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Global polynomial optimization by norming sets
on sphere and torus

Marco Vianello a

Communicated by Len Bos

Abstract

Using the approximation theoretic notion of norming set, we compute (1− ε)-approximations to the
global minimum of arbitrary n-th degree polynomials on the sphere, by discrete minimization on
approximately 3.2 n2ε−1 trigonometric grid points, or 2n2ε−1 quasi-uniform points. The same error
size is attained by approximately 6.5 n2ε−1 trigonometric grid points on the torus.
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1 Introduction
In this paper, following the approach proposed in [23] for the cube, we make a further step in the use of discrete polynomial
inequalities as a tool for global polynomial optimization. Such an approach, based on the approximation theory notion of
norming set, places in the framework of approximate continuous optimization by discrete optimization on suitable subsets,
see e.g. [8, 9, 10, 25] and the references therein.

Given a compact set (or manifold) S ⊂ Rd , we briefly recall that a norming set in the infinity norm for Pd
n(S) (the space

of d-variate polynomials of degree not exceeding n, restricted to S), is a subset X ⊂ S such that

‖p‖S ≤ c ‖p‖X , ∀p ∈ Pd
n(S) , (1)

for some constant c > 1 independent of p. Observe that X is Pd
n(S)-determining, i.e. the only polynomial in Pd

n(S)
which vanishes on X is the null polynomial on S. This implies that card(X ) ≥ N = dim(Pd

n(S)). It can happen that
dim(Pd

n(S))< dim(Pd
n) =

�n+d
d

�

, in particular this occurs when S is an algebraic variety. For example on the 2-sphere S = S2

we have that dim(P3
n(S)) = (n+ 1)2 < dim(P3

n) = (n+ 1)(n+ 2)(n+ 3)/6; cf. [7, 24].
Finite norming sets are of special interest in approximation theory. In the last 10 years, the study of family of norming

sets like (1), called polynomial meshes when c is independent of n and card(X ) = O(N s), s ≥ 1, has received a considerable
attention in the literature on multivariate polynomial approximation (a polynomial mesh is termed optimal when s = 1).
Indeed, polynomial meshes are good discrete models of a compact set, concerning for example polynomial least square
approximation, extraction of interpolation point sets, Bernstein-Markov measures and numerical methods in pluripotential
theory. Moreover, they can be constructed in an incremental way by algebraic transformation, finite union and product, and
are stable under small perturbations; see e.g. [1, 3, 5, 6, 15, 18, 19, 20, 21, 22] and the references therein.

By the following elementary lemma, we recall the basic inequality that allows to use (1) for approximate polynomial
optimization on S, provided that we are able to construct X in such a way that c→ 1. By no loss of generality, we focus on
the approximation of the minimum.
Lemma 1. Assume that (1) holds. Then

min
X

p−min
S

p ≤ (c − 1)
�

max
S

p−min
S

p
�

, ∀p ∈ Pd
n(S) . (2)

Proof. Consider the nonnegative polynomial q(x) = maxS p − p(x) ∈ Pd
n(S). We have that ‖q‖S = maxS p −minS p and

‖q‖X =maxS p−minX p. Then by (1 applied to q

‖q‖S − ‖q‖X =min
X

p−min
S

p ≤ (c − 1)‖q‖X ≤ (c − 1)‖q‖S ,
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that is (2). �

Giving an approximation relative to the range of p, namely to maxS p−minS p, is standard in polynomial optimization.
The usual way to express an inequality like (2), is to say that minX p is a (1− ε)-approximation to minS p, with ε = c − 1;
see, e.g., [8].

2 Optimization by norming sets on the sphere
If one is able to construct X in such a way that c becomes close to 1, estimate (2) gives a guaranteed error bound in the
approximation of the polynomial minimum on S. In [23], the case S = [−1,1]d was treated, taking as X a (mn + 1)d
Chebyshev-Lobatto grid, and proving that c = 1/ cos(ξ) in (2) with ξ = π/(2m). The proof was based on the uniform
spacing of the grid points with respect to a suitable distance related to total degree polynomial spaces, the Dubiner distance
in the cube; see [11] and [4]. Embedding the problem in tensor product polynomial spaces, one would obtain instead
c = 1/ cosd(ξ).

