, we expect that
both larger lower bounds and lower upper bounds are possible when compared with minimal energy codes. Indeed we provide
such examples in Section 5, where we discuss Mimura 2-designs (see Example 5.4). Our general upper bounds for #(n,N, 7; h)
are given in Theorems 3.6 and 3.7 in Section 3.

We remark that upper bounds for the Riesz s-energy of well-separated spherical designs of asymptotically optimal cardinality
on S? (that is, |C| = O(72) as T — ©0) were obtained by Hesse and Leopardi in [25, 26]. The existence of such well-separated
designs of asymptotically optimal cardinality on S? (and more generally on S™*) has been established recently by Bondarenko,
Radchenko, and Viazovska in [6, 7].

An outline of our paper is as follows. Some preliminaries are explained in Section 2, where we refer to results and techniques
developed by Delsarte, Goethals and Seidel [20] and Levenshtein [32, 33, 34] that will be needed for the statements of our main
results. The relationship between the Delsarte-Goethals-Seidel bounds (6) for the minimum possible size of spherical designs of
prescribed dimension and strength and the Levenshtein bounds for the maximum size of spherical codes of prescribed dimension
and minimum distance will play a very important role in our investigation. Some results on the structure of designs of fixed
dimension, strength and cardinality from [12, 10] are also discussed.

In Section 3 we formulate two general results that provide the framework for obtaining lower and upper bounds for the
energy of spherical designs. Theorem 3.1 (lower bounds) is a slight modification of a known result (cf. [16, Proposition 4.1], [8,
Chapter 5]), but Theorem 3.6 (upper bounds) is new.

Theorem 3.4 gives lower bounds that are optimal in the sense described in Theorem 3.5 — they cannot be improved by
utilizing polynomials of the same or lower degree that satisfy the conditions of Theorem 3.1. Following Levenshtein [34] we call
these bounds universal. Upper bounds for well-separated designs are derived in Theorem 3.7, which together with Theorem 3.4
determines a strip where the energies of such designs lie.

Some of the lower bounds on (2) from Theorem 3.4 can be further improved by either restricting the interval containing the
inner products of even-strength designs (Theorems 4.1 and 4.2) or by allowing polynomials of higher degree for odd-strength
designs (Theorems 4.3 and 4.4 and Corollary 4.5). For the latter case, Theorem 4.3 provides necessary and sufficient conditions
for the global optimality of the bounds from Theorem 3.4.

Section 5 is devoted to improving upper bounds on (3) for spherical designs utilizing restrictions on their inner products.
Some asymptotic results and numerical examples that illustrate these upper bounds are also included.

Finally, in Section 6 we derive an asymptotic lower bound for the energy of spherical designs of fixed strength as the dimension
and cardinality grow to infinity in certain relation. An example (Euclidean realization of the Kerdock codes [28]) illustrating the
tightness of these asymptotic bounds is presented.

2 Preliminaries

The results to be presented in Sections 3-7 utilize the notations and fundamental facts described in the subsections below. For
Subsections 2.1-2.4 we extract notations and results from the Levenshtein’s review chapter [34] (see also [33]) and in Subsection
2.5 we describe some results from [10, 12].

2.1 Gegenbauer polynomials and the linear programming framework

For fixed dimension n, the normalized Gegenbauer polynomials are defined by P(g")(t) =1, Pl(")(t) := t and the three-term
recurrence relation

(i+n—2)PM(t) == (2i +n—2)t P (t) —i P")(¢) for i > 1.
We note that {Pl.(”)(t)} are orthogonal in [—1,1] with a weight (1 — t2)*~3/2 and satisfy Pl.(")(l) =1 for all i and n. We have
Pi(”)(t) = Pl.((”_g)/ =82 (¢y/ Pl.(("_B)/ 2(=8)/2)(1), where Pi(a’ﬁ )(¢t) are the Jacobi polynomials in standard notation [39].

If f(t) € R[t] is a real polynomial of degree r, then f(t) can be uniquely expanded in terms of the Gegenbauer polynomials
as

F(O) =D £PP(0). &)
i=0

We use the identity (see, for example, [20, Corollary 3.8], [32, Equation (1.7)], [33, Equation (1.20)])

r ri 2
lClfM+ >, fllxy)= IClzfo+Z§Z(ZYU(X)) ®)

x,y€C,x#y i=1 't j=1 \xeC

as a source of estimations by polynomial techniques. Here C C S" is a spherical code, f is as in (4), {v;(x):j=1,2,...,r;} is
an orthonormal basis of the space Harm(i) of homogeneous harmonic polynomials of degree i and r; = dim Harm(i).
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The Delsarte-Goethals-Seidel bound and the Levenshtein bound described in the next subsections are obtained after the sums
on both sides of (5) are neglected for suitable polynomials.

2.2 Delsarte-Goethals-Seidel bound for spherical designs
Denote by D(n, 7) the Delsarte-Goethals-Seidel [20] bound for spherical designs

2(n+k_2), if 7 =2k—1,
n—1

B(n,7)>D(n,7) := . " (6)
(n+ —1)+(n+ —2)’ if 7 = ok,
n—1 n—1

where B(n, ) := min{|C| : C C S"! is a spherical T-design}. This bound plays an important role in our (initially heuristic) choice
of applications of Theorems 3.1 and 3.6.

We shall utilize the values of the function D(n,7) in (6) to decide the degrees of the polynomials to be used for the
bounding of £(n,N, t;h) and U(n,N, t;h). The rule is the following — if we have dimension n, strength 7 and cardinality
N € (D(n,7),D(n,t + 1)], then we use polynomials of degree 7 for the lower bounds and 7 or T — 1 (depending on the parity of
7) for the upper bounds.

