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Abstract 

     The mathematical details that allow one to understand and individually obtain 
the results appearing in the classical Kermack and McKendrick 1927 paper are 
presented. As these results are so important for understanding an individual 
epidemic, the mathematical details that are glossed over in that paper are 
brought forth for the ease of usage by the educator and researcher in the field.  
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1      Introduction  
 
It is currently impossible to predict where and when an epidemic for any disease 
will occur without being cognizant of the initial infection. Unfortunately, only 
non-conclusive predictive capabilities are available at the present time. For that 
reason, it is important to teach and explain the mathematical details with some 
clarity of one of the earliest and most important models that can be used to 
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interpret disease characteristics in an epidemic that are described in the classic 
1927 paper by Kermack and McKendrick [1]. 
 
Other models have been developed but they do have certain limitations [2] such 
as: (a) The model that assumes there is genetic uniformity and all people react to 
the disease identically. (b) The model that assumes everyone has the same 
transmission rate from the disease (c) The model that assumes the same 
proportion of deaths regardless of the geographical location of the disease. (d) The 
model that does not incorporate any effects of the localized weather conditions as 
was indicated in a recent study correlating the number of dengue cases in 
Venezuela with the El Niño conditions in the Pacific Ocean [3]. (e) The model 
must also incorporate the effects of certain members of a population having an 
innate immunity [4]. 
 

2      Kermack and McKendrick Equations   
 
The Kermack and McKendrick subdivide the total population N that exists in the 
community into three separate distinct populations: the population S that is 
susceptible to the disease, the population I that is infected with the disease and the 
population R that has recovered from the disease. These populations are modeled 
with three coupled first-order nonlinear ordinary differential equations. This 
model has been given the acronym of the SIR model and it is described with the 
set of three equations with the independent variable being the time t. The 
coefficients  and β ν  are constants that represent the rates of infection and 
recovery during the epidemic respectively. 
 

 
dS

SI
dt

β= −                                                                                                  (1) 

 

 
dI

SI I
dt

β ν= −                                                                                              (2) 

 

 
dR

I
dt

ν=                                                                                                       (3) 

 
Although an analytical solution is presented in the original paper, several steps are 
missing in the seminal paper that led to the solution. It is the purpose of this note 
to fill in the missing steps to assist the reader in the understanding of this 
important topic. No new ground will be plowed in this note but hopefully the 
missing steps that are included here make the subject more transparent to the user. 
Initially, we will be able to follow in the footsteps of Kermack and McKendrick 
before embarking on the hidden path that will lead to the solution with the missing 
steps brought forth for the users' benefit.  
  
Adding the three differential equations (1)-(3) together yields a first order 
differential equation which can be immediately integrated to yield 
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( )

0
d S I R

S I R N
dt

+ + = ⇒ + + =                                                                 (4) 

 
where N is a constant of integration that represents the total population of 
susceptible, infected and recovered populations during a particular epidemic in the 
community. This value may change for different epidemics but it is assumed that 
the population remains constant within a particular epidemic. 
  
Dividing (1) by (3), we obtain a first-order ordinary differential equation that can 
be immediately integrated to yield 
 

 0 exp

dS
SI

dS Sdt S S R
dR dRI
dt

β β β
ν νν

= −
 

⇒ = − ⇒ = − 
 =

                                         (5) 

 
where the constant integration is equal to 0. Incorporating the results of (4) and 
(5) in (3), we find that 
 

 ( )
0 exp

dR dR dR
I N S R N S R R

dt dt dt

βν ν ν
ν

  = ⇒ = − − ⇒ = − − −  
  

               (6) 

 

If the ratio of 
β
ν  is small, the exponential term can be approximated with the first 

three terms of a mathematical expansion to yield 
 

 
2

2
0 2

1
2

dR
N S R R R

dt

β βν
ν ν

  
= − − + −  

  
                                                       (7) 

 
At this stage of the original manuscript, Kermack and McKendrick fail to provide 
the missing steps in the derivation and they immediately jump to the final result. It 
is the purpose of this note to provide the bridge in this classic work. 
 
Equation (7) is a first order differential equation that can be written in the form 
 

 ( )
2

2
0 0 0 21

2

dR
dt

N S S R S R
β βν
ν ν

=
   − + − −    

    

                                        (8) 

 
The integral of the right-hand side of (8) is equal to t + C where C is a constant of 
integration that will be subsequently determined. 
  
The left-hand side of (8) can be put in the form of an equation that is found in a 
table of integrals, namely 
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1

2

2 2

2
2 tan

4

4

b cx

dx ac b
a bx cx ac b

− + 
 

− =
+ + −∫

                                                       (9) 

 
For simplicity, we will examine (9) before relating it with the proper constants 
given in (8). Equation (9) can be written in terms of the hyperbolic function 
tanh(x) using the definition that 
 

( ) ( ) 1
tanh( ) 1 tan 1   &  tan 1 tanh( ) 1 tanh( )

1
x x x x x= − − − − = − = −

−          (10) 

 
Equation (8) and (9) can be rewritten with the constant of integration C included 
as 
 

 
2

2

4 2
1 tanh ( )

2 1 4

ac b b cx
t C

ac b

 − + − + =   −  − 
                                         (11) 

 
Rearranging terms in (11), we write 
 

 
2

2 4
2 1 4 tanh ( )

2 1

ac b
cx b ac b t C

 −= − + − − + 
− 

                                 (12) 

 
The constant of integration C can be determined from the location x which will be 
taken to be equal to 0 at the time t = 0.  
 

 
1

2 2

2
tanh

1 4 1 4

b
C

ac b ac b

−  = −  − − − − 
                                        (13) 

 
Substituting (13) into (12) leads to 
 

2
2 1

2 2

4 2
2 1 4 tanh tanh

2 1 1 4 1 4

ac b b
cx b ac b t

ac b ac b

−
 −   = − + − − −    − − − − −   

 
                                                                                                                             (14) 
 
Comparing (8) and (9), we find that the constants have the following values 
 

 ( )
2

0 0 0 2
  1      

2
a N S b S c S x R

β βν ν ν
ν ν

 = − = − = − = 
 

                        (15) 
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Using these constants and the following definitions 
 

( )
22 2 0

1
0 0 02 2

1
2   &  tanh

2

S
q N S S S

q

β
β β νφ
ν ν

−

  −          = − − + =           −   

             (16) 

 
We find that (14) can be written as 
 

 ( )
2

02
0

1 tanh
2

q
R S q t

S

ν β ν φ
β ν

  −
= − + − −  

  
                                    (17) 

 
Equations (16) and (17) are the equations that appear in the original Kermack and 
McKendrick paper.  
 

4      Conclusion 
 
We believe that the detailed derivation which appears here will be useful for 
educators and practitioners in this field.  It is also possible to expand on these 
results, for example by assuming that the total population N possessed a cyclical 
nature due to external conditions not included in this work.  
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