Here, we focus on the unit 2-sphere S = S2, and partially on the torus. Indeed, global optimization on sphere and torus
is a classical problem (see e.g. [8, 13]), but apparently not studied yet in the framework of norming sets.

We begin by a tensorial trigonometric approach, which is natural working with angular coordinates (latitude and
longitude), where we get c = 1/ cos2(ξ). Such an approach is not peculiar to the sphere, and can for example be immediately
extended to polynomial optimization on the torus. Then, we’ll turn to an approach tailored to polynomial spaces on the
sphere, again by the relevant notion of Dubiner distance and recent results on spherical polynomial meshes, obtaining
c = 1/ cos(ξ).

2.1 Optimization on trigonometric grids
On the sphere S = S2 it is natural to work with spherical coordinates, say

σ(θ ,φ) = (cos(θ ) cos(φ), cos(θ ) sin(φ), sin(θ )) , (3)

where θ is the latitude and φ the longitude. The key observation is that if p ∈ P3
n(S), then p ◦σ ∈ Tn⊗Tn, where Tn denotes

the space of univariate trigonometric polynomials of degree not exceeding n. We recall that dim(P3
n(S)) = (n+ 1)2, and

dim(Tn ⊗Tn) = (2n+ 1)2. In order to work with trigonometric polynomial inequalities on the whole period, we take both
the angles θ ,φ in [−π,π]. In such a way the transformation σ is no more injective even eliminating the poles (every not
polar point corresponds to two values of the extended latitude).

We can now state and prove the following
Proposition 1. Let S = S2 be the unit 2-sphere and X = σ(Θmn ×Θmn), where Θs = { jπ/s , −s ≤ j ≤ s − 1} be 2s equally
spaced angles in [−π,π]. Then

min
X

p−min
S

p ≤ tan2(ξ)
�

max
S

p−min
S

p
�

, ∀p ∈ P3
n(S) , ξ=

π

2m
. (4)

Proof. It suffices resorting to the well-known trigonometric polynomial inequality proved by Ehlich and Zeller in [12] (se
also [5])

‖t‖[0,2π] ≤
1

cos(nπ/2s)
‖t‖Θs

, s > n , ∀t ∈ Tn . (5)

From (5) with s = mn, m> 1, and the fact that p ◦σ ∈ Tn ⊗Tn, it is immediate to prove in view of the tensorial structure
that

‖p‖S ≤
1

cos2(ξ)
‖p‖X , ∀p ∈ P3

n(S) , ξ=
π

2m
, (6)

where X = σ(Θmn ×Θmn), and then to conclude by Lemma 1. �

Observe that due to the structure of the transformation σ (essentially spherical coordinates) the sampling points are not
uniformly distributed on the sphere, but cluster at the north and south pole. Moreover card(X )∼ 2m2n2 for mn→∞ (in
particular, for n fixed and m→∞), with exact equality when the poles are not in X (i.e., for mn odd).

It is worth stressing that this construction is not peculiar to the sphere. Indeed, we can apply it to the torus, by resorting
to the standard toroidal coordinates

σ(θ ,φ) = ((R+ r cos(θ )) cos(φ), (R+ r cos(θ )) sin(φ), r sin(θ )) , (7)

(θ ,φ) ∈ [−π,π]2, where R is the major and r the minor radius of the torus, since also in this case p ◦σ ∈ Tn ⊗Tn. We may
only observe that here card(X ) = 4m2n2 for any m, n, the transformation σ being now injective.
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2.2 Optimization on quasi-uniform points
In view of the highly nonuniform distribution of the sampling points in the trigonometric grid approach, we may think to
look for better distributed norming sets on the sphere. The main aid here comes from the notion of Dubiner distance on a
multidimensional compact set (or manifold) S ⊂ Rd , that is

δ(x , y) = sup
p∈Pd

n (S)

�

|arccos (p(x))− arccos (p(y))|
deg(p)

, deg(p)≥ 1 , ‖p‖S ≤ 1

�

. (8)

Such a distance was introduced by M. Dubiner in the seminal paper [11], and together with the Markov distance and the
Baran distance plays an important role in multivariate polynomial approximation; see e.g. [4] and the references therein for
relevant properties and results.