2.3 Levenshtein bounds for spherical codes
We now formulate and discuss the Levenshtein bounds [31, 32, 33, 34] on

A(n,s) :=max{|C|: CcS" !, (x,y) <sforall x,y € C,x # y}, (@)
the maximal possible cardinality of a spherical code on S"™* of prescribed maximal inner product s.

(@t 5204870y plat B2 bt 1g0)

Denote by Pi“’b(t) =P, (t)/P, (1) the corresponding normalized Jacobi polynomials. These polynomials
are called adjacent in [33, 34]. Note that Pl.o’o(t) = Pi(")(t).
For every positive integer m we consider the intervals

{ [, 697, ifm=2k—1,

[£0,611],  if m=2k.

m .

Here té’l = —1 by definition, and tf’b, a,b €{0,1}, i > 1, is the largest zero of the polynomial Pi“’b(t). The intervals {Z,,}> | are
well defined (see [34, Lemmas 5.29 and 5.30]) and therefore constitute a partition of Z = [—1, 1) into countably many closed
subintervals with nonoverlapping interiors.

For every s € Z,,, Levenshtein introduces a certain polynomial fng”’*‘)(t) of degree m that satisfies all the conditions of the
corresponding linear programming bounds for spherical codes and yields the bound on (7)

(n (n)
L (k+n=3\[ 2k+n—3 P3P ()
Lo_1(n,s) == ( 1 )[ = — (11—s)P,£”)(s) :| fors € I,

A(n,s) < )

- e pMe)—p®
Lo(n,s) := (k+” 2)[2k+“ 1 WE © k“(s))] for s € T.

k =1 )P+ ()

The function

Ly_1(n,s) forseZy .,

L(n,s) := ®
Ly (n,s) fors € Z,,
is continuous in s.
The connections between the Delsarte-Goethals-Seidel bounds and the Levenshtein bounds are given by the equalities
n+k—2
L) = Ly (e =D 2k -1 =2 " T %), (10
n+k—1 n+k—2

Lua () = Lu(n ) =D 200 = (" T 1) (T2 an

occurring at the ends of the intervals Z,,.
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2.4 A useful quadrature

It follows from [34, Section 5] (see also [33, Section 4], [12]) that for every fixed (cardinality) N > D(n, 2k — 1) there exist
uniquely determined real numbers -1 < a, < a; <--- < a;_; < 1 and py,pP1,---,Px1, P; > 0fori=0,1,...,k—1, such that
the quadrature formula

3 f(1)
fo= ZHF(“)ZJ FOA-)T dt =

holds for every real polynomial f (t) of degree at most 2k — 1.

+Zp f(a) (12)

The number a;_; = a;_;(N) in (12) is the solution of the equation L(n,s) =N (see (9)) for s > tifl. Once it is determined,
it is known (and easily verified) that the remaining a; = a;(N), i =0, 1,...,k — 2, are roots of the equation

PP (ary) — P (a1 )P (8) =0

In fact, a;, i =0,1,...,k —1, are the roots of the Levenshtein polynomial [34, Egs. (5.81) and (5.82)] (see also [34, Theorem
5.39])

k=2
£ @) = (=) [ e —a)?
i=0
used for obtaining the bound L,;._;(n,s), s = a;_;, in (8).

Similarly, for every fixed N > D(n, 2k) there exist uniquely determined real numbers —1 = f3, < f3; < --- < B, < 1 and
Y0sY1s+--» Yk ¥i > 0fori=0,1,...,k, such that the quadrature formula

fo=L2 +Zy £(B) 13)

is true for every real polynomial f(t) of degree at most 2k. The numbers f; = B;(N), i = 0,1,...,k, are the roots of the
Levenshtein polynomial

k=1
FRPO(E) = (e = Bo)(t — PO J(e—B)?
i=1
(used for Ly (n,s), s = By, in (8)).
As mentioned in the Introduction we always take into consideration where the cardinality N is located with respect to the
Delsarte-Goethals-Seidel bound. It follows from the properties of the bounds D(n, 7) and L.(n,s) (see (10) and (11)) that
N e€[D(n,7),D(n,t+1)] &< se_,

where n, s and N are connected by the equality

N =1L_(n,s).
Therefore we can always associate N with the corresponding numbers:
0gy Ay vvs Ag1, P05 P1s- - -» Px—1 When N € (D(n, 2k — 1), D(n, 2k)] 14
or with
BosBis---sBi>Yo>Y1s--+> Yk When N € (D(n, 2k), D(n, 2k + 1)]. (15)

2.5 Bounds on smallest and largest inner products of spherical designs

Denote

u(n,N, 1) :=sup{u(C): C cS"!is a t-design, |C| = N}, (16)
where u(C) := max{(x,y): x,y € C,x # y}, and

£(n,N,7):=inf{¢(C) : C c S" ! is a 7-design, |C| = N}, 17)

where £(C) := min{(x,y): x,y €C,x # y}.

For every n, T and cardinality N € [D(n, 7), D(n, T + 1)] non-trivial upper bounds on u(n, N, 7) can be obtained (cf. [12, 10]).
Similarly, for even T = 2k and cardinality N € [D(n, 2k), D(n,2k + 1)) non-trivial lower bounds on ¢(n, N, 2k) are possible
[12, 10]. We describe here explicitly the cases T =2 and T =4

In [12, 10] the quantities u(n,N, 7) and £(n, N, 7) are estimated by using the following equivalent definition of spherical
designs (see [22]), which is a consequence of (5): a spherical T-design C C S*! is a spherical code such that for any point
x € S"! and any real polynomial of the form f(t) =", £;P™(¢), the equality

D F(xy)) = folcl (18)

xeC

holds.