Its role in the construction of norming sets for polynomial spaces can be summarized by the following lemma (cf. [23])
Lemma 2. Let X be a compact subset of a compact set S ⊂ Rd whose covering radius ρδ(X ) with respect to the Dubiner
distance does not exceed ξ/n, where ξ ∈ (0,π/2) and n≥ 1, i.e.

ρδ(X ) =max
x∈S
δ(x , X ) =max

x∈S
min
y∈X
δ(x , y)≤ ξ/n . (9)

Then, X is a norming set like (1) for Pd
n(S) with constant c = 1/ cos(ξ).

Proof. We sketch the proof, that appears essentially in [2], for the only purpose of clarifying the role of the Dubiner distance
in the construction of norming sets. Assume by no loss of generality that ‖p‖S = p(x0) = 1 for some x0 ∈ S (possibly
normalizing and/or multiplying p by −1). By definition of Dubiner distance, there exists y ∈ X such that

|arccos (p(x0))− arccos (p(y))|= |arccos (p(y))| ≤
ξ deg(p)

n
≤ ξ <

π

2
.

Then, since the inverse cosine function is monotonically decreasing, we get p(y)≥ cos(ξ)> 0, and finally

‖p‖S = 1≤
p(y)
cosξ

≤
1

cosξ
‖p‖X . �

We notice that Lemma 2 improves a similar inequality in [18], where c = 1/(1− ξ) with ξ ∈ (0,1) appears instead of
c = 1/ cos(ξ). This result was used in [23], to show that a (mn+ 1)d Chebyshev-Lobatto grid is a norming set for the cube
[−1,1]d with c = 1/ cos(π/2m). Indeed, the Dubiner distance for the cube is

δ(x , y) =max
�

|arccos (x1)− arccos (y1)|, . . . , |arccos (xd)− arccos (yd)|
	

,

and this is one of the few instances where it is explicitly known (the other ones are the sphere, the ball and the simplex, see
[4]).

Here we use the fact that the Dubiner distance on the sphere S = S2 is nothing but the classical geodesic distance

δ(x , y) = arccos (〈x , y〉) , ∀x , y ∈ S2 , (10)

where 〈x , y〉 denotes the Euclidean scalar product in R3; cf. [11]. This allows to show that good covering configurations for
the sphere are norming sets for P3

n(S), and can be used for polynomial optimization in the spirit of Lemma 1.
We recall that a sequence of finite point configurations XM ⊂ S2, with cardinality M ≥ 2, is termed a “good covering” of

the sphere if its covering radius with respect to the Euclidean distance in R3 satisfies the inequality

ρ(XM ) =max
x∈S

min
y∈XM
|x − y| ≤

α
p

M
, (11)

for some α > 0 (see, e.g., the excellent survey paper [14]). We can now give the following
Proposition 2. Let S = S2 be the unit 2-sphere and let {XM} be a good covering of S. Take X = XM with M = dg(mn)e, where

g(u) =

�

2α

π

4u2

4u− 1

�2

=
�2α

π

�2

u2 (1+O(u−1)) , u→∞ . (12)

Then

min
X

p−min
S

p ≤
1− cos(ξ)

cos(ξ)

�

max
S

p−min
S

p
�

, ∀p ∈ P3
n(S) , ξ=

π

2m
. (13)

Proof. By (11) and elementary considerations of spherical geometry, for every x ∈ S there exists y(x) ∈ X such that the
estimate

δ(x , y(x)) = 2arcsin

�

|x − y(x)|
2

�

≤ 2 arcsin

�

α

2
p

M

�
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Table 1: Average errors over 100 trials for (a, b, c) in the global minimization of the 4th-degree polynomial (14) by norming sets on sphere
and torus.

ε 10−1 10−2 10−3 10−4

sphere E t r i g
av 1e-3 4e-5 3e-6 3e-7

Eq.u.
av 5e-4 6e-5 5e-6 5e-7

torus E t r i g
av 6e-4 2e-5 8e-6 2e-7

holds, provided that α/(2
p

M)≤ 1 that is
p

M ≥ α/2, where δ is the geodesic distance, which coincides with the Dubiner
distance. In view of Lemma 2, to get a norming set with constant c = 1/ cos(ξ) it is sufficient to fulfill the inequality
δ(x , y(x))≤ ξ/n, that is

α

2
p

M
≤ sin

�

ξ

2n

�

.

Now, by the elementary trigonometric inequality sin(t)≥ t(1− t/π) we have that the former is satisfied if

α

2
p

M
≤
ξ

2n

�

1−
ξ

2πn

�

,

which gives M ≥ g(mn) by easy calculations. �

Observe that card(X )∼ (2α/π)2m2n2 for mn→∞ (in particular, for n fixed and m→∞). In order to get a good point
distribution for polynomial optimization on the sphere, we can consider “quasi-uniform” coverings, that are configurations
with bounded ratio between the covering radius and the point separation (mesh ratio). Indeed, these configurations provide
a low information redundancy. In [14] several quasi-uniform configurations are discussed, in particular the zonal equal
area configurations (the centers of zonal equal area partitions of the sphere), that turn out to be both, quasi-uniform and
equidistributed in the sense of the surface area measure. They turn out to be theoretically good covering with α= 3.5 (but
the numerical experiments suggest α= 2.5, cf. [16]). Moreover, the Matlab toolbox [17] provides efficient algorithms for
their computation.

Notice that with such configurations by Proposition 2 and the fact that (1− cos(ξ))/ cos(ξ) ∼ ξ2/2, ξ → 0, we get
a relative error bound on the polynomial minimum εm ∼ π2/(8m2), m → ∞, with card(X ) ∼ (7/π)2m2n2 ≈ 5m2n2

quasi-uniform points (but in practice we can take α= 2.5 and thus approximately (5/π)2m2n2 ≈ 2.5 m2n2 points).
In order to compare with the trigonometric grid approach of Proposition 1, we may observe that there tan2(ξ) ∼ ξ2,

ξ→ 0, and hence we have to replace m by d
p

2 me to get an error bound εm ∼ π2/(8m2), m→∞, with a corresponding
cardinality card(X )∼ 2(

p
2 m)2n2 = 4m2n2.

We may summarize the considerations above under a slightly different point of view. For a fixed error tolerance ε > 0,
in order to get a (1 − ε)-approximation to the minimum of a trivariate polynomial of degree n on the sphere, setting
ε = π2/(8m2), it is sufficient to sample at approximately 4(8/π2)n2ε−1 ≈ 3.24 n2ε−1 trigonometric grid points (that is
≈ 1.8 nε−1/2 equispaced nodes per spherical coordinate), or alternatively (7/π)2(8/π2)n2ε−1 ≈ 5n2ε−1 quasi-uniform points,
the centers of a zonal equal area partition (but in practice we can take (5/π)2(8/π2)n2ε−1 ≈ 2n2ε−1 points). On the other
hand, on the torus the same error is attained with approximately 8(8/π2)n2ε−1 ≈ 6.48 n2ε−1 trigonometric grid points (that
is ≈ 2.55 nε−1/2 equispaced nodes per toroidal coordinate).

For the purpose of illustration, we compute the minimum of the 4-th degree trivariate polynomial

p(x1, x2, x3) = (x1 − a)2(x2 − b)2 + (x3 − c)2 , (14)

on the unit sphere and on the torus with R = 1 and r = 1/3, where (a, b, c) is a random point on each surface (obtained via
a uniform bivariate random variable in the corresponding angular coordinates); such a minimum is clearly zero. In Table 1
we display, for some values of ε, the average over 100 trials for (a, b, c) of the relative errors

E =
�

min
X

p−min
S

p
�

/

�

max
S

p−min
S

p
�

, (15)

where X is either a trigonometric grid with d1.8 nε−1/2e= d7.2ε−1/2e equispaced nodes per spherical coordinate, or a quasi-
uniform mesh of the sphere (the centers of a zonal equal area partition computed by [17]) with 2n2ε−1 = 32ε−1 points. In the
last row we report the average errors of minimization on a trigonometric grid of the torus, with d2.55 nε−1/2e= d10.2ε−1/2e
equispaced nodes per toroidal coordinate; see the discussion above. Notice that in all instances ε turns out to be an
overestimate of the actual errors.

We may conclude by observing that the norming set approach, which is in some sense a “brute force” optimization
method, could be useful not only by its direct application, but also to provide starting guesses for more sophisticated
optimization procedures, like for example that discussed in [13].
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