Dolomites Research Notes on Approximation ISSN 2035-6803



/O‘Q\,\ Boyvalenkov - Dragnev - Hardin - Saff - Stoyanova 55

Lemma 2.1 ([10]). Let n> 3.

(a) Forevery N € [D(n,2),D(n,3)]=[n+1,2n] we have
unN,2)< N2, (19)
n

(b) Forevery N € [D(n,4),D(n,5)] =[n(n+3)/2,n(n+ 1)] we have

2034+ +/(n—=1D[(n+2)N =3(n+3)])
n(n+2) B

u(n,N,4) < 1. (20)

2
Proof. To prove (a) one can use the polynomial f(t) = (t +4/ ﬁ) in (18) with y being the midpoint of the geodesic arc

between two of the closest points in C as in Theorem 3.2 from [10]. The bound (20) in (b) is proved in the example following
Theorem 3.2 from [10]. O

Lemma 2.2 ([10]). Let n > 3.

(a) Forevery N € [D(n,2),D(n,3))=[n+1,2n) we have
(N2 >1- Y. @1)
n

(b) Forevery N € [D(n,4),D(n,5)) =[n(n+3)/2,n(n+ 1)) we have

2 4| (n=1)(N—-2)

Proof. The bound in (a) can be proved by utilizing the polynomial f(t) = t? in (18) with y being the midpoint of the geodesic
arc between points —x and z € C, where X, z is a pair of points of C with smallest inner product (see Theorem 3.3 from [10]).
The bound in (b) is proved as in the example after Theorem 3.3 from [10]. O

We remark that different bounds on u(n,N, t) and £(n,N, 7) can be obtained by a technique from [12, Sections 2 and 3].
For T > 4 such bounds are better in higher dimensions than those from Lemmas 2.1 and 2.2. More generally, when T = 2k we
establish in Lemma 2.3 lower bounds on £(n, N, 7) that will be used in Section 4 to establish Theorem 4.1.

Lemma 2.3 ([12, Lemma 4.1]). Let N € (D(n,2k),D(n,2k + 1)) and
(@)= (=) - (t=B)%

where f, ..., B are as in (15). Let & and m denote the smallest and largest roots, respectively, of f(t) = yoNf(—1). Then
£ <{(n,N,2k) <u(n,N,2k) <.

Proof. For the convenience of the reader, we provide a proof of Lemma 2.3. Let C be a spherical design of strength 7 = 2k on
S"™1 with |C| = N. Let x and y be distinct points in C. Since f(t) > 0 for all t and f vanishes at f3,..., f, it follows from (18)
and (13) that

F+ £y <D Fl{x,2)) =Nfy = F(1)+Nyof (1),

z€C

and so f({x,y)) < Nyof(—1). Since f(t) is strictly decreasing for t < ; and strictly increasing for t > f;, we must have
E<(x,y)<n. O

Note that Lemma 2.3 will produce a non-trivial bound £ > —1 if and only if y,N < 1 and the next assertion, implicit in [14,
Section 4] (see also Remark 5.58 in [34]), shows that this is indeed true for N € (D(n, 2k), D(n, 2k + 1)). We use the kernel

k
T (u,v) := Z rl-Pi(")(u)Pi(")(u)
i=0
(see [34, Equation (5.14)]) and its obvious properties.

Lemma 2.4. If N € (D(n,2k),D(n,2k + 1)), then y,N € (0, 1). Hence, £(n,N,2k) > —1.
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Proof. We have the formulas (Equation (5.113) in [34])

_ Tk(s, ].)
T Tu(—1,—1D)Ti(s, 1) — To(—1, DTe(s,—1)

Yo

and (the equation in the last line of page 594 in [34])
_ T.(1,1)Ty(s,—1) — T;,(1,—1)Ty (s, 1)

N=1 =
Zk(n,S) Tk(SJ _1)
A little algebra then shows that
N— T —A(s)
TN = T 1Ay

where A(s) := Ti(s,1)/T(s,—1) asin [14] and T := T;(1,1)/T,(1,—1). Moreover, we have

P(s)

P (s)

from [34, Lemma 5.24], where Pkl’o(s) > 0 and Pf’l(s) < 0 foreverys € (t;’o, t;’l) (see Lemmas 5.29 and 5.30 in [34]). Therefore
the signs of A(s) and T are opposite. We conclude that
_ T+ 1AG)]
° IT|+1/IA(s)|

O o . . 1,0 ,1,1 . .. . 1,0 ,1,1 .
The ratio plEJl(s) is decreasing in s in the interval (tk’ ! ) (see [34, Lemma 5.31]), i.e. |A(s)| is increasing in s € (tk’ >t ) Since
YoN =0and 1 fors = t;’o and t;’l, respectively, we obtain that y N increases from O to 1 when s increases from s = t;’o to
1,1
t. |

k

3 General lower and upper bounds

The general framework of the linear programming bounds for the quantities £(n,N, t;h) and U(n,N, 7;h) is given by the next
two theorems. Theorem 3.1 is an adaptation of known results (cf. [40, 16]) to spherical designs, we are not aware of any prior
use of linear programming techniques for obtaining upper bounds on the potential energy as in Theorem 3.6.

Theorem 3.1. Let n, N, 7T be positive integers with N > D(n,t) and let h : [—1,1] — [0,+00]. Suppose I is a subset of [—1,1) and
f(t)= Z?i%(f)fipi(")(t) is a real polynomial such that

(A1) f(t) <h(t)fortel, and
(A2) the Gegenbauer coefficients satisfy f; > 0 for i > 7+ 1.

If C € S is a spherical t-design of |C| = N points such that (x,y) € I for distinct points x,y € C, then
E(n,C;h) 2 N(foN — f(1)). (23
In particular; if I =[£(n,N, 7),u(n,N, t)], then
L(n,N,7;h) = N(f,N — f(1)). 24

Proof. Using (1), (5) and the conditions of the theorem we consecutively have

NF()+Em,Ch) = NF(+ Y. h({x,y)

x,y€C,x#y
> [ClfW+ Y. F(oy)
x,y€C,x#y
des) ¢ i 2
= [CPf+ Y. #Z(ZYU(X))
i=1 "1 j=1 \xeC
> NZ2f,

which implies (23). If I = [£(n,N, 7),u(n,N, t)], the assertion (24) follows immediately from the definitions (2), (16), and
an. O
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Our choice of polynomials for Theorem 3.1 follows from ideas of Levenshtein [33, 34] and the connections (10) and (11).
We start with fixed dimension n, cardinality N and strength 7 under the assumption that N € (D(n,7), D(n, 7 + 1)]. Now the
equation N = L_(n,s) determines all necessary parameters as explained in subsections 2.3 and 2.4.

Definition 3.2. We denote by A, .. ;; the set of polynomials satisfying conditions (A1) and (A2) of Theorem 3.1. For convenience
we shall write A, ., := A, [_1.17-

Next we need Hermite interpolation as follows. If h € C!([—1,1]), we define the Hermite interpolant F(t) as follows:
(i) for odd T = 2k — 1 the polynomial F(t) of degree at most 2k — 1 by
F(a;))=h(a), F'(a;)=h'(a;), i=0,1,...,k—1;
(ii) for even T = 2k the polynomial F(t) of degree at most 2k by
F(Bo) =h(Bo), F(B)=h(By), F'(B)=H(B), i=1,....k

These conditions define, as in [16] (see also [2, 30, 40]), a Hermite interpolation problem that requires the graph of F(t) to
intersect and be tangent to the graph of the potential function h(t) at all points «; and all 3; except for §, = —1 where only
intersection is required.

Lemma 3.3. Suppose h is absolutely monotone on [—1,1] and that F satisfies (i) or (ii). Then F(t) < h(t) forall t € [—1,1].

Proof. The proof follows from the well-known error formula for Hermite interpolation (see [18, Theorem 3.5.1]), namely

(t+1)
et — )+ (t— oy, ), T=2k—1,
h(t)—F(t) =
(t+1)
h(‘r+1()!§)(t - ﬂo)(f - /51)2 to (t - ﬁk)z, T = Zk,
for some & = £(t) € (—1,1) and the fact that h\**V(¢t) > 0 for t €[—1,1]. B

In [15, Theorem 3.1], the following result was established by the authors, which provides a lower bound on the h-energy of
general codes.

Theorem 3.4. Let n,N and 7t be positive integers with N € (D(n, 7), D(n, T + 1)] and suppose h is absolutely monotone on [—1,1].
Then, for any positive integer T, we have

N2 Zf:; pih(a;), T=2k—1,
L(n,N,7;h) > irleE(n,C;h)Z (25)
N2Y0 vih(B), T =2k,

where the infimum is over spherical codes C C S*™* with |C| = N.

Utilizing Theorems 3.1 and 3.4 we provide a sufficient condition for the optimality of the bounds in (25) for a class of
spherical designs.
Theorem 3.5. Suppose n, 7, and I are as in Theorem 3.1, N € (D(n, 7),D(n, T + 1)], h is absolutely monotone on [—1,1] and
that a; €1 fori =0,...,k —1 in the case that T = 2k — 1 and that 3; €I for i =0,..., k in the case that T = 2k. IfC CS"isa
spherical t-design with |C| = N and inner products {x,y) € I for x # y € C, then the linear programming lower bounds in (25)
cannot be improved by utilizing polynomials of degree at most T satisfying (Al); i.e., for any such polynomial f we have

N2 35 pihla), ©=2k—1,
N(foN—f(1)) <N(FoN —F(1)) = (26)
N2Z o rh(B), T =2k,
where F(t) is the Hermite interpolating polynomial from (i) and (ii).

Proof. We shall consider only the case T = 2k — 1 since the T = 2k case is analogous. Notice that (i) and (12) allow us to rewrite

(25) as
k—1

E(n,C;h) = N2 p;F(a;) = N(FoN — F(1)).
i=0
Lemma 3.3 implies that F(t) < h(t) for every t € [—1, 1]; in particular F(t) satisfies the condition (A1) of Theorem 3.1. The
condition (A2) is trivially satisfied and therefore F € A, 5_; 1.4
Furthermore, for any polynomial f (t) € A, 5 ;.5 of degree at most 2k — 1, we have from the quadrature formula (12) for
f(t) and the fact that {a;} C I

k—1 k—1
N(FoN —F(1)) =N pih(a) = N* > p,f (o) = N(f,N — f(1)),
i=0 i=0

which proves (26) and the theorem. O
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In Theorem 4.1 we show that the bound for £(n,N, 7;h) in (25) can be improved over the whole range D(n,7) < N <
D(n, 7 + 1) in the case of even 7.

As mentioned above, the specific properties of the spherical designs, namely the existence of nontrivial upper bounds on
u(n,N, ), allows further application of the linear programming techniques. We are able to derive upper bounds on ¢/(n,N, 7; h)
thus setting a strip for the energies of the spherical designs under consideration.

Theorem 3.6. Let n, N, T be positive integers with N = D(n, t) and let h : [—1,1] — [0,+00]. Suppose I is a subset of [—1,1) and
g(t)= Zdeg(g) P(")(t) is a real polynomial such that

(B1) g(t)=h(t)fortel, and
(B2) the Gegenbauer coefficients satisfy g; < 0 fori >t +1.
If C C S" ! is a spherical t-design of |C| = N points such that (x,y) € I for distinct points x,y € C, then
E(n,C;h) < N(goN —g(1)). 27)
In particular; if I =[£(n,N, 7),u(n,N, t)], then
U(n,N,7;h) < N(goN —g(1)). (28)

Proof. Let C C S™! be an arbitrary spherical T-design of |C| = N points. Using (1), (5) and the conditions of the theorem we
consecutively have

Ng(1)+E(n,C;h) = Ng()+ > h((x,y)

x,yE€C,x#£y
< Ng+ D) gy

x,y€C,x#y

deg(g) Ti
- wer' 3 83 (Snw)
e xeC
S gO’
which implies (27). Since the design C was arbitrary, we conclude that (28) holds. O

We utilize Theorem 3.6 to determine an upper bound that in conjunction with the lower bound (26) in Theorem 3.5 defines a
strip where the energy of designs lives. We shall formulate the theorem for the odd case T = 2k — 1, but a similar assertion holds
for the even case 7 = 2k.

Theorem 3.7. Let n, N, and T = 2k—1 be positive integers with N > D(n,t) and let h : [—1,1] — [0, +00] be absolutely monotone.
For aj_; <u <1 (see (14)) and every j € {0,1,...,k—1}, let G(t) = G, ,(t) be the Hermite interpolant of h of degree 2k — 1 that
satisfies

G(a;) =h(a;), G'(a;)=Hh(a), i€{0,1,...,k—1}\ {j},G(—1) = h(-1), G(u) = h(u).

Then, for any spherical T-design C with |C| =N and u(C) = max ( ,Y) <
x.y€

k—1
E(n,C;h) < N(GoN —G(1)) =N? Zpih(ai) +N?p;[G(a;)—h(a,)]. (29)
i=0
In particular, if u :=u(n,N, ) < 1, then
. i . 2 i . . ) — .
UmN, 7 h) = L(n, N, 7sh) <N° min p;[G;.(0;)—h(a;)]. (30)

Proof. It follows from the Hermite error formula

he9(E)

h(t)—G(t) = 20!

——=2(e+ (e —w)] Jee—a)?,

i#j

that G(t) > h(t) for t € [—1,u]. We next apply the quadrature formula (13) to the polynomial G(t) and utilize Theorem 3.6 to
conclude (29). For N € (D(n,t),D(n, T + 1)] the estimate (30) follows from Theorem 3.4 and (29). When N > D(n, T + 1), we
utilize [15, Theorem 3.4] instead. O

Remark 1. Theorem 3.7 and its counterpart for even 7 give upper bounds for well separated 7-designs with N > D(n, 7 + 1).
In this case, the lower end of the energy strip is given by lower bounds coming from higher degree polynomials. Indeed, the
cardinality N is located in some interval (D(n, t’), D(n, 7’ + 1)], where 7’ > 7 + 1, and the corresponding expression from (25)
can be calculated. It turns out that this is a valid lower bound (cf. [15, Theorem 3.1]).
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4 Improving the linear programming lower bounds

4.1 Even strength

We show that the bounds from Theorem 3.4 can be improved when some additional information about the distribution of the
inner products of the designs under consideration is available. This is exactly the case for designs of even strength 2k and
cardinality N in the interval (D(n, 2k), D(n, 2k + 1)). In fact, N = D(n, 2k) is possible only for k = 1 (the regular simplex) and
k=2 (see [4, 5]).

It follows from Lemmas 2.3 and 2.4 that —1 < £(n, N, 2k) for every N € (D(n, 2k), D(n, 2k + 1)). We next use this fact to
improve the bound (25) for the case of even strength T = 2k, where N € (D(n, 2k), D(n, 2k + 1)).

Theorem 4.1. Suppose N € (D(n,2k), D(n,2k + 1)) and h is absolutely monotone on [—1,1]. Let G(t) be the Hermite interpolant
of h(t) of degree at most 2k such that

G()=h(0), G(B)=h(By), G'(B)=H(B), i=1,....k,
where £ := {(n,N, 2k). Then

k k
£(n,N,2k; ) = N(GoN — G(1)) =N 3 1,G(B) > N* > vih(By).

i=0 i=0

Proof. We note that £ < 3; (see [12, Theorem 4.5]). Using Theorem 3.1 with f =G and I =[/{, 1], we obtain £(n,N, 2k;h) >
N(GyN — G(1)). Since the degree of G(t) is at most 2k we can apply the quadrature formula (13) and so

k k
G)N—G(1) = NZYiG(ﬁi) =N (YOG(_l) + ZYih(ﬂi))
i=0 i=1
k
= N (YO(G(—U —h(=1))+ yih(ﬁi))
i=0
k
> N vih(B),
i=0
(the inequality G(—1) > h(—1) follows from the interpolation). O

We remark that the choice of the polynomial G(t) in Theorem 4.1 is not usually optimal for maximizing the lower bound in
Theorem 4.1. In a forthcoming paper, we shall develop methods for choosing optimal interpolation points.

Next we show that the inequality for £(n, N, 2) from Lemma 2.2(a) can be used for obtaining a lower bound for £(n,N, 2;h)
that is better than (25) in the whole range n+ 1= D(n,2) < N < 2n = D(n, 3).

Theorem 4.2. Let n> 2 and N € [n+ 1,2n]. If h is absolutely monotone on [—1,1], then

LN, 2:h) > N[h(O)N(N—nN—_l)n+ nh(l—N/n)]' 1)

In particular, if { := N /n, then
N[R(1L =)= Zh(0)]

L(N/{,N,2;h) = h(0)N? + 71

(32)

Proof. If N =n+ 1, then the regular simplex is a universally optimal code that is also a two-design, and (31) and (32) hold with
equality. Therefore, we may assume that n+1 < N < 2n.

Let k <1—N/n. By Lemma 2.2(a), £(n,N,2) > 1 — N /n. Therefore, we can apply Theorem 3.1 with I =[x, 1] and a second
degree polynomial f (t) such that f(x) = h(x), f(a) = h(a) and f'(a) = h’(a), where
n(l—x)—N

Observe that a € I. Choosing k =1 — N /n gives a = 0 and, hence, the bounds (31) and (32) follow. O
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Remark 2. For any k < 1—N/n, the choice of a in (33) maximizes the functional f,—f(1)/N over all polynomials f (t) of degree
two such that f(t) < h(t) on I =[x, 1]. Indeed, the nodes {x,a, 1} define a quadrature rule

_&@
"N

that is exact for all polynomials g(t) € P,. The weights

& +w;g(a) +wog(x),

_ (Q+x(N-=-1) - N-n—1
CNNG+x)—(1-x)2) % n(N—1x2+2nk+N—n

wy

are strictly positive for n + 1 < N < 2n. The optimality of the node a now follows as in Theorem 3.5.

The independence of the optimal touching point a in (33) on the potential function h is a phenomenon similar to the
universality of the Levenshtein nodes {a;} (respectively {;}) considered in Section 3. We shall consider the problem for bounding
cardinalities and energies of spherical codes and designs with inner products in some interval [£,u] C [—1,1] in a future work.

Lower bounds for the energy of 4-designs by Theorem 3.1 can be obtained by interpolation with polynomials of degree four:
f)=h(x), f(@=h(a), f'(@=H(a), f(b)=h(D), f'(b)=h(D),

where « is the expression on the right-hand side of (22) and the touching points a and b are chosen to maximize f,N — f(1).

4.2 0dd strength

In contrast to the even strength case, non-trivial lower bounds on £(n, N, 2k — 1) seem impossible for N € [D(n, 2k — 1), D(n, 2k)]
without further constraints. Instead we show that higher degree polynomials can lead to improving the lower bound (25) for
T=2k—1.

Let n, N € [D(n,2k — 1), D(n,2k)] and T = 2k — 1 be fixed and j be a positive integer. Taking the necessary parameters from
N = Ly_,(n,s) we consider the following functions in n and s € Z,;_,

~
—

+ pin(“)(ai). 349

i

2|~

Q,(n,5) =

Il
o

Note that Q;(n,s) is the same as the quadrature rule expression on the right-hand side of (12) applied to f = Pj(") since P].(")(l) =1.

The functions Q;(n,s) were firstly introduced and investigated in [13]. The applications in [13] target the upper bounds on
A(n,s) and, in particular, the possibilities for improving the Levenshtein bounds. We are going to see that the functions Q;(n,s)
are useful for our purposes as well. The next theorem shows that (the signs of) the functions Q;(n,s) give necessary and sufficient
conditions for existence of improving polynomials of higher degrees.

Theorem 4.3. Assume that h is strictly absolutely monotone. Then the bound (25) can be improved by a polynomial from A, 514
of degree at least 2k if and only if one has Q;(n,s) < 0 for some j = 2k.

Moreover, if Q;(n,s) < 0 for some j > 2k, then (25) can be improved by a polynomial from A, 5_y;, of degree exactly j.

Proof. The necessity mirrors the spherical codes’ analog [15, Theorem 4.1] (see also [15, Theorem 2.6]). We include the simplified
proof of the sufficiency in the context of the spherical designs for completeness.

Let us assume Q;(n,s) < O for some j > 2k. We prove that the bound (25) can be improved by using the polynomial
f(t)= EP]FH)(t) + g(t) for suitable ¢ > 0, where the polynomial g(t) is such that deg(g) = 2k — 1 and

g(a) = h(a)—eP"(a), g'(a) =h'(a)—e(P"Y (@), i=0,1,....k—1 (35)

(i.e. g(t) is Hermite interpolant of h(t) — 8Pj(")(t) in the points a,, @4, ..., a;_;. We denote g(t) = Zle ggP,z(")(t). Note that

fo=8oand f(1)=g(1) +e.
We first prove that f(t) = st(”)(t) + g(t) €A, sx_1;, for some & > 0. For condition (A2) we need to see only that f; =& > 0.

For condition (A1), let us choose £ > 0 such that (h — st("))m (t) = 0 for every £ > 0 and for every t € [—1,1]. It is clear that
such ¢ exists because h is strictly absolutely monotone and this leaves finitely many ¢ to generate inequalities for . Moreover,
since the function h(t) := h(t)—st(")(t) is absolutely monotone by the choice of ¢, we could infer as in Lemma 3.3 that g satisfies
g(t) < h(t) for every t € [—1,1) which implies that f(t) < h(t) for every t €[—1,1] and hence f(t) €A, y_1.1-
It remains to see that the bound given by f(t) is better than (25). This follows by combining equalities from (35) and

applying (12) and (34) to obtain

k=1

N(Nfo—f(1))=N?_ pih(a,) — eN?Q;(n,s)
i=0

Since Q;(n,s) <0, we have N(N f, — f(1)) > N? Z::; p;:h(a;), i.e. the polynomial f(t) indeed gives a better bound. O
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As mentioned above, the test functions Q;(n,s) were initially defined in [13] as related to the Levenshtein bounds £(n,s)
on maximal spherical codes. Theorem 4.3 shows that Q;(n,s) prove to be very useful tool in the context of potential energy as
well. In particular, the signs of the test functions Qq,5(1,s), where T = 2k — 1, were investigated in detail in [13] (see also [9]).
Denote

k? — 4k + 5+ vk* —8k3 — 6k2 + 24k + 25
4

ko :=
for short (k, is well defined for k > 9).

Theorem 4.4. [9, Theorem 3.5.9 ] We have Q,,5(n,s) < 0 for every s € (t,i’_ll, t;’o) and for every n > 3 and k > 9 which satisfy
3<n<k.

1,1 ,1,0
t

Corollary 4.5. The bound (25) can be improved by using polynomials of degree 2k + 3 for every s € ( 1o b ) and for every n > 3

and k > 9 that satisfy 3 < n < k.
Proof. This follows from Theorems 4.3 and 4.4. O

Remark 3. We note that test functions for the even case T = 2k can be defined and investigated as well (see [13]). However, we
conjecture that the linear programming in [£(n, N, t),u(n,N, v)] by Theorem 3.1 is always better than the bounds which would
come from higher degree polynomials.

5 Improved upper bounds for 2, 3, and 4-designs

In this section, we use bounds from Lemmas 2.1 and 2.2 to specify an interval I in Theorem 3.6 to obtain upper bounds for the
energy of 2-, 3- and 4-designs. Our numerical experiments suggest that the use of even degree polynomials is not effective and so
we turn our attention to polynomials of degrees 1 and 3.

5.1 Upper bounds for 2-designs

First we apply Theorem 3.6 for g a linear polynomial.

Theorem 5.1. Let h be a convex non-negative function on [—1,1] and let u and £ denote the upper and lower bounds in (19) and
(21), respectively. For N € [n+1,2n), if £ < u then

N[(N — 1)(uh(£) — ¢h(w)) + h(€) — h(u) ]

U(n,N,2;h) <
u—~¢

> (36)

if { =uthen U(n,N,2;h) =Nh(—1/(N —1)).

Proof. With I = [{,u], the linear polynomial passing through the points (¢,h(£)) and (u, h(u)) satisfies the conditions of
Theorem 3.6 and gives the desired bound. If u = £, then we must also have u = £ = —1/(N — 1) which implies that /(n,N, 2; h) =
Nh(—-1/(N —1)). O

Remark 4. Combining (31) and (36) gives a strip for the h-energy of any spherical 2-design of N € {n+ 1,n+2,...,2n—1}
points when h is absolutely monotone. Note that if n and N tend simultaneously to infinity such that N /n — ¢ for some ¢ € (1,2),
Theorem 4.2 and Theorem 5.1 give an asymptotic strip as N — 00:
< LON.ZR) _UGN.ZR) A= +RE=1) | ooy

N2 N2 2
Example 5.1. Simple algebraic manipulations show that the bounds (31) and (36) for 2-designs coincide when N =n+1 or
N =n+2 for every n and h (i.e. the strip becomes a point for these two cardinalities). The case N = n+ 1 leads to the regular
simplex on S™1.

h(0)+O(N7")

The case N = n + 2 is more interesting — Mimura [35] has proved that spherical 2-designs with n + 2 points on S"! do exist
if and only if n is even and Sali [37] (see also [38]) proved that there are no other (up to isometry) such 2-designs. Spherical
2-designs of N = 2k points on S>3 are known as Mimura spherical designs and consist of two orthogonal k-simplices which
we denote by {k,k}. This design has k(k — 1) distances of 4/2k/(k — 1) coming from edges within the two k-simplices and
k? distances of +/2 which are the edges joining the vertices from distinct simplices. The total number of various distances is
k(2k—1)=(5).

Sali’s nonexistence result follows easily from the coincidence of our bounds. It also follows that the 2-designs of n + 2 points
for even n are unique and optimal - they have simultaneously minimum and maximum possible energy. The optimality cannot
be extended to the larger class of spherical codes — Cohn and Kumar [16, Proposition 1.4] prove thatif n+1 < N < 2n, then
there is no N-point universally optimal spherical codes on S"~'. For the cases, N € {n+3,n+4,...,2n— 1}, there is a difference
(increasing with N) between the bounds from (31) and (36).
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Example 5.2 (Riesz s-energy of Mimura designs). As mentioned above, Mimura designs clearly give the minimum energy over
2-designs with 2k points in S2*=3. The Riesz s-energy, that is the energy when h(t) = (2(1 — t))™/?, is given by

2 _ _ s/2
E({k,K}) = % (1 T k(kkz 1) (kk—l) ) 37)

It is easy to see that Mimura designs are not universally optimal among general codes of cardinality N = 2k. Indeed, consider
the competing configuration {2, 2k — 2} made of two orthogonal simplices, a 2-simplex and a (2k — 2)-simplex (say the North
Pole-South Pole diameter and a (2k —2)-simplex in the equatorial hyperplane). This configuration has 1 distance of length 2,
(2k — 2)(2k — 3)/2 distances of length 4/2(2k —2)/(2k —3) and 2(2k — 2) distances of length +/2. Thus the s-energy of this
competing configuration is given by

_ 2(2k—2) 1 2k —3 ( 2k —3*/?
E({2,2k=2) = =5 (1+2(zk—2)2s/2+ 4 (2k—2) ' (38)

Comparison of (37) and (38) shows that for large enough s the Mimura design {k, k} will have strictly larger energy than the
competing configuration {2,2k — 2}. However, for k = 3 it was shown in [21] that the Mimura configuration minimizes, in
particular, the logarithmic energy.

5.2 Upper bounds for 3 and 4-designs

For our estimates we shall apply Theorem 3.6 with g(t) the Hermite interpolating polynomial of degree at most three satisfying

g() =h(0), g(a) =h(a), g'(a) =N'(a), g(w) =h(uw), (39
where ¢ and u again denote lower and upper bounds, respectively, for the inner products of all spherical 3- or 4-designs under
consideration. For T = 3 one can take { = —1 and u as in [12, Theorem 3.9]. For T = 4 the bounds u and { are taken from

Lemma 2.1(b) and 2.2(b), respectively.

Theorem 5.2. Let h € C*([—1,1]) with h¥(t) > 0 for t € [-1,1]. For T = 3 and N € [2n,@), and for T = 4 and
N e [@,n2 +n), we have
U(n,N,7;h) < NI —1)h(a,) (40)
(h(£) —h(ay)) [uN(l +nal)+2Na,+n(1—u)(1— a0)2]
* n(u— 0L —a)?
(h(w) —h(ay)) [EN(1 +na?) + 2Na, + n(1—€)(1 —ay)?]
+ 3
n(u—~£)(u—ay)?

where
NU+uw)+n(1-0)(1—uw)

G =01 —u)—NQ + tun)’

(41
and u and £ are chosen as described above.
Proof. As in Lemma 3.3 we use (39) to see that g(t) > h(t) for every t € [{,u], i.e. the condition (B1) is satisfied. Moreover,

(B2) is trivially satisfied and therefore Theorem 3.6 can be applied. Standard calculations for optimization of g,N — g(1) via
derivatives show that the optimal value of a is given by (41). O

The asymptotic form of the bound (40) for T = 4 is easily determined when n and N € [D(n,4),D(n,5)) = [@, n?+n)
tend simultaneously to infinity as described in the following corollary.

Corollary 5.3. If n and N tend to infinity in relation N = n?A + 0(1) as N — 0o, where A € [1/2,1) is a constant, then

U(n,N,4;h) < h(0)N2—h(0)N +¢; VN + ¢, +o(1), (N —= 00), (42)
where
o VAI2YA—DA(1—2VA) + (1 -2V Dh(2VA—-1)]
e 2(2vVA—1)3
and

(1= v2)h(1—2v1) + vAh(2/A—1) —h(0)
B (2VA—1)3 ’

2
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Proof. The assertion follows from Theorem 5.2 and the asymptotic formulas below:

u(n,N,4) = Zﬁ—1+o(1) (from Lemma 2.1(b)),
{(n,N,4) = 1—2ﬁ+0(1) (from Lemma 2.2(b)),
a, = o(1) (from (41)).

6 Some asymptotic lower bounds

We consider the bounds (25) in the asymptotic process where the strength 7 is fixed, and the dimension n and the cardinality N
tend simultaneously to infinity in the relation

2
N Ty Ty, T= 2k —1,
lim m = = (43)
nN=eo n % + Y, T = Zk,
(here y > 0 is a constant and the terms (,{TZD, and % come from the Delsarte-Goethals-Seidel bound).
Theorem 6.1. Let h be absolutely monotone on [—1,1] and 7 be fixed. If n and N tend to infinity as in (43), then
L(n,N,7;h) > h(0)N? + o(N?). 44

Proof. Let T =2k — 1. From (43) and [11], the asymptotic behavior of the parameters from (25) is as follows: a; = o(1), for
i=1,2,....,k—1,a,= —m +0(1), poN = (1 + y(k—1)1)*71 +0(1) as N — oco. Now the lower bound of (25) is easily
calculated:

L(n,N,2k—1;h)

[\

k-1
N? Zpih(ai)

i=0

k=1
= N? (Poh(ao) + h(o)zpi) +0o(N?)

= N (polttan) RO +HO) (13 ) ) +o?)
= h(0)N? +o(N?3).

Similarly, in the even case T = 2k, we obtain

L(n,N,2k;h) = Nz(yo(h(—l)—h(o))+h(0)(1—llv))+o(N2)
h(0)N? + o(N?).

O

Remark 5. Our reason for considering the above asymptotic process is motivated by the observation that for fixed dimension n
there may only be a finite number of 7’s such that t-designs of cardinalities in (D(n, 7), D(n, T + 1)] exist. For example, it was
conjectured in [24] that the minimum cardinality of T-designs on S? is greater than D(n, T + 1) for T > 7. Other asymptotics will
be considered elsewhere.

Note that for T = 4 the main terms in the lower bound (44) and the upper bound (42) coincide. For odd 7, (44) also yields
good energy estimates as shown in the next example.

Example 6.1. There is a standard construction (see [17, Chapter 5]) mapping binary codes from the Hamming space H(n, 2)
to the sphere S*! — the coordinates 0 and 1 are replaced by +1/+/n, respectively. Denote by X and C the images of vector
x € H(n,2) and code C € H(n,2). Then the inner product (x,¥) on S"' and the Hamming distance dy(x, y) in H(n, 2) are
connected by

_ 2dy(x, )

n

x,y)=1

Levenshtein [33, pages 67-68] shows that spherical codes which are obtained by this construction from the Kerdock codes
[28] are asymptotically optimal with respect to their cardinality. So it is natural to check them for energy optimality.
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The Kerdock codes K, ¢ H(2%,2) are nonlinear. They exist in dimensions n = 2% and their cardinality is N = n? = 2%. The
Hamming distance (weight) distribution does not depend on the point and is as follows:

A 0fori#0,i; =221 —201j, =221 j, =221 4 ol=1 p — 20,
Ay = 1,

A, = 22(226-1 _ 1),

Ai2 — 22[+1 _ 2’

A, = Zzz(zzz—1 -1,

A 1.

n

The weights 0,1i,,1,,i3,n correspond to the inner products 1, %, 0,—‘/%, —1, respectively. The spherical code fz c §?1 has

energy
E(n,K;;h)=N ((22“1 —2)h(0)+ 2% (2% —1) (h (%) +h (—%)) + h(—l)) )

When n tends to infinity we obtain

1 1
R

where we assumed that h is differentiable at 0.

E(n,K,;;h) = N; (h( )) +O(N) = h(0)N? + O(N*?) = h(0)n* + O(n®),